
Susan Elliott Sim
ses@intdexwis.com

Teaching Statement

Teaching is an essential part of increasing human understanding, not only for the students, but also for the
teacher. I have always enjoyed teaching because it forces me to organise my knowledge of an area
systematically. It also requires me to examine my understanding more critically because students ask
simple questions that challenge implicit assumptions. I also consider teaching a necessary part of research
because it communicates results and advances the state of the art by educating both future industrial
practitioners and researchers.

I begin any educational interaction, formal or informal, by understanding where students are
intellectually, developmentally, and socially. I can subsequently use this understanding to plan out how I
will lead them to satisfy or exceed learning objectives. I like to challenge students, respectfully, to come
out of their comfort zone, and think in new ways. It is not enough to teach students the answers to today’s
questions, they also need to learn how to find answers for themselves in the future.

I believe that a teacher’s most important job is to provide support and encouragement. Consequently, I
have put a great deal of time and effort into mentoring students, especially those from underrepresented
groups, whether they belonged to my research group or not. The achievement that I am most proud of is
the 2nd Annual Mentoring Award from the Associated Graduate Students in the non-tenured category. My
students as a group nominated me without my knowledge and the award was highly competitive. It means
a lot to me that my students thought enough of me to put in the effort. In addition, their ability to put
together a winning case for me indicates that I am teaching them well.

Classroom Experience

While I was at UCI, I have taught fourteen regular courses in Informatics at the graduate and
undergraduate level. I have created one new graduate course and re-designed an existing undergraduate
course. I will briefly describe these courses before discussing my teaching techniques.

I am the principal instructor and coordinator responsible for Inf111: Software Tools and Methods. I
completely redesigned the course after I arrived at UCI. I update the course on a regular basis in order to
stay current with industry standard tools. I teach this course at least once per year and often twice. When
the course is taught by an instructor, I ensure continuity by providing them with materials and guidance.
This course is required for Informatics majors and it is the only Informatics course that is required in the
Computer Science and Engineering Major. Consequently, the enrolment tends to be high (50-100
students) and the background of the students tends to heterogeneous; these factors can make the course
difficult to teach. Nevertheless, I have received high teaching ratings, with a median score of 8 out of 9.0
over the last three years. Comments from technical managers in industry and students who have graduated
are uniformly positive.

Inf201:Research Methodology for Informatics was a new course that I proposed, designed, and taught for
the first time. It is now a core course in the curriculum for all tracks in the Informatics graduate program.
All students take it in their first year at UCI and through it they receive a foundation for conducting
research. The course covers both conceptual topics, such as philosophy of science, and practical skills,
such as conducting a literature search and writing an abstract.

Inf 211: Software Engineering, Inf 217:Software Processes and Inf219:Software Environments were
courses that were already in the program, but new to me. Each of these courses typically has an enrolment
of 15 students. My median score on teaching evaluations in these classes is an 8.0 out of 9. All of the
courses are research-oriented, and require students to engage with the literature and produce original

Susan Elliott Sim
ses@intdexwis.com

work. The first course in the list is a broad introduction to the research literature in software engineering. I
conduct the latter two courses as seminars that conclude with a research project conducted by pairs of
students. In the course on software process, I cover topics such as team dynamics, agile development
methods, and resource allocation. My approach is to lead the students through competing streams of
research, so they can begin to formulate their own research questions. In the course on software
environments, I cover not only the mechanics of implementing interactive software tools, but also the
psychological, social, and organizational factors that constrain tool design.

Techniques

I use an eclectic toolbox of techniques for teaching and mentoring students. Every quarter, I like to try at
least one new thing. In my classes, I have given demonstrations of software tools in class, written
computer programs collaboratively with the students, held small group exercises during lecture, led
impromptu discussions, organized formal parliamentary debates, assigned hands-on laboratory exercises,
administered surprise quizzes, assigned small weekly assignments, and set larger term projects for
students. I want to draw attention to three techniques that I use extensively in my teaching.

Question Asking. I require students in my class to ask questions. Sometimes I pause the class to give
students the opportunity to ask questions. At other times, I ask the students to write down questions on
index cards and have them circulate the cards so their peers can read each other’s questions. I use this
technique because being able to ask a question requires active engagement with the class material to
identifying a knowledge gap. Pausing for questions provides students with a few moments to start
organizing their information in their heads, while they are in the classroom and I am present to help clear
up misunderstandings or to take the lesson further. I began to use this technique when I found in my
research that programmers were remarkably bad at asking questions when they were given new
information [1]. I wanted to address this problem by letting students practice asking questions. Key to the
success of this technique is establishing a safe space for lack of knowledge. On a recent teaching
evaluation, one student wrote, “Very good teacher, family oriented - in the sense that you don't feel
intimidated to ask ‘stupid’ questions. I enjoy how she is not intimidating, but very friendly and
respectable.”

Scaffolding. In construction, scaffolding is used to allow workers to safely access parts of a building that
they cannot otherwise reach. In developmental psychology, children often use scaffolding to help them
solve problems that they otherwise could not. For example, young children often talk to themselves out
loud when figuring out a puzzle; later this self-talk becomes silent and internalized. I use the concept of
scaffolding to ensure that students who enter a course with highly divergent backgrounds and skill levels
have the same opportunities to master the material. In the undergraduate course on software tools and
methods, I use scaffolding extensively. When starting a new unit, I begin by describing a difficulty in
software development, which suggests a niche for the tool we are about to study. Next, I give a demo of
the tool and take suggestions from students on how I should use it. I then move on to how the tool works
conceptually. Students build on this by completing a supervised hands-on laboratory exercise that requires
them to use the tool on a simple source code example. By this point, I will have provided a level playing
field for students to undertake their individual assignments on a larger source code example. At the
graduate level, I have used scaffolding in the software processes course. We start the quarter with
readings and lectures, a format that they are familiar with. We then move into a series of formal debates,
where each side is defined by a set of 2-4 papers. The “government” has to argue in favor of a resolution
that takes an extreme position. The “opposition” argues against the resolution. There are strict time limits
on each statement by the speakers and their rebuttals. This format models how to form arguments about
positions in research. By the end of several weeks of debate, the students realize the interesting
opportunities for research lie in the middle ground. For example, rather than advocating lots of

Susan Elliott Sim
ses@intdexwis.com

documentation for software (or no documentation for software), they understand that the real question is
how much documentation is enough.

Use of Technology. The current generation of students are at ease with technology in its myriad forms. I
try to use this familiarity and ubiquity to my advantage as a teacher. For many years, I have been holding
electronic office hours, usually in the evening, when I am available on instant messenger to answer
questions. Students tend to have many obligations and responsibilities, and electronic office hours provide
one more opportunity for contact with me. They especially appreciate the chat rooms that I hold the day
before a test or exam. I have used the web site “Poll Anywhere” to conduct real time surveys during
lecture. Students can use their cell phones to text comments, questions, or answers to multiple choice
questions to Poll Anywhere and these appear immediately on the web site, which is projected at the front
of the class. Recently, I have been experimenting with creating audio and video podcasts of lectures.
Making these available did not decrease attendance and students found the podcasts helpful for refreshing
their memories when studying. The innovation that I am most proud of is crowdsourcing of tests and
exams. About two weeks before a test, I set up a web site where students can submit questions, comment
on each other’s questions, suggest improvements, and vote on their favorite questions. If there are
sufficient high quality questions, the test may consist of questions taken entirely from the site. This
technique has been highly effective, because students are engaged in their own education and evaluation,
and it gets them asking questions (an activity mentioned above). Students have reported that
crowdsourcing has helped them with retention of material, especially when one of their questions gets
used on the test.

Research Mentoring

In addition to classroom teaching, I have mentored many students at all levels as part of my research
group. I have supervised thirty-one student-quarters of undergraduate research and thirty-nine student-
quarters of graduate research. I have also supervised four full-time student-summers of undergraduate
research, and eleven full-time student-summers of graduate research. I have supervised six Ph.D. students,
served on the examining committee for a further six Ph.D. students. I graduated my first Ph.D. in this
year. I have supervised three Master’s thesis students (graduating two), and served on the examining
committee for four others.

I have a group meeting and one-on-one meetings with each student every week. During the group
meeting, each student reports on their progress, describes any difficulties that they encountered, and seeks
input from others. Sometimes, we have practice talks or brainstorming sessions. The purpose of the group
meeting is to provide students with exposure to research in progress, build community, and allow more
senior students to serve as role models for the more junior ones. There are so many frustrating and
mysterious aspects of doing research that one of the best ways to learn how to do it is through legitimate
peripheral participation. By building ties between the students, they can turn to each other in times of
difficulty. During the individual meetings, I can give students personalized attention and provide advice,
assistance with writing, or a shoulder to cry on, as appropriate.

References

[1] Ratanotayanon, S. and Sim, S.E., "When Programmers Don't Ask," in Second International

Workshop on Supporting Knowledge Collaboration in Software Development, Tokyo, Japan,
2006.

