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Preface

In June, 2010, a small number of us met in Mannheim, Germany to continue dis-
cuss an emerging area of research. This meeting was an informal continuation of the
conversations we had at the inaugural Workshop on SUITE (Search-driven develop-
ment: Users, Infrastructure, Tools and Evaluation) held at ICSE 2009 in Vancouver,
Canada. At that meeting, we latched on to the term “code retrieval in the web,”
because it encompassed both the technological and behavioral aspects of the phe-
nomenon we were studying collectively. From a technological standpoint, we and
other researchers were using algorithms and concepts from information retrieval,
program analysis, and software reuse to facilitate code search. From a behavioral
standpoint, software developers were searching for code but this was qualitatively
different from what had been observed previously in an IDE (integrated develop-
ment environment), in a web browser for documents, or in a library with expert
guidance.

We agreed that we needed to have a single edited volume to lay the foundation
for code retrieval on the web as a research area, and so the idea for this book was
sown. Thank you to Oliver Hummel, Werner Janjic, and Oleksandr Panchenko for
the inspiration and motivation. We now pass the baton to you for the next volume.

We will be donating the royalties from this book to two charities, The Fistula
Foundation and Sembrando (Sowing in Peru). Because this is an edited volume, we
felt that this was the most equitable distribution of the proceeds. The Fistula Foun-
dation (http://www.fistulafoundation.org/) is a non-profit organization that funds
hospitals that repair obstetric fistulas in 11 countries around the world, including
Ethiopia, Afghanistan, and Bangladesh. Their work has been the subject of a doc-
umentary, "A Walk to Beautiful" and has been promoted by Pulitzer Prize-winning
journalist, Nicholas Kristof. Sembrando (http://www.sembrando.org.pe/) is an ini-
tiative of Instituto Trabajo y Familia that seeks to improve the social and economic
conditions of extremely poor families living in the High Andes. Its patron is Pilar
Nores, economist and former first lady of Peru.

It took two years and much labour to bring this book to fruition. We could not
have done it without others joining and aiding our project. We are especially grateful
to the authors who contributed chapters.
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At Springer Verlag, Jennifer Maurer and Courtney Clark provided editorial ad-
vice and assistance during the prepartion of this book.

We would like to thank our reviewers who graciously gave their time: Eduardo
Almeida, Claudia Ayala, Sushil Bajracharya, Joel Brandt, Rahul De’, Xavier Franch,
Mark Grechanik, Raphael Hoffman, Werner Janjic, Oliver Hummel, Ken Krugler,
Kumiyo Nakakoji, Joel Ossher, Denys Poshyvanyk, C. Albert Thompson, Medha
Umarji, and Halli Villegas.
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Chapter 1
Introduction: Remixing Snippets and Reusing
Components

Susan Elliott Sim and Rosalva E. Gallardo-Valencia

Abstract In this introductory chapter, we map out “code retrieval on the web” as a
research area and the organizational of this book. Code retrieval on the web is con-
cerned with the algorithms, systems, and tools to allow programmers to search for
source code on the web and the empirical studies of these inventions and practices.
It is a label that we apply to a set of related research from a software engineering, in-
formation retrieval, human-computer interaction, management, as well as commer-
cial products. The division of code retrieval on the web into snippet remixing and
component reuse is driven both by empirical data, and analysis of existing search
engines and tools.

1.1 Introduction

Code retrieval on the web is concerned with the algorithms, systems, and tools to
allow programmers to search for source code on the web and the empirical studies
of these inventions and practices. The name builds on two concepts in computing:
code search and information retrieval. Code search traditionally happens within an
editor or integrated development environment. Information retrieval is the set of
technologies to retrieve documents from large online collections and information
behaviour is the study of how people use these tools. Adding the qualifier “on the
web” particularlizes the study to a modern context, with open source repositories,
Web 2.0, crowdsourcing, and code-specific search engines. It’s a label that we apply
to a set of related research from a variety of disciplines, as well as commercial
products.

Rosalva E. Gallardo-Valencia
Intel Corporation, Mountain View, CA, USA, e-mail: gallard.re@gmail.com

Susan Elliott Sim
Many Roads Studios, Toronto, Ontario, Canada, e-mail: ses@manyroadsstudios.com
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Our earliest work on code retrieval on the web was an extension of our previous
work on code search within an IDE. In preparation to conduct an empirical study,
we conducted a literature search. We found relevant papers on this topic in many
disciplines. Although, we used software engineering and program comprehension
as a starting point, we were quickly led to software reuse, human-computer interac-
tion (HCI), information retrieval, and even further afield to areas such as consumer
behavior.

One observation that we made repeatedly, both during the literature search and
in our subsequent research, is that there were two kinds of code search on the web.
One kind would be recognized by the software reuse community and involved the
reuse of source code in components with little or no modification. However, these
components or projects were not necessarily reused as intended by their original
designers. The other kind would be more familiar to those in HCI, where source
code is used as raw material in a creative process. The title and organization of this
book reflects this division.

In this chapter, we give an introduction to code retrieval on the web. In Section
1.2, we give some context to the emergence of this area. Next, we explain the orga-
nization of this book and give an overview of the chapters.

1.2 Emergence of Code Search on the Web

Code search has long been a critical part of software development. A study of soft-
ware engineering work practices found that searching was the most common activity
for software engineers [22]. They were typically locating a bug or a problem, finding
ways to fix it and then evaluating the impact on other segments. Program compre-
hension, code reuse, and bug fixing were cited as the chief motivations for source
code searching in that study. A related study on source code searching found that the
search goals cited frequently by developers were code reuse, defect repair, program
understanding, feature addition, and impact analysis [21]. They found that program-
mers were most frequently looking for function definitions, variable definitions, all
uses of a function and all uses of a variable.

The recognition that search is powerful and useful has led to advances in code
search tools. Software developers have needed tools to search through source code
since the appearance of interactive programming environments. It started with sim-
ple keyword search and when regular expressions were added, it became possible
to specify patterns and context [29]. An important improvement was made when
search techniques started using program structure, such as identifiers of variables
and functions, directly in expressing search patterns [1, 17].

Another approach to syntactic search involves processing the program and stor-
ing facts in a database file of entity-relations [2, 12]. Alternatively, the code can
be parsed and transformed into other representations, such as data flow graphs or
control flow graphs, and searches can be performed on those structures [15]. While
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some of these ideas have not been widely adopted, searches using regular expres-
sions and program structure are standard in modern IDEs.

Code search in IDEs is the common origin for both component reuse and snippet
remixing. These new practices have emerged in response to new technologies, such
as open source, and Web 2.0. Open source is the ethic of making source code avail-
able with the executable for a software program. Centralized repositories, such as
Source Forge1 and Github2, were created for the purpose of sharing these programs.
Web 2.0 technologies has allowed anyone with a web browser to contribute content
to web sites. This material has included personal blogs, tutorials, online discussion
forums, and snippet repositories, such as Snipplr3, and Smipple4.

Nowadays, they search the web to find information in order to solve the prob-
lems they encounter while working on software development tasks. A recent study
[5] have found that developers spend 19% of their programming time on the web.
The mechanisms for specifying searches and making source code searchable are just
as applicable to code search on the web. However, there are two important differ-
ences: scale and the information sought. Conventional code search is concerned with
searching for specific information within the context of a single project. A project
could be very large and even have multiple programming languages, it would still
be a single project with a constrained set of compilation units. With code retrieval
on the web, the challenge is to examine the contents of many different projects, i.e.
thousands of projects and billions of lines of code. Also, in this context, the software
developer is less concerned with finding whether a variable or function is defined,
and more interested in finding functionality, a typical concern in code reuse. It is also
common to use the web as a giant desk reference. Gone are the days of programmers
keeping thick reference manuals on their desks.

We can see evidence of these two kinds of search both in how software developers
think about code retrieval and how tool designers approach the problem.

1.3 Programmers Think Differently about Component Reuse
and Snippet Remixing

The differences in how programmers approach component reuse and snippet remix-
ing can be characterized by two dimensions: the quantity of source code being
reused and the degree to which the source code will be adapted to the new setting.

Drawing on years of research into social and cognitive aspects of code search
and expertise search within organizations [34, 36, 35], Kumiyo Nakakoji, Yasuhiro
Yamamoto, and Yoshiyuki Nishinaka (Chapter 2) identified two dimensions efficacy
and attitude for code retrieval on the web. Efficacy can occur when a literal line of

1 http://sourceforge.net/
2 https://github.com/
3 http://snipplr.com/
4 http://www.smipple.net/
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code or “texture” is copied into the program under construction. Or efficacy can
occur when “functionality” is copied in whole cloth. For attitude, the programmer
either uses the code as an “element” in her own code or as a “substrate” upon which
to build software. These dimensions form a 2x2 matrix. Component reuse aligns
with texture/element. In turn, snippet remixing aligns with functionality/substrate.
Nakakoji et al. continue on in “Unweaving Code Search toward Remixing-Centered
Programming Support” to describe how various scenarios of code retrieval on the
web play out within these dimensions and what kinds of tool support is needed.

In analyzing data from an exploratory survey, Medha Umarji and Susan Elliott
Sim (Chapter 3) also arrive at two similar dimensions, “target size” and “motiva-
tion.” Points along the target size spectrum were characterized as block, subsystem,
and system. The endpoints of the motivation spectrum were as-is reuse and refer-
ence example. Both of these dimensions also align with Nakakoji’s characterization.
Component reuse aligns here with subsystem or system and as-is reuse. Whereas,
snippet remixing involves blocks, but not purely as reference examples. In the re-
mainder of “Archetypal Internet-Scale Source Code Searching,” Umarji and Sim
consider other aspects of the search process, such as the tools used and information
sources, in a qualitative fashion.

Susan Elliott Sim, Megha Agarwal, and Medha Umarji (Chapter 4) conducted a
quantitative, controlled laboratory experiment as a follow-on study. They provided
subjects with a scenario, derived from data from the survey, and asked them to search
for code using five search engines. They found statistically significant differences
between searches for reference examples and as-is reuse. Searching for reference ex-
amples required more effort, as measured by average the number of terms per query,
average number of queries, clickthrough rate, and time spent. Searches for blocks
were similar. Further details of this study can be found in “A Controlled Experiment
on the Process Used by Developers During Internet-Scale Code Search.”

These differences between snippet remix and component reuse were apparent not
only the analyses generated by researchers, but also in how programmers themselves
thought about code retrieval targets. We took the results of the exploratory survey,
distilled them down into 27 examples, and asked programmers to place them into
categories using a card sorting task.

Table 1.1 shows the list of search targets provided. We asked participants to clas-
sify these examples into at least 2 and no more than 8 categories based on similarities
or differences. After participants were done with card sorting task, we asked them
about the criteria that they used for classification and to provide a name for each
category.

We ran a total of 12 sessions with 24 participants (22 graduate and 2 undergradu-
ate computer science students). They were between the ages of 20 and 49, and they
had between 1 and 15 years of experience developing software. Each pair of soft-
ware developers were given 27 index cards and asked to classify these examples into
at least two and no more than eight categories based on similarities or differences.

We took the examples and the categories generated by every group and performed
a Formal Concept Analysis (FCA) on them. FCA is a data analysis technique that
takes a matrix of objects and properties of objects and derives an ontology, called a
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Table 1.1: Source Code Search Targets Used in Card Sorting Task

concept lattice [29]. This technique has been used in a number of areas, including
artificial intelligence, software clustering, and genetics [9, 19, 21]. We used Con-
cept Explorer to produce a concept lattice 1.1. For expository purposes, we use a
simplified version here.

The white boxes are the search targets from Table 1.1. The grey boxes are the
categories created by the participants. When targets or categories always appeared
together, they were collapsed into a single box. The organization and layout of the
lattice are generated automatically and it reflects the relationships between the con-
cepts. More specific concepts appear closer to the bottom of the lattice, and more
general ones appear to the top. Circles are placed where different objects are joined
to create more general concepts. Larger circles indicate greater confidence in the
concept. Some circles are barely visible and not labeled, as these have been created
by the analysis process and were not part of the input data. Circles where the bottom
half is colored black indicate an exact match with categories created by the partici-
pants. Circles where the top half is colored blue indicate an exact match with search
targets in the study. Edges in the lattice depict a relationship between concepts, with
line thickness showing the strength.

In this concept lattice, examples and snippets are in the far half. Documenta-
tion in the form of tutorials and forums are in the middle. To the right of that, are
bugs and patches. On the far right are components such as systems, products, and
frameworks. The arrangement from left to right was selected by Concept Explorer
to create the simplest layout possible, by minimizing edge crossings. It is notewor-
thy that the snippets group on the left is placed on the opposite side of the page
from the components group on the right. Two search targets, a class to represent a
bank transaction and a class to connect to a database appear in the middle with links
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Fig. 1.1 Concept Lattice for Examples and Categories in Focus Groups

to both snippets and components. This makes sense, because they are both small
pieces of code and a means to access these larger systems.

There are 8 clear, consistent concepts where the categories and search targets
match: “snippet,” “tutorials,” “patches,” “bug reports,” “SWT,” “frameworks,” and
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“open source systems.” Only one falls int the snippet group, while indicates that
this concept is more unitary. In contrast, three of these fall in the component group.
Open source systems and frameworks are not identical to each other, but both have
integrity as components.

This lattice is surprisingly consistent, given the diversity of stimuli and number
of pairs in the focus groups. This regularity supports the our assertion that software
developers think differently about snippets to remix than components to reuse.

1.4 Tools for Retrieving Code on the Web

Looking at the wide range of tools for code retrieval on the web, we arrive at
three categories: those designed for snippet searches, those designed for compo-
nent searches, or both kinds of searches. The tools in the first two categories used
either snippets or components as the starting point in their design. Tools that can be
used were either i) intended to be used with components and support for snippets
were a side-effect, or ii) a general purpose tool, not specifically designed for use
with source code, e.g. Google. Table 1.2 shows the classification of these tools.

We used this taxonomy to guide the selection of articles for Parts II-IV of this
book. Part II, “From Data Structures to Infrastructure,” is on the design of search en-
gines, with a focus on the back end. Chapter 5 “Artifact Representation Techniques
for Large-Scale Software Search Engines” by Oliver Hummel, Colin Atkinson, and
Marcus Schumacher give a historical overview of the data structures used in code
retrieval engines. A history of the evolution of the Krugler search engine given by
Ken Krugler in Chapter 6. Together these two chapters describe how our under-
standing of how to build code search engines from an academic and an industrial
perspective, respectively. The similarities between the two are more significant than
the differences.

The authors of the next two chapters advanced code search technology in novel
ways. Eduardo Santana de Almeida has worked on a series of code search engines
that introduced novel mechanisms for characterizing components, including Folk-
sonomy, and facets. Conventionally, labels and keywords in component repositories
were defined a priori and additions to the repository must conform to these terms.
A Folksonomy is based on tags that are added ad hoc. Facets are discovered using
data mining techniques. Lessons learned from implementing these innovations are
described in Chapter 7. In Chapter 8, Sushil Krishna Bajracharya considers code
retrieval engines not solely as a stand-alone tool or service, but as infrastructure or
platform for building applications for mining or reusing open source components.

1 http://demo.spars.info/j/
2 http://www.koders.com
3 http://www.google.com/codesearch/
4 http://www.krugle.com/
7 http://www.google.com/
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Snippets Components Both
API and Exam-
ple Code Search

Prospector [24]
Strathcona [14]
MAPO [38]
Mica [30]
XSnippet [20]
PARSEWeb [30]
STeP_IN_Java
[35]
SNIFF [5]
Blueprint [6]
SAS [2]

JSearch [33]
XFinder [8]

Assieme [13]

Web-based
Code Search
Engine

Agora [32]
SPARS-J5[18]
JBender [12]

Koders6

Google Code
Search7

Krugle8

Merobase [17]
Sourcerer [22]
S6 [30]
Exemplar [11]

Test-driven
Code Search

Code Conjurer
[17]
CodeGenie [20]

Extreme Harvesting
[16]

Code Snippet
Web Search
Engine

Sniplr
Smipple

Project hosting
Site

SourceForge Github

Reuse Oppor-
tunity Recom-
mender

CodeBroker [34]
Rascal [25]

Source Code In-
tegration

Jigsaw [7] Gilligan [8]

General Pur-
pose Web
Search Engine

Google9

Others Codetrail [10] JIRISS [28]

Table 1.2: Tool Classification by Type of Searches
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1.4.1 Component Retrieval

Developers perform searches for components when they want to reuse complete
frameworks or systems. Developers expect to find complete components or systems
that they could reuse, but the expectation changes according to what they find avail-
able on the Web. The types of tools that mainly support developers seeking open
source projects are web-based code search engines [32, 18, 12, 17, 22, 30, 11],
source code integration tools [8], test-driven code search [17, 20, 16], and project-
hosting sites. Only a few of these tools take into consideration the current develop-
ment context of the developer to suggest components or to help in the evaluation of
results.

When developers evaluate open source components and projects, they look not
only at the functionality, but also at other aspects such as compatibility of the li-
cense, the support and level of activity of the open source community in case of
problems and questions, the quality of the software, and the reputation of the devel-
opers. After selecting a suitable component or project, developers will adapt their
current code, and possibly the found code, to integrate them. There are few tools
that help developers with this integration.

In Part III, “Reuse: Components and Projects,” are four papers on component
reuse; two of these are empirical studies and the second two are on technologies
for improving component retrieval on the web. In Chapter 9, Claudia Ayala, Xavier
Franch, Reidar Conradi, Jingyue Li, and Daniela Cruzes report a study where they
interviewed 19 practitioners on the criteria that they used for selecting open source
components for use in their own projects. Rahul DeÕ and Ravi A. Rao conducted a
similar study, where they interviewed senior IT managers on how high level goals of
an organization influenced the decision to use open source components. These goals
are also known as strategic imperatives, and includes examples such as maintaining
hypercompetitiveness or entering a new sector. This study can be found in Chapter
10.

Joel Ossher and Cristina Lopes brought together established technologies from
two fields to arrive at a novel improvements to component retrieval, and these are
described in Chapter 11. They combine algorithms and frameworks from infor-
mation retrieval for searching and returning documents from a large corpus, with
algorithms from program analysis for extracting characteristics from source code.
Similarly, Oliver Hummel and Werner Janjic combine infrastructure for information
retrieval, and a software development technique called “test first.” to arrive at their
tool. Queries for suitable components are created by specifying test cases, and the
their tool, “Extreme Harvester,” which is described in Chapter 12, returns only those
components that pass the tests.
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1.4.2 Snippet Retrieval

Developers perform searches for snippets to learn how to use an API, to ac-
quire a new concept, or to remind them of syntax. Developers expect to find
some lines of code that they could copy and paste with or without the need to
adapt the code to integrate it to their current development task. The types of tools
that mainly help developers find snippets are API and example code search tools
[24, 14, 38, 30, 20, 30, 35, 5, 6, 2, 13], code snippet Web search engines, reuse
opportunity recommenders [34, 25], and source code integration tools [7]. Many
of these tools, especially the ones in the first and third group in the list, make use
of the current context of the user to suggest potentially related code snippets. A
few tools in the project-hosting sites, test-driven code search, and general-purpose
search engine group also help developers look for code snippets. Many tools in the
listed groups support both snippet and component searches, but only the reuse op-
portunity recommender group and code snippet search engines support exclusively
snippet searches. When developers evaluate the result set given by the tools, they
mainly pay attention to the functionality of the code snippet. Not many tools offer
support for integrating code snippets, mainly, because they assume developers will
copy and paste them.

Part IV, “Remix: Snippets and Answers,” contains three papers. Chapter 13 by
Rosalva E. Gallardo-Valencia and Susan Elliott Sim is on “Software Problems
that Motivate Web Searches.” They observed software developers as they worked
and paid particular attention to the searches that they performed. They found that
searches for snippets were examples of opportunistic problem solving. Software de-
velopers engaged in these types of searches when they needed information to solve
a problem that they encountered in their daily work. Gallardo-Valencia and Sim also
found a stark division between searches for snippets and searches for components.
The latter took more time and the selection process took more factors into consider-
ation.

These results informed the design and implementation of a search engine for Java
snippets described in Chapter 14. Using information retrieval infrastructure, simi-
lar to those described elsewhere in this volume, Phitchayaphong Tantikul, C. Albert
Thompson, Rosalva E. Gallardo-Valencia, and Susan Elliott Sim, used tutorial web
pages rather than open source projects as source material. The examples in the tu-
torials were the “documents” in the repository and the surrounding text was used as
metadata.

An increasingly important resource for software developers is Stack Overflow,
a web site where one can post programming-related questions and expect answers
from other users. While many questions and answers contain code snippets, not all
of them do. Nevertheless, software developers often search the site for information.
In Chapter 15, Ohad Barzilay, Christoph Treude, and Alexey Zagalsky report on
a study that they conducted on Stack Overflow and a tool that they developed to
help software developers to remix the found snippets or examples into their own
software.
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1.5 Concluding

We conclude this book with Section V, “Looking Ahead,” which contains two
provocative articles that look at broader issues. Chapter 16 by Susan Elliott Sim
and Erik B. Stenberg is on “Intellectual Property Law in Source Code Reuse and
Remix.” They conduct a series of thought experiements in which they apply current
U.S. intellectual property law to a scenario where source code is being reused. The
emphasis of their analysis on the maintaining access to a large body of source code
for future software developers. The last chapter of this book is the winner of a sci-
ence fiction short story contest, “Singular Source,” on the future of programming.
This work by Micah Joel, entitled, “Richie Boss: Private Investigator Manager,” is
a film noir-themed mystery where the protogonist makes a startling foray into an
archive of computer programs. We wanted to include a work of fiction as a final
chapter, both to inspire future researchers and to probe the boundaries of code re-
trieval on the web.

This book represents a first collection of works on this topic, with historical ret-
rospectives, syntheses of multiple studies, and current research. In this introduction,
we argued that ‘code retrieval on the web’ bifurcates into two kinds of information
seeking behavior: component reuse and snippet remix. Searches for components are
methodical and involve careful consideration of multiple criteria. The found compo-
nents are subsequently reused with minimal modification. Searches for snippets are
opportunistic and are typically conducted to obtain information. The found snippets
are used in a variety of ways, including copy and paste, and read and understand.

The two types of search are often conflated because they share a common ori-
gin, specifically code search in IDEs, and they have a single apparent action, typing
queries into a search engine. Closer consideration of how software developers think
about code retrieval on the web reveals two distinct patterns: searches for compo-
nents and searches for snippets reveals. Each kind of search is distinct enough to
warrant individual treatment in research and design of tools. We hope that this book
promotes and encourages research in these and other directions.
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Part I
Programmers and Practices



This section consists of three diverse papers on software developers and how they
search. The theory and empirical data serve to inform subsequent algorithm and
software tool design that appear in later chapters.

Nakakoji, Yamamoto, and Nishinaka’s paper in Chapter 2 is on “Unweaving
Code Search toward Remixing-Centered Programming Support.” Armed with many
years of experience developing tools to help developers search for expertise in an
organization, Nakakoji et al. present a framework for cognitive, social, and practical
aspects of reusing source code.

In Chapter 3, Umarji and Sim present the results from their landmark survey
of source code searching on the web. It was an exploratory study and represents
a first effort in categorizing the kinds of code search behavior that programmers
engage in when searching for code on the web. “Archteypal Internet-Scale Sourc
Code Searching” is an important study, because it forms the foundation of much of
their subsequent work.

“A Controlled Experiment on the Process Used by Developers During Internet-
Scale Code Search” by Sim, Agarwala, and Umarji in Chapter 4 is a very different
kind of study from the one in the previous chapter. This controlled laboratory ex-
periment seeks to test specific hypotheses using statistics.



Chapter 2
Unweaving Code Search toward
Remixing-Centered Programming Support

Kumiyo Nakakoji, Yasuhiro Yamamoto and Yoshiyuki Nishinaka

Abstract Recognizing that programming is basically remixing, this chapter looks
into the cognitive, social, and practical aspects of searching for and using existing
code in a programming task. A code search mechanism undoubtedly plays an essen-
tial supporting role in a developer’s search for code in his or her own programming
task. Supporting code search activities, however, demands more than code search
mechanisms. At the same time, code search mechanisms also help a developer in a
wider spectrum of programming activities. We present the anatomy of the cognitive
activity in which a developer searches for existing code, and we propose efficacy and
attitude as two dimensions depicting code search activity. We discuss areas of nec-
essary technical and socio-technical support for code search activities in addition
to code search mechanisms. We conclude the chapter by calling for a developer-
centered remixing-oriented development environment.

2.1 Unweaving Code Search

Everything is a remix.1 A large part of software is built by using existing code from
open source software (OSS) via the Web. Programming is now viewed as basically
remixing.
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As Henning [19] noted, development style has changed from the seventies and
eighties, when developers pretty much wrote everything from scratch. A number of
studies have found that developers constantly engage in searching for code, for doc-
uments, and for discussion forums. Developers almost always start their program-
ming by searching the Web [22]. They begin to compose their own code only after
making sure that there are no Application Program Interfaces (APIs) or libraries
that are usable for their current tasks. Developers also use Web search results for
a variety of problem-solving activities [5], and for different reasons [15], software
developers use a bricolage of resources [5].

Text search mechanisms have been serving developers as essential tools. The
UNIX grep command has been one of the most frequently used tools by developers
for decades, and emacs has offered incremental search and another variety of text
search mechanisms from the very beginning. All popular Integrated Development
Environments (IDEs) are equipped with powerful text search engines.

This chapter looks into the cognitive, social, and practical aspects of searching
for and using existing code in a programming task. The approach we have taken is
distinguishing the issues and challenges in code search activities from those in code
search mechanisms (Fig. 2.1).

The underlying motivation for this approach is our concern that casually claiming
research on code search for software development might blur the essential aspects
of a research question addressing a code search activity versus a code search mecha-
nism. A code search mechanism undoubtedly plays an important role in supporting
a developer searching for code in his or her own programming task. Supporting
code search activities, however, demands more than code search mechanisms. At
the same time, code search mechanisms also help a developer in a wider spectrum
of programming activities, not just searching for code.

The next section presents the anatomy of the cognitive activity in which a de-
veloper uses existing code (i.e., code reuse). We propose efficacy and attitude as
two dimensions for depicting a code search activity, and describe the scenarios of
three typical types of code reuse by using these dimensions. The following two sec-
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Fig. 2.1 Search technology is useful not only for a developer’s search activities but for other de-
velopment activities. A developer’s search activities involve not only technology but also other
computational support.
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tions discuss areas of necessary technical support for code search activities other
than code search mechanisms. Sect. 2.3 discusses how some aspects of code search
activities call for such technical support. Sect. 2.4 outlines issues and challenges
in using peers as information resources in code search, and addresses cognitive as
well as social issues in communicating with the “right” person to obtain the sought
information in a timely manner. Finally, Sect. 2.5 lists how the existing search mech-
anisms would further help a developer in interacting with source code.

2.2 Anatomy of Code Reuse

This section focuses on a developer’s code search activity (see the small right oval in
Fig. 2.1). From the cognitive perspective for the activities involved in code search,
we present two dimensions for depicting code reuse2 that underlie a wide variety of
code search activities.

The first dimension is for what purpose a developer uses existing code for a
current programming task. The second dimension is the way in which the developer
uses existing code.

2.2.1 The Efficacy Dimension of Code Reuse

The first dimension, which we call the efficacy of code reuse, characterizes the pur-
pose of, the motivation for, or the developer’s foreseeable gain in using existing
code.

There are two types of efficacy in code reuse. The first one is efficacy through
code texture, and the other is efficacy through code functionality (Fig. 2.2.1).

Efficacy through code texture is established when a developer brings the texture
(i.e., literal character strings) of an existing code segment into the program that he
or she is currently editing.

Fig. 2.2 The efficacy dimen-
sion: through code texture
(left) and through code func-
tionality (right) code texture code functionality

2 Note that by “code reuse,” we mean a developer’s action of simply using existing code in the
developer’s task, and do not necessarily mean a part of more established areas of research on
software reuse in software engineering.
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Efficacy through functionality is recognized by a developer when the developer
is provided with the functionality of an existing code segment that he or she needs
in a program.

Different cognitive activities are involved, depending on the type of efficacy a
developer seeks in reusing code. When a developer seeks efficacy through texture
in reusing code, the developer must read the source code of potentially reusable
parts of the code. In contrast, when a developer seeks efficacy through functionality
in reusing code, the developer does not necessarily have to read its source code.
Instead, the developer is likely to pay more attention to its documentation and repu-
tation by peers and other developers.

2.2.2 The Attitude Dimension of Code Reuse

The second dimension, which we call the attitude toward code reuse, characterizes
the style, or the way in which the developer uses existing code in terms of the de-
veloper’s own code that he or she is currently editing.

The attitude here is along a spectrum with two ends (Fig. 2.3). The one end por-
trays the attitude of a developer when the developer uses an existing code segment
as an element in his or her own program. The other end portrays the attitude of a
developer when the developer uses existing code as a substrate, on top of which the
developer builds his or her own program.

Needless to say, this attitude is not the property of a developer, but that of a
context consisting of who is reusing which code in what task.

When a developer takes the as-an-element attitude in reusing code, he or she is
likely to search for potentially usable code candidates, try using one of them, and
perhaps replace it with another if the chosen one does not fit well to the task. In
contrast, when exhibiting the as-an-substrate attitude in reusing code, the choice of
which code to reuse would have a significant impact on the developer’s subsequent
coding task. The developer is likely to spend a significant amount of time investigat-

one's own code one's own codeexisting code

existing code

Fig. 2.3 The attitude dimension: along the spectrum between as-an-element (left) and as-a-
substrate (right)
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ing a few potentially useful candidates by carefully comparing them to decide which
one to use. Once the choice is made, he or she is unlikely to replace the chosen one.

2.2.3 Illustrating Three Typical Code Reuse Scenarios

This subsection illustrates scenarios of three typical types of code reuse in terms of
the dimensions of efficacy and attitude.

2.2.3.1 Searching for Previously Experienced Code

A developer often searches for a segment of code that he or she has either written
before or read before to literally copy and paste it into the current code being editing
(Fig. 2.4).

This is a typical example of a developer seeking efficacy through code texture
with an as-an-element attitude.

A developer may remember previously writing a code, or reading the code (writ-
ten by peer developers or by some OSS developers) that seems to be close to what he
or she needs in the current program. Once the code segment is identified and pasted,
the developer reads it, may modify it if necessary, or may completely discard it if it
does not seem to work.

2.2.3.2 Using a Framework

A framework is a collection of program modules that provide a set of necessary
functionality in a specific domain or service. Deciding which framework to use has
a significant effect on a developer’s programming task because it is likely to deter-
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own code
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code texture

efficacy through 
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as-an-element
attitude
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attitude

Fig. 2.4 Using a segment of previously experienced code. The challenge here is to find the segment
of interest in vaguely remembered code locations.
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mine the architecture of the system to implement and how the program is written
(Fig. 2.5).

This is a typical example of a developer seeking efficacy through code function-
ality with an as-a-substrate attitude.

Often a software architect of a software development project is the one who
searches for potentially useful frameworks and decides which framework to use
after comparing and studying several alternatives for the project. Once decided, it
is not likely that the developer would casually replace the framework; replacing a
framework possibly involves a large amount of maintenance cost.

2.2.3.3 Using a Code Example for a Web-Service API

A developer often uses a piece of example code for an API to use an external ser-
vice (Fig. 2.6). This typical practice illustrates the type of code reuse in which a
developer seeks both efficacy through texture (i.e., an example code) and efficacy
through functionality (i.e., an external service), with an as-an-element attitude.

A developer who is interested in using a particular service functionality searches
for documents and discussion forums about APIs for using that service. Typically,
providers of such services promote their services to other developers and tend to pro-
vide detailed information resources for using their API, to make it easier to search
for such information through Google and other Web search engines.

A rich source of examples of API usage is available on the Web [6], enabling
developers to gain the efficacy of code reuse through code texture. The search result
for API code examples is likely to consist of several candidates. Typically, a devel-
oper copies and pastes one of them in the current program, test-runs the program,
and checks whether it successfully produces the desired effect. If it fails the devel-
oper’s expectation, the developer replaces the pasted part with another result from
the search, and then checks whether that one works. The developer may not fully
understand the pasted statement, for instance, which parameter does what, but if it
works, he or she may just leave it as is in the program.

famework

APIs

one's own code

efficacy through 
code texture

efficacy through 
code functionality

as-an-element
attitude

as-a-substrate
attitude

Fig. 2.5 Using a framework. A developer needs to develop some understanding about a framework
before deciding to use it.
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2.3 Areas of Technical Support for Code Search Activities

From the perspective of a developer’s cognitive activity on code search, code search
mechanisms are necessary but not sufficient. Other areas of technical support should
be taken into account to smoothly and effectively help a developer engaging in code
reuse and remix (see the larger left oval in Fig. 2.1).

This section lists some aspects of a code search activity that would demand such
technical support. We discuss existing tools and then outline future research agendas
together with relevant existing research in addition to software engineering.

2.3.1 Knowing the Nonexistence of Potentially Usable Existing
Code

Developers often want to make sure that there is no reusable code before they start
writing their own code. Developers usually have a rather good understanding of
what they want to achieve in their own programming tasks. In this sense, the code
search is fact-finding rather than exploratory [25].

It remains as a challenging task to know the nonexistence of potentially usable
code for the current task. When one does not find usable code among a list of queried
results, it is often difficult to distinguish whether such code does not exist or whether
it exists but has not been located due to inadequate queries. A developer is likely to
specify a query for a desired functionality in his or her own context, but what could
be suitable for the task may not be associated with such a vocabulary set [24].

existing service

example codes using the API

the API to use the service

one's own code

efficacy through 
code texture

efficacy through 
code functionality
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Fig. 2.6 Using a code example for a Web-service API. A challenge is to choose among multiple
candidates the “right" example to copy that fits to the current programming needs.
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2.3.2 Helping to Formulating Queries

Tools have been studied to address the challenge of adequately formulating queries.
CodeBroker used a latent-semantic indexing mechanism to associate terms used in
program comments and method signatures with methods stored in code repositories
[33]. Blueprint automatically generates queries with code context for a developer
and presents a code-centric view of Google search results in an IDE [6]. Mica makes
it easier for a developer to explore Google search results by providing appropriate
relevance cues for the information that he or she wants to know [30]. The approach
by Bajracharya et al. helps developers obtain example code that uses similar set of
APIs by using code usage similarity measurements, reformulating a query by show-
ing a tag-cloud of popular words for the current query, and narrowing down results
according to popularity [2]. API Explorer recommends related APIs to a developer
by using API Exploration Graph, which models the structural relationships between
API elements [10].

We may also resort to crowd sourcing for query formulation if we could use
search query logs of tens of thousands of developers searching the Web. Such query
logs are typically not publicly available but can be mined through search sugges-
tion services [3]. Fourney et al [13] mine the Google search query log to generate
a Query-Feature (QF) graph, which encodes associations between user goals articu-
lated in queries and the specific features of a solution element relevant to achieving
those goals. Using Google Suggestion and other publicly available search query
suggestion services, their technique performs a standard depth-first or breadth-first
tree traversal “by expanding partial queries one character at a time,” starting with
the keyword a user specifies. The approach has currently been applied in the CUTS
(characterizing usability through search) framework, helping users to access usabil-
ity information of an application system and to identify similar application systems
on the Web [14]. This technique seems to be straightforwardly extendable to help
developers identify potentially usable APIs, libraries, and frameworks when they
are not sure about how to specify queries.

2.3.3 Locating a Previously Experienced Code Segment through
Personal Information Management

When a developer has a particular code segment in mind to reuse, the developer may
remember only its existence but not its location, or may even remember it wrongly
(e.g., the code segment was written at some point of time but not saved in a file).

If a developer is unable to find the source code where he or she remembered it,
the developer has to search for it. The developer may use a character string that he
or she has in mind as a query, or use temporal relationships, such as Òthat’s the
code I was working on when the new manager came to our project,Ó as a retrieval
cue to located potentially related files. Once presented with a searched result, the
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developer immediately knows whether it is what he or she has been seeking. This
type of search poses a challenge similar to the one found in the studies on personal
information management [4].

Proposed tools and empirical studies in the field are applicable to help developers
in this situation. For instance, using a tool such as Stuff I’ve Seen, which provides a
unified index for email messages, Web pages, and other types of personal documents
through their temporal relationships [11], a developer would be able to search the
code that he or she has previously written by using his or her own experience as
a contextual cue. Another example is the HCB (History-Centric Browsing)-tempo,
which helps a user revisit previously visited Web pages by indexing a large volume
of Web page history using the search query-based slicing (SQS) technique [29].

2.3.4 Using Related Documents to Judge Code Reuse Potential

A number of developers have mentioned that cognitive cost is quite high when read-
ing source code written by someone else. A developer tends to resort to related doc-
uments and information or forums to judge whether to use a specific API, service,
library, or framework, rather than reading their source code, by addressing questions
such as:

• Is this API well-documented?
• How often does this library go through major updates?
• When was this answer provided in the Q&A forum?
• Which projects use this framework?
• How does this library rank in Google search? How about for the last six months?
• Which API results in more search results?
• How lively is this forum?

Discussions in forums often complement the documents created by the library/API
designers by providing what the library/API owners have not tested; documents of-
ten fail to accurately explain in which contexts the library is not operational, only
because it has not been tested.

2.3.5 Judging the Credibility of Existing Code

The number of search results on each of the few potentially usable libraries helps
a developer compare which ones are more popular. Limiting the search to a certain
period of time (e.g., for the period of the last six months) helps the developer to
better understand the trends of their uses.

The ranking of search results helps developers infer how popular or commonly
used an API is. Popularity is often a good indication of the adequate maintenance
of the API/library, unless it provides a particular service or functionality.
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Timestamps attached to each question and answer in discussion forums provide a
valuable resource to judge whether the library is well maintained. If the information
in the forum is relatively obsolete, developers may assume that an alternative library
should be available that had replaced the current library, and they should start over
searching.

2.3.6 Limiting Search Space by Using Social Information

Currently available Web search engines are good for understanding the popularity
and reputation of a library and API at large, but are not helpful for a developer
investigating whether it is used by those the developer trusts and respects. A socio-
technical approach that combines social network systems with Web search mecha-
nisms would significantly benefit a code-searching developer in this context.

Another socio-technical approach would be to share search histories among the
members of a project, a group, an organization, or a community. The information
necessary to understand a framework may have already been studied by the architect
of the project when deciding to use the framework from among other alternatives.
Such information that the architect had used could be valuable resources for project
members when they study the framework later in the development process.

2.3.7 “Tasting” Existing Code

To examine the memory consumption or the execution speed of library APIs, de-
velopers need to try out the library in their own project context. Using tools such as
Maven3 may ease the task of building processes of a target library, but it remains
cumbersome to “taste” a library API, especially if it is written in an unfamiliar
programming language. Experimentability and penetrability are featured as factors
affecting the usability of APIs [28], and tool support to improve such aspects is
warranted.

2.3.8 Understanding the Implication of the Use of Existing Code
before Reusing It

To decide whether to use a particular framework, developers need to have some un-
derstanding about a set of potentially complicated APIs the framework provides.
APIs are the visible interfaces between developers and the abstractions provided
by the framework [19]. Human-related factors, such as the design of APIs [19],

3 http://maven.apache.org/
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the usability of APIs [7], the learnability of APIs [28], and the necessary concep-
tual knowledge about APIs [24], are becoming key considerations in deciding which
framework to use. Tools such as APATITE (Associative Perusal of APIs That Identi-
fies Targets Easily) [12], which helps a developer browse APIs through incremental,
column-based presentation of API graphs filtered by popularity of usage, have been
developed to help in understanding the framework being used. However, few tools
are available to help the developer understand a framework prior to starting to use
it.

2.3.9 Comparing the Effects of Using Texture of Existing Code
Segments

Existing program editors do not naturally support the trial-and-error process of find-
ing a usable example code from multiple candidates. When pasted in an editor, the
copied segment is merged into the existing program and becomes indistinguishable
unless the developer deliberately inserts some visual cues (e.g., blank lines or com-
ments) to designate which part is currently being tested with a pasted code segment.

Some graphic editors use a tracing paper metaphor and employ layers to produce
variations of the current drawing area. Terry et al. explored a way to simultane-
ously develop alternative solutions to the current problem situation [31]. Similar
techniques would help developers in the process of choosing a usable example code
from multiple candidates.

2.3.10 Motivation to Search Existing Code

Although perhaps less common than in the past, a problem still remains when a
developer is not motivated to search for potentially useful code. One of the early
systems, CodeBroker [34], monitors a programming editor (emacs), infers the pro-
grammer’s interest by parsing comments and message signatures, and pushes po-
tentially relevant information to the developer in a subtle manner (i.e., in a small
sub-pane located in the bottom of the emacs editor). The argument for such an edi-
tor is that information delivered in this way should minimize interruption, and that
the system should incrementally present more in-depth information only when the
developer requests it [33].

2.4 Socio-Technical Support for Code Search Activities

Peer developers serve as precious information resources in identifying the existence
of potentially usable code through face-to-face communication [23] and in discus-
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sion forums [20]. STeP_IN_Java (Socio-Technical Platform for In-situ Networking
for Java programming) [36] is an example of an approach that identifies experts who
might know the existence of potentially useful information for a developer. In addi-
tion, HelpMeOut suggests possibly relevant solutions made by peer developers to a
novice programmer who is facing a compiler error message or a runtime exception
[18].

A developer’s ability to search, rank, and triage code, documents, and peer de-
velopers that are seamlessly integrated in an IDE may be ideal. However, code and
documents are things, whereas peer developers are humans [36]. A challenge in-
volves how to balance a developer’s needs for communication for help in searching
code with another developers’ needs for a concentrated flow experience [26].

2.4.1 Searching for Developers for Help Is not Equal to Finding
the Name of a Person to Ask

Addressing the challenge of having school teachers as knowledge resources, Illich
stated that whereas a thing is available at the bidding of a user, a person becomes a
knowledge resource only when he or she consents to do so, restricting time, place,
and methods as he or she chooses [21].

Using humans as information resources is costly, especially if the sought humans
are not dedicated to helping and providing information because they have their own
time-pressing tasks.

When finding a peer developer for a question, it is necessary to search for those
who not only can answer the question, but also are willing to answer the question.
The search for a peer developer for an answer needs to include how to select partic-
ipants for communication, what timing to use to start communication, how to invite
people to participate in the communication, which communication channel to use,
and how to use the resulting communicative session (i.e., communication archives)
[26].

2.4.2 Searching for Developers Adds a Social Cost to the Cost of
Information Search

Finding a person and asking him or her a question involves a social cost. Those who
seek information demonstrate different asking behaviors, depending on whether
they are in public, in private, communicating with a stranger, or communicating with
a friend, due to the different levels of perceived psychological safety in admitting
their lack of knowledge [8]. At the same time, whether developers can successfully
get their questions answered depends on how they ask it, including their rhetorical
strategies, linguistic complexity, and wording choice [8]. A classic study has found
that engineers tend to rely on knowledge resources that are easier to access rather
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than maximizing gains [16], a fact that does not seem to have changed much for the
last forty years.

The perceived social burden on a potential answerer may affect how easy it is for
a developer to ask a question. A field study of Answer Garden reports that because
the information-seeker’s identity is not revealed in Answer Garden, the information-
seeker feels less pressure in asking questions and ÒbotheringÓ experts [1]. It might
also become easier for an information-seeking developer to ask a question when he
or she knows that the recipients have the option and freedom to ignore the request.

2.4.3 The Social Cost of Communication Can be Reduced by Using
a Social-Aware Communication Mechanism

The benefit of a question-answer communication would primarily go to the one
who asks, and the cost is primarily paid by those who are asked. Such cost includes
stopping his or her own ongoing development task, collecting relevant information
if necessary, composing an answer for the information-seeking developer, and then
going back to the original task [36]. This type of communication is different from
coordination communication, which has a symmetric or reciprocal relation in terms
of cost and benefit between those who initiate communication and those who are
asked to communicate [27].

A developer being asked may feel different levels of social pressure, depending
on who is requesting information and through which communication channel the
request is coming. For instance, it is harder to ignore a request if asked face-to-
face. Developers may respond to a question not because they want to answer it but
because they do not want to ignore it. Even though helping is costly, taking no action
or saying “no” may also incur a social cost.

The STeP_IN framework [36] provides a social-aware communication mecha-
nism called DynC (Dynamic Community); a temporal mailing list is created every
time an information-seeking developer posts a question, with the recipients decided
dynamically. Whereas the sender’s identity is shown to the recipients, the recipients’
identities are not revealed unless they reply to the request. If some of the recipients
do not answer, for whatever reasons, nobody will know it; therefore, refusing to help
becomes socially acceptable. If one of the recipients answers the question, his or her
identity is revealed to all the members of the DynC mailing list. This asymmetrical
information disclosure is meant to reinforce positive social behaviors without forc-
ing developers into untimely communication.
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2.4.4 Asking a Question to a Thing Relieves the Social Pressure of
Communication

Social skills have been recognized as indispensable for developers, who often have
to obtain necessary information from other developers using the APIs of interest
both within an organization and outside of organizations over the Internet. This,
however, should not necessarily be so.

STeP_IN_Java [35] allows a developer to post a question to a function API of
Java libraries, relieving the developer of social pressure in posting a question to a
large mailing list or identifying a peer programmer who is likely to help. The system
identifies expert peer developers to the specific API by keeping track of who used
the API in previous project histories, filters out the experts who have formerly had
little social correspondences with the developer, formulates a temporary mailing list
with the remaining experts for the question, and forwards the question to the mailing
list. If someone on the mailing list posts the answer, the system brings the answer
back to the asking developer.

2.4.5 Searching for Developers for Help Should Balance the
Benefit of Individuals with the Cost of Group Productivity

Broadcasting a question may give a developer a better chance to find the right an-
swer more quickly. However, if developers are frequently interrupted to offer help,
their productivity is significantly reduced, resulting in lower group productivity.

Attention has been rapidly becoming the scarcest resource in our society [17].
We have estimated how much attention (in terms of time) is collectively spent in the
Lucene mailing list and found that roughly more than 1,000 hours were collectively
spent every month over the 2,282 developers [36]. In an organizational setting, this
collective cost might even outweigh the benefits of developers obtaining answers
from other developers. One way to reduce this cost is by limiting the recipients of
the question to only those who are both able and very likely to be willing to answer
the question [36].

2.4.6 Archiving Communication Turns the Need for Developer
Search into that of Information Search

Compared to other professional communities, software developers’ communities
have historically taken advantage of digital media for communication, and their
archives have served as rich information resources for other developers, transform-
ing pieces of information originally available only by direct human contact into
sources stored in artifacts.



2 Unweaving Code Search toward Remixing-Centered Programming Support 31

Recent trends in social networking systems, such as Twitter, Facebook, and
LinkedIn, open up new possibilities to collect information on a daily basis from
individual developers. Such collections of information would become rich knowl-
edge resources for developers, and make it possible to access knowledge that resides
in a developer’s mind without requiring social skills.

2.5 Interacting with Code through Code Search Mechanisms

This section briefly describes situations in which code search mechanisms help a
developer interact with code (see the larger left oval in Fig. 2.1)

• Compose through selection
A developer start typing the initial part of the name of an API and through IDEs
that are now equipped with auto-completion mechanisms, the system incremen-
tally searches for possible names starting with the typed string and matching the
current program context. Together with a rich and fast-enough auto-completion
mechanism, a developer may incrementally compose a program through a cycle
of typing a few letters and selecting one of the auto-completed candidates.

• Generate clickable links
A developer uses search mechanisms to generate clickable links to directly jump
to the exact location of interest for quicker access, rather than typing a URL
or navigating through browsers. In this way, a developer types the major part
of the name of the library portal site and Google returns a link to the site that
the developer then simply clicks for instant connection, even if the developer
remembers the exact URL. In addition, a developer can insert tags in the code in
Eclipse so that he or she can later search for a particular tag to which the IDE lists
all the program components as clickable links to their corresponding locations.

• Translate technical messages
A developer uses Google search as a technical translator to make sense of cryptic
errors and debugging messages by searching them on the Web [5].

• Be reminded of unsure names
A developer frequently conducts a Google search to use as a reminder of the
correct name of an API or library for what the developer has in mind. Google
Suggest and Google search results usually come up with a list of the variation of
the name, from which a developer is likely to easily recognize the correct one.

• Debug through structural patterns
A developer can interactively search for a specified structure in a half-billion
lines of a Java program repository within one second by using CodeDepot [37],
a browser-based code search tool. The developer searches for a pattern in which
a specific set of APIs are called, and by looking at the searched results, he or she
may notice that the specific order of the API calls is necessary.

• Observe coding standard/styles/convention
A developer can find code segments within his or her project that do not observe
a given coding standard or convention by using a structure search mechanism.
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• Deal with code clones
A developer can pay attention to the code clones of the program segment in which
he or she has found a bug through CodeDepot [37] to avoid the possibility of the
same bug in its cloned code.

• Be proactive to code clones
A developer can be warned when he or she is about to edit a code segment that
is likely to have clones through CloneTracker [9], a code structure search mech-
anism integrated within an IDE.

2.6 Concluding Remarks

By focusing on the remixing aspect of the coding experience, this chapter has de-
scribed code search activities from a cognitive perspective. Our view is not that code
is a remix but that coding is remixing. Searching for code is an essential activity in
code remixing, which calls not only for search mechanisms but also for other tech-
nical and socio-technical support.

The remixing style of programming has changed through the last decade, and
now developers often use existing code without knowing its details. Developers re-
sort to documents and code examples, as well as the reputations of other developers,
to judge whether to use the code for their current task. Developers take different
strategies to decide when to reuse, how to reuse, and what code to reuse, depending
on the efficacy they envision and the attitude they take.

Software development has come to form an ecosystem in which each developer
remixes existing code to produce new systems. A developer-centered, remixing-
oriented development environment must take this dynamism of programming into
account. The depiction of code search activities as well as the list of technical and
socio-technical needs discussed in this chapter should help in designing and building
such environments.
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Chapter 3
Archetypal Internet-Scale Source Code
Searching

Medha Umarji and Susan Elliott Sim

Abstract To gain a better understanding of what, how, and why programmers search
for code on the Internet, we conducted a web-based survey to understand the source
code searching behavior of programmers, specifically, their search motivations,
search targets, tools used, and code selection criteria. Data was collected from 69
respondents, including 58 specific examples of searches. We applied open coding to
these anecdotes and found two major archetypes and one minor archetype, as well
as, a range of sizes for search targets. The first archetype was searching for source
code that could be excised and dropped into a project. The second archetype was
searching for examples of source code to provide information, for example, using
the World Wide Web as an enormous desk reference. The targets of these searches
could vary in size from a few lines of code to an entire system. The minor archetype
was searching for reports and repairs of defects. Factors affecting the final selection
of a candidate piece of code included: peer recommendations; availability of help
from other programmers; and the level of activity on a project.

3.1 Introduction

With the increasing popularity of open source, a rapidly growing quantity of source
code is available on the Internet. Software developers are now using this rich re-
source in their work. Evidence of this practice can be found in the number of
project hosting sites, code repositories, and source code search engines that have ap-
peared. Among these are Koders.com with over 226 million lines of code (MLOC),
Krugle.com with over 2 billion lines of code, csourcesearch.net with over 283
MLOC, and Google Code Search with over 1 billion lines of code. These source
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code search engines treat Internet-scale code searching in much the same manner as
code search within a single project in an integrated development environment. But,
there are other kinds of searches that can take place on the Internet and we need to
know more.

This study was conducted to characterize how Internet-scale source code search-
ing: What do developers look for? How do they find what they are looking for?
What tools do they use? When do they decide to search? To this end, we conducted a
questionnaire-based survey of software developers contacted using availability sam-
pling over the Internet. The design of this study is based on previous surveys by
Eisenstadt [5], and Sim, Clarke, and Holt [21]. Using an online questionnaire, we
collected data from over 70 programmers who were solicited using Google Groups
and mailing lists.

Their responses and anecdotes were analyzed systematically to find common
themes, or archetypes. An archetype is a concept from literary theory. It serves to
unify recurring images across literary works with a similar structure. In the context
of source code searching, an archetype is a theory to unify and integrate typical or
recurring searches. As with literature, a set of them will be necessary to characterize
the range of searching anecdotes.

We found that there are two major search archetypes and one minor one. The
first archetype was searching for a piece of code that can be reused. For example, a
text search engine, or a graphical user interface (GUI) widget. The second archetype
was searching for reference information, that is, for examples of code to learn from.
In this archetype, developers are using the World Wide Web as a very large desk
reference. The minor archetype was searching for reports and repairs of bugs, i.e.
patches. The two major archetypes had search targets that varied in size, while the
minor one did not. The search targets could be small-grained, such as a block of
code, medium-grained, such as a package, or large-grained, such as an entire system.
The results reported in chapter are an extension of the work reported in an earlier
paper [32].

3.2 Related Work

The work in this paper has evolved from past research and current trends in software
development. The two trends that motivate this research are the increasing avail-
ability of source code on the Internet, and the emergence of tools for accessing the
source code. The source code available on the web comes from open source projects,
web sites that support communities of practice, and language-specific archives. Col-
lectively, these sites contain billions of lines of code in countless languages. As is
the case with web pages, it can be difficult to locate a particular resource. General-
purpose search engines, such as Google and Yahoo!, can be used, but they do not
take advantage of structural information in the code. To fill this need, code-specific
search engines have been created. These software tools leverage the technology and
know-how from source code searching tools within programming environments.
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However, code search on the Internet at times is more similar to code reuse than the
find function in an IDE. In this section, we will review the trends and results that
motivate and inform our research.

3.2.1 Source Code on the Internet

The open source movement has dramatically increased the quantity of source code
available on the Internet. While the open source concept has been around for
decades, it is only in the last ten years or so that it has become commonplace.
For-profit corporations are now contributing source code and person-hours to open
source projects [7]. The most obvious benefit of the open source movement is that
it makes available a “rich base of reusable software” [24].

Communities of practice have evolved from this sharing of programs and knowl-
edge amongst people having common goals and interests, within the open source
world. A community of practice is formed by a group of people united by a joint
enterprise, who develop mutually beneficial social relationships in the process of
working towards things that matter to them [10]. Artifacts, advice/tips and other
relevant knowledge are contributed by members to provide a shared repertoire of
resources for the community.

In the open source world, project hosting sites, technology-specific mailing lists
and social networking sites are examples of such communities of practice. Source-
forge.net and freshmeat.net host thousands of projects and have an infrastructure
that supports the sharing of programs and knowledge. The infrastructure for these
projects is provided by developers, and so is the source code Ű all through extensive
collaboration over individual projects.

Technology specific mailing lists such as PHP.net and CPAN.org are a compila-
tion of code snippets, bug reports, patches, discussions and how-to guides related
to a specific technology or programming language. These sites are frequented by
developers who are interested in learning a particular language or technology, or
building on top of it. The lists contain not only source code, but also contributions
of helpful tips on what works, what doesnŠt, and what is the best way to solve a
certain problem. Since it is the culture in open source to share software developed
by using open source technology, these archives of source code are increasing ex-
ponentially.

Blogs, social bookmarking and other social networking sites have the capability
to tag websites containing source code relevant to a particular topic and are excellent
sources of reference on latest technologies and trends.
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3.2.2 Code Search Engines

General purpose search engines such as Google and Yahoo! are used for code search
most often. Users are familiar with these tools and due to their effectiveness in
retrieving documents on the web they are easily the most popular. However, they are
effective in broad searches for functionality, when good search terms are available.
These search engines are not able to exploit the context and relationships between
source code snippets, as they treat source code like a bag of words.

Code-specific search engines index public source code, cache it in a repository
and enable users to search based on a variety of attributes such as class/function
names, code licenses, programming languages and platforms. While the search is
limited to the repository, the amount of code available is huge, many millions of
lines of code or classes.

Three of the major code-specific search engines are Krugle, Koders, and Google
Code Search. Like Google Code Search, Koders has options for searching by lan-
guage and license. It also allows users to explicitly search for class, function, and in-
terface definitions using regular expressions. Krugle returns links not only to source
code, but also to tech pages, books and projects. It has a visualization for browsing
code repositories and also supports tab-based searching. The searches can be applied
to different segments: source code, comments, and definitions (class or method).
Google Code Search includes support for regular expressions, search within file
names and packages, and case-sensitive search.

To leverage the advantages afforded by open source code, we need search capa-
bilities that are closely integrated with the way that software is developed in open
source. The code search engines do not support the social interaction processes that
are the lifeline of any project. For example, they do not search for keywords within
mailing lists or forums related to a particular topic, users have to use a general-
purpose search engine for that purpose. Neither do they support the formation and
sustenance of communities of practice that are so essential for learning and sharing
in any domain [10].

3.2.3 Source Code Searching

A study of software engineering work practices by Singer et al. [23] found that
searching was the most common activity for software engineers. Program compre-
hension, reuse and bug fixing were cited as the chief motivations for source code
searching in that study. A related study on source code searching by Sim et al. [21]
found that the search goals cited frequently by developers were code reuse, defect
repair, program understanding, feature addition and impact analysis.

Source code searching for program comprehension involves matching of words
or code snippets within an IDE or source code module to a search term, typically
using the Unix-based grep facility, the find command in Unix and also the File Find
command under Microsoft Windows [21]. It was also found that programmers used
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only strings or regular expressions to form their search terms, even though they
were searching for semantically significant pieces of code. Grep is by far the most
popular search facility due to ease of specification of search terms, a command-
line interface, and a direct match with the search model of the programmer [22].
Programmers trust grep because it is successful most of the times, and the cost of
failure is insignificant.

Program comprehension tools can be categorized as i)extraction tools such as
parsers (Rigi) [14], ii) analysis tools for clustering, feature identification and slicing
(Bauhaus tool [4]), and iii) as presentation tools such as code editors, browsers and
visualizations [31, 25].

Lethbridge et al. [22] in their study on grep discuss that searching within source
code is used for locating the bug/problem, finding ways to fix it and then evaluating
the impact on other segments. Sim et al. [21] found that programmers were most
frequently looking for function definitions, variable definitions, all uses of a function
and all uses of a variable.

However, none of these existing tools have capabilities to search for software
components based on functionality and purpose— which is the basic idea behind
Internet-scale source code searching.

3.2.4 Software Reuse

It is evident from the discussion so far that source code searching on the Internet has
more commonalities with the phenomenon of software reuse, than with traditional
source code searching for program understanding and bug fixing.

Reuse is a common motivation for Internet-scale source code searching [24].
Programmers do not want to “re-invent the wheel,” especially when the open source
world allows reuse to occur at all levels of granularity, starting from a few lines of
code, to an entire library; from a tool to an entire system.

Reuse in proprietary settings involved indexing and storing software components
in a way that would make retrieval and usage easy (for example, the structured
classification technique, by Prieto-Diaz [18]). Complex queries had to be formed
to retrieve such components and the process of translating requirements into search
terms posed a cognitive burden for software engineers. Fischer et al. [6] also discuss
the gap between the system model of the software and the userŠs situation model,
which makes it difficult for the user to express a requirement in a language that the
system can understand. They also discuss the technique of retrieval by reformulation
Ű a continuous refinement process that forms cues for retrieval of components that
are not well-defined initially.

The problem of discourse persists through the open source era as the primary
method of searching continues to be keywords and regular expressions. Support
provided for locating and comprehending software objects does not scale up to the
actual potential for reuse even in open source projects.
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Reuse of open source code occurs with an understanding that effort will be ex-
pended in contextualizing, comprehending and modifying a piece of software Ű
while traditionally, the reuse concept assumed little or no modification of compo-
nents. Another interesting difference is that in open source the options available for
a given search query are tremendous as opposed to a company-wide repository of
source code, which may or may not have relevant reusable code.

3.3 Method

Online surveys have become increasingly common over the last decade, as Internet
usage has grown by leaps and bounds. Surveys have become an established empiri-
cal method, especially for human behavior on the Internet [28].

These studies have been conducted to improve understanding of why users
look for information, their search requirements, their search strategies, backgrounds
and experiences, and their comparative assessment of available search mechanisms
[27, 16, 19, 33]. Sim, Clarke, and Holt [21] conducted an online survey in late
1997 of source code searching among programmers that served as the model for
this research. Underpinning these research designs are traditional survey methods
that have been used in the social sciences for many years [3]. The design of this
study is presented in this section.

3.3.1 Research Questions

In this study, we wanted to gain an understanding of how software developers cur-
rently search for source code on the Internet. The search features on project hosting
sites and the emergence of source code-specific search engines hint at the kinds of
search taking place, but empirical data is needed. Therefore the research questions
for this study were as follows.

• What tools do programmers use to search for source code on the Internet?
• What do they look for when they are searching source code?
• How do they use the source code that is found?

Data on what tools are used provide information about the skills and tendencies
of programmers when searching the web. The search targets and usage patterns for
the code suggest new features. Answers to the last two questions were obtained from
the open ended questions, when analyzed resulted in search archetypes.
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3.3.2 Data Collection

We designed an online survey with 11 closed-ended questions and two open-ended
questions. This chapter is focused on the results from one of the open-ended ques-
tions, which asked:

Please describe one or two scenarios when you were looking for source code on the Inter-
net. (Please address details such as: What were you trying to find? How did you formulate
your queries? What information sources did you use to find the source code? Which imple-
mentation language were you working with? What criteria did you use to decide on the best
match?)

Our goal was to cover a wide range of people that search for source code of-
ten, to get a representative sample. The population was any programmer who had
searched for source code on the Internet. However, it was not possible to obtain a
systematically random sample, and availability sampling also known as convenience
sampling was the chosen sampling technique.

Convenience sampling may pose a threat to external validity of the results. How-
ever, this was an exploratory study and the goal was to collect data on a variety of
behavior, and not its prevalence, so availability sampling was considered adequate
for this task. We solicited participants from a number of mailing lists and news-
groups. We attempted to solicit participants through open source news web sites,
but were declined. This strategy gave us access to a large number of developers and
users of open source software, as well as developers who worked on proprietary and
commercial software.

The survey was open for six months in 2006–2007 to collect responses. Invita-
tions to participate in the survey were posted to the Javaworld mailing list, and the
following mailing lists beginners-cgi@perl.org, comp.software-engg, comp.lang.c,
and comp.lang.java. We chose these web sites, because had they had users with a
variety of interests, the discussions were high technical in nature, and there was little
overlap between the groups.

3.3.3 Data Analysis

The data was analyzed using a combination of quantitative and qualitative tech-
niques. The multiple-choice questions were coded using nominal and ordinal scale
variables. For the open ended questions, the responses were text descriptions that
were analyzed qualitatively. We analyzed them for recurring patterns using open
coding [13] and a grounded theory approach [26]. Without making prior assump-
tions about what we would find, we developed codes for categories iteratively and
inductively. The two authors analyzed the data separately, and we found a high level
of agreement in our categories. Subsequently, we combined our codes and refined
the categories for clarity of presentation.
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3.3.4 Threats to Validity

The main shortcoming of this study is generalizability, i.e. the sample of respon-
dents is not sufficiently representative of the population. This is a basic problem
with empirical research in software engineering is there is not a reliable model of
population characteristics so that the representativeness of a sample can be assessed.
This study is no exception. Furthermore, we only solicited participants from mailing
lists and newsgroups. Therefore, we are not trying to quantify the prevalence of cer-
tain types of behavior, nor are we using inferential statistics. Instead, we are looking
for a variety of search behaviors and patterns (or archetypes), which is appropriate
for an exploratory study.

3.4 Results

A total of 69 people responded to the survey and provided descriptions of 58 sit-
uations where they searched for source code on the Internet. The quality of the
responses varied greatly. Some respondents only filled in the multiple-choice ques-
tions. Others provided very terse descriptions of search situations. Yet others pro-
vided extremely detailed descriptions of more than one situation.

A majority of the developers that responded to our survey were programmers in
Java (77%), C++ (83%) and Perl (60%). A few had contributed to an open source
project, though most were users of open source Applications. Within the criteria
guiding final selection of source code, 77% users based their decisions on available
functionality, 43% considered the licensing terms and 30% considered the amount of
user support available. Amongst the information sources consulted while searching
for source code, documentation ranked highest, followed by mailing lists and other
people. Most of the respondents (59%) had experience working on small teams with
1 to 5 people.

3.4.1 Situations

We analyzed 58 scenarios of source code searching. They ranged in length from one
to ten lines. Figure 3.1 below is an example of a good response that we received.

Fig. 3.1 Example Search Description
Sometimes; I did a source code searching when I don’t know how to use a class or a library.
For an example; I didn’t know how to create a window using SWT class. I did a Google
search with the description of what I want to do. I decided on the best match based on
whether I understand the example code.
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The anecdotes were categorized among a number of dimensions. Clear patterns
emerged regarding two aspects of their searches: i) what programmers were search-
ing for; and ii) how they searched for it.

3.4.2 Object of the Search

In terms of what programmers were searching for, anecdotes were categorized along
two orthogonal dimensions: the motivation for the search and the size of the search
target. Some responses had multiple search targets and motivations, and in such
cases, each was coded separately. The most specific code that was appropriate for
the search was selected, based on the information given by the participant. In Figure
3.1, the motivation was coded as “reference example” and the size of search target
was coded as “subsystem”.

Code for Reuse As-Is Reuse Reference Ex-
ample

Row Total

Block 8 4 12
Subsystem 21 11 32
System 5 2 7

Column Total 37 22 51

Table 3.1: Purpose by Target Size

3.4.2.1 Motivations for Searching

Detailed analysis of scenarios showed that respondents were either searching for
reusable code (37) or reference examples (22). Reusable code is source code that
they could just drop into their program, such as an implementation of trie tree data
structure, quick sort algorithm, and two-way hash table. A reference example is a
piece of code that showed how to do something, for instance, how to use a partic-
ular GUI widget, what is the syntax of a particular command in Java. Searches of
this type essentially use the web as a large desk reference. These two motivations
emerged very clearly in the anecdotes, and almost all the scenarios could be neatly
classified into either of these two motivations.

A key difference between the two motivations is the amount of modification that
searcher intended to perform. Programmers seeking reusable code planned to find
pieces that could be dropped into a project and used right away. For example,
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Needed to convert uploaded images of all types into jpeg and then [generate] thumbnails.
Due to timescales; it could not be done in house. . .

Those seeking reference examples intended to re-implement or significantly
modify the code found. One respondent wrote,

I typically search for examples of how to do things; rather than code to use directly. The
products that I work on are closed-source, one can’t [use] most open source directly.

On occasion, the search was initially seeking reusable code would fail and be-
come a search for reference information. A programmer needed a mutable string
class in Java, but the results from search engines either had only a minimal imple-
mentation or an inappropriate open source license. He wrote, “. . . in the end I just
rolled my own,” and only used the other implementations for ideas.

3.4.2.2 Size of Search Targets

Across both types of searches, the size of the search target varied in a similar fashion.
The sizes of the search targets were classified as a block (12), a subsystem (32), or
a system (7). A block was a few lines of code, up to an entire function in size.

Common block-sized targets were wrappers and parsers (3), and code excerpts
(8). A number of the searches for code excerpts were for PHP and JavaScript. Pro-
grams in these languages tended to be small and plentiful, which meant it was eas-
ier to make use of a few lines of code. There were searches for a small section of
code that solved a specific problem, such as “encode/decode a URL” and “RSS feed
parser.”

A subsystem was a piece of functionality that was not a stand-alone application,
and the programmer searching intended to use it as a component. Categories of sub-
system targets are implementations of well-known algorithms and data structures
(14), GUI widgets (9), and uses of language features (6). Some examples from the
data include “a Java implementation of statistical techniques like t-test” and “wrap-
per code for the native pcap library.”

A system was an application that could be used in its own. Searchers often in-
tended to use these as a component in their own software. Respondents were “look-
ing for some big piece of code that would more or less do what I want. . . ” or some-
thing that would show them “how to do it.”

3.4.3 Process of Search

With respect to the process of search, anecdotes were categorized on the starting
point for the search, the tools used, and the criteria used to make the final selection.
In Figure 1, the starting point was a recommendation from a friend, the tool used
was search.cpan.org, and no selection criterion was mentioned.
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3.4.3.1 Starting Point for Search

A common starting point for Internet-scale code searches was recommendations
from friends to use a particular piece of software. Other potential starting points
were reviews, articles, blogs, and social tagging sites. When no such starting point
was available, programmers went straight to search tools.

3.4.3.2 Search Tools Used

By far, the most popular tool for finding source code on the web was general-purpose
search engines, such as Google and Yahoo! The search feature on specific web sites
and archives was also popular. Interestingly, the source code-specific search engines
were used only occasionally.

3.4.3.3 Selection Criteria

A number of common themes also emerged among the criteria that programmers
used to make a final selection among different options. Often the choices were lim-
ited, so there were few degrees of freedom in the final selection. Criteria that were
mentioned by the respondents were level of activity on the project, availability of
working experience, availability of documentation, and ease of installation. Surpris-
ingly, code quality and the user license for the source code were low priorities in the
selection criteria.

The results are presented as archetypal searches in Section 5 and as observations
about the search process in Section 6.

3.5 Archetypal Searches

By examining the motivations for search and the size of search targets, we found
common or more frequent relationships. These patterns, or archetypes, are presented
in this section, as well as, some unusual, but interesting searches.

3.5.1 Common Searches

The most common type of search was a subsystem that could be reused. Archetypes
1, 3, and 4 fell into this category. The next most common search, archetype 2, was
for a system that could be modified or extended to satisfy the needs of the project.
Archetypes 5-8 are searches for examples of how to do something, such as using a
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component or implementing a solution. The final archetype is searching for reports
and patches for bugs.

1. Reusable data structures and algorithms to be incorporated into an implementa-
tion.
Eight of the reported searches were for algorithms and data structures, such as
“two-way hash tables,” “B+ trees,” “Trie trees,” and “binary search algorithm.”
were included at this level of granularity. We suspect that this was the most preva-
lent because there was a close match between the vocabulary for describing the
object in code and the vocabulary for describing the search. Furthermore, abstract
data structures are a well-understood basic building block in computer science.

2. A reusable system to be used as a starting point for an implementation.
While creating a new system, developers often look for systems that they can
use as a starting point. There were seven such searches by developers who were
looking for “stand-alone tools” or a “backbone for an upcoming project” or just
a “big piece of code that does more or less what I want.” Examples of search
targets included an application server, an ERP package or a database system. We
conjecture that this type of search is common because a system does not need to
be de-contextualized before it is used in a new project. Also, systems are easy
to find because they typically have web sites or project pages that contain text
descriptions of the software. Finally, customizing an existing application saves a
lot of time in comparison to implementing from scratch.

3. A reusable GUI widget to be used in an implementation.
Developers often looked for widgets for graphical user interfaces and there were
seven searches of this kind in our data. Users searched by keywords of the func-
tionality that they desired, for example “inserting a browser in a Java Swing
frame.” Searches for functionality are somewhat independent of the source code
implementation underneath, but are mainly concerned with feature addition.
Other examples include a “Java interface for subversion” and a source code that
creates a “SeeSoft-like visualization.” We believe that searches for GUI wid-
gets are popular, because these components are easy to reuse. A software devel-
oper need only ensure that the widget is compatible with the GUI framework
being used on the project. As well, GUI widgets can be displayed visually, there-
fore, making it easier for a developer to quickly assess the appropriateness of the
search result.

4. A reusable library to be incorporated into an implementation.
There were six searches for a reusable library, sometimes called a package or
API. Programmers were generally looking for a subsystem that could be dropped
in and used immediately. Some examples of the searches were for “speech pro-
cessing toolkits,” “library for date manipulation in Perl” and “Java implementa-
tions of statistical techniques.”

5. Example of how to implement a data structure or algorithm.
In six instances, developers looked for source code snippets to verify their so-
lution or to aid reimplementation, e.g. “to verify the implementation of a well-
known algorithm.” There were six searches were for a piece of code to use as
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a reference in order to develop the same functionality. An implementation was
more informative than a description or pseudocode, because the implementation
had been test and could execute. Respondents believed that a reference example
would show them the right way to do something, and a running program had a
lot of credibility.

6. Example of how to use a library.
Developers looked for examples of how to use a library, for instance, “Some-
times, I did a source code searching when I don’t know how to use a class or
a library.” There were six anecdotes reporting this kind of search. Libraries and
APIs can be complex to use, with arcane incantations for calling methods or
instantiating classes. A reference example is easier to use than documentation,
because it gives the programmer a starting point that can be tweaked to suit the
situation.

7. Example of how to use features of a programming language.
In four anecdotes, respondents reported that reference examples of language syn-
tax and idioms were helpful when working with an unfamiliar programming
language. Users who havenŠt programmed in a language before, or have for-
gotten parts of it, or are using the language in a new way (e.g. new hardware),
searched for source code to serve as a language reference. One respondent wrote,
“. . . mostly I look for code for syntax, I don’t always like to refer to books for
syntax if it is readily available on my desktop.”

8. A block of code to be used as an example.
Developers look at a block of code to learn how to do something. There were
four situations that described this type of search. Programmers were not look-
ing for reusable components, but their goal was to learn through examples, such
as “examples of javascript implementation of menus” and “examples of thread
implementation in python.”

9. Confirmation and resolution of bugs
There were five searches that were looking for solutions to a bug. Sometimes the
solution can in the form of a report or post to a form that confirmed the presence
of an actual bug. At other times, there was a patch that repaired the bug. Three
of the searches led developers to find relevant information in mailing lists and
forums. Developers prefer to search for a patch or quick-fix by forming natural
language queries with the keywords from an error message or keywords based on
the functionality deviation caused by a bug. The need for code in such situations
is very specific in terms of implementation language, platform, version informa-
tion, size of patch and licensing requirements. In the process of debugging, if the
problem seems to occur while compiling a library or at run-time, users examine
the source code of a library to determine the exact problem.
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3.5.2 Uncommon Searches

There were a few uncommon searches that are worthy of attention. These were look-
ing for a system to be used as a reference example, seeking a reference example for
using a GUI framework or widget, and searching for examples of language syntax
usage.

While developing or modifying a system, programmers look at existing similar
systems for ideas. Searches for systems that can be understood and the logic/princi-
ples can be borrowed to construct new systems. Two searches were for systems with
similar functionality as the current or to-be system. This technique was mainly used
in a proprietary environment or when it was easier to construct a new system rather
than adopt an existing one.

There were also two searches for examples of how to use GUI widgets. These
included searches for code samples on how to use a particular component from
Swing and Microsoft Foundation Classes.

Finally, there was one anecdote from a programming language designer who
searched to find examples “in the wild” of syntax from the language. This informa-
tion was used to evaluate requests for changes and suggestions for features.

3.6 Discussion

In this section, we explore how social interaction processes supported by the right
search tools can help programmers to arrive at the right code snippet, component or
exemplar.

As discussed previously, a typical search begins with a cue such as advice from
a colleague or use of the immensely popular general purpose search engines.

Search mechanism Count
Google, Yahoo, MSN Search etc 60
Domain knowledge 37
Sourceforge.net, freshmeat.net 34
References from peers 30
Mailing lists 16
Code-specific search engines 11

Table 3.2: Tools/Information sources used in search

Our survey showed that 60 of the 69 respondents used general purpose search
engines (refer to Table 2). More than half the respondents relied on their domain
knowledge to find the right source code. Project hosting sites came next, with 34 of
the respondents using them for source code search.
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Elements from the social network were used frequently especially peer refer-
ences (30) and mailing lists (16). In our descriptive data we observed that social
tagging sites (del.icio.us) and compilation sites created by a group of programmers
featured often.

Once users have access to the source code that matches their requirements, the
problem of narrowing down the list of retrieved items arises.

3.6.1 Documentation

An initial assessment is done using web pages and documentation, as one user put
it, “. . . (the core developer) had a good documentation of his code with lots of com-
ments too (by which I could also modify his code), hence I decided to use that
code.”

A piece of software with the required functionality may be eliminated if it canŠt
be easily determined whether it has the required features and documentation. The
basic functionality has to be in place, and supported by requisite documentation.

3.6.2 Peer Recommendations

Peer recommendations were the most trusted and valued—especially if the person
has used the software before. For instance, one respondent stated that “. . . friends
recommended Graph.pm; searched for that on search.cpan.org, and found it was
just what I needed.” In the absence or inaccessibility of peer advice programmers
then look for availability of help from people within their online social network, or
within the project context.

3.6.3 Help from One’s Social Network

Help from a local expert, an electronic forum, a mailing list archive, or active users
who are doing similar tasks and are willing to answer questions is a major consid-
eration while choosing open source software. One respondent said he looked for
“. . . issues which are then found by people, solved and posted on mailing lists of
discussion forums.” A glance at the forums tells the users how friendly a project is
and how likely they are to obtain help when needed.

Availability of help is also determined from the project activity. Respondents
preferred large open source projects that were very active. For example, “The criteria
that I used were: 1) if the tool was in java 2) if the tool was web based 3) the activity
of the project.” Activity can be quantified as the number of contributors, frequency
of builds and updates, traffic on newsgroups, and number of users. Larger projects
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have more resources, are more responsive, and are more likely to rank highly on
these criteria.

Overall, social characteristics of the project, such as the level of activity, presence
of discussion forums, and recommendations by peers seem to have precedence over
characteristics of the source code, such as code quality (i.e. whether the code is peer
reviewed and tested), and reliability.

Criteria Count
Available functionality 54
Terms of license 30
Price 26
User support available 21
Level of project activity 18

Table 3.3: Criteria for selecting a code component

3.6.4 Feature suggestions

Developers not only look for code, they also look for a social system through they
can contribute their knowledge and expertise as well as learn from their counter-
parts. As reported in Table 2, the domain knowledge and social networking are key
ingredients of the search process in addition to search engines.

We also observed that programmers use social tagging websites for technical
information and applications. The current source code repositories should be ap-
pended with a recommender system wherein programmers could obtain not just
code components, but also real subjective opinions of people who have used those
components.

3.7 Conclusions

The goal of this research study was to gain an understanding of Internet-scale
source code searching in order to inform the design and evaluation of tools for web-
based source code retrieval. We observed that programmers mainly search for either
reusable components or reference examples. The granularity of search targets varies
from a block of code to an entire system. Some directions for future research in this
area are: Which search engines are better than others with respect to code search?
Does search engine performance depend on types of tasks?
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Chapter 4
A Controlled Experiment on the Process Used by
Developers During Internet-Scale Code Search

Susan Elliott Sim, Megha Agarwala, and Medha Umarji

Abstract It has become common practice for developers to search the Web for
source code. In this paper, we report on our analysis of a laboratory experiment with
24 subjects. They were given a programming scenario and asked to find source code
using five different search engines. The scenarios varied in terms of size of search
target (block or subsystem) and usage intention (as-is reuse or reference example).
Every subject used five search engines (Google, Koders, Krugle, and Google Code
Search, and SourceForge). We looked at how these factors influenced three phases
of the search process: query formulation, query revision, and judging relevance.
One consistent trend was searching for reference examples required more effort, as
measured by average the number of terms per query, average number of queries,
clickthrough rate, and time spent. This additional effort paid off in a higher rate of
precision for the first ten results.

4.1 Introduction

Searching for information on the Web has become a daily occurrence. This prac-
tice has also extended into the world of software development. Programmers often
search for source code examples to remind themselves of syntax and for compo-
nents to reuse on projects. The search process used by software developers during
software development can have significant impact on whether a project is completed
on time, with the allocated budget and with the desired functionality. Some Internet-
scale code search engines, such as Koders, Google Code Search, SourceForge and
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Krugle, have emerged to fill this niche. But little work has been conducted to under-
stand developers’ search process when using these tools.

We conducted an experiment to better understand how people search for code
on the Web. Twenty-four subjects participated in the study. They were given a sce-
nario and asked to search for source code to satisfy the task described. When the
subjects settled on a query that produced satisfactory results, they were asked to
judge the relevance of the first ten results (P@10). The scenarios varied along two
dimensions: intention of search (as-is reuse or reference example) and size of the
search target (block or subsystem) [32]. We used these two dimensions as between-
subjects independent variables in our experiment. There are also different kinds of
search engines that can be used to locate code on the Web and we used this factor
as a within-subjects independent variable with five levels (Google, Koders, Krugle,
Google Code Search, and SourceForge). The dependent variables were the length of
the query, the number of queries in a session, the clickthrough rate on results, pre-
cision of the first ten results (P@10), and the duration of the session. Each of these
variables provided insight into different stages of the search process. The findings
reported in this chapter are complementary to a paper previous published using the
same data [? ] that focused on the P@10 dependent variable and insights into the
search engines.

On average, the developers used each search engine for 6 minutes. During that
time, they entered an average of 2.4 queries with 4 terms each. They navigated to
62% of the search results overall, but a higher proportion (81%) of relevant results,
compared to irrelevant ones (47%).

We obtained a variety of statistically significant results, including some interac-
tion effects. Participants used more terms in their queries when carrying out search
on Google or when searching for reference examples. They made more query re-
visions when searching for blocks of code and for reference examples. When they
specialize their query by adding more terms, their next likely step is to generalize
their query by removing terms. They had a lower clickthrough rate on SourceForge
or when searching for code to reuse. Furthermore, they spent more time searching
for reference examples or blocks of code or when using Google. We found that
searches for reference examples gave a higher P@10, or a higher proportion of rel-
evant results. Google gave the most relevant results. Koders and Krugle gave more
relevant results on searches for subsystems and Google gave more relevant results
for blocks.

One consistent trend across all the dependent variables is more effort was ex-
pended on searches for reference examples than for components to reuse as-is. Ref-
erence example searches involved more terms per query on average, more queries
per session, a higher clickthrough rate, and more time. The additional effort was
rewarded by more relevant results among the first ten matches.

In comparison to Web search, developers performing code search issued more
queries, longer queries and made greater use of advanced features than users of
Web search. We synthesized these statistical results into a model of user behavior
during code search on the Web. We compare this model with user behavior in other
kinds of search and we discuss implications for design.
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4.2 Background

4.2.1 Internet-Scale Code Search

By some estimates, there are billions of lines of code available on the Internet. With
this embarrassment of riches, comes a problem: locating the code that one wants.
In response, many web sites, repositories, and tools have been created. Research
into tools to support Internet-scale code search has clustered around two use cases:
searching for examples and searching for components.

Developers frequently reuse open source components. Prototypes, such as Sour-
cerer [22], Merobase [17], and Exemplar [11], use a variety of approaches to return
classes, files, or projects. Sourcerer uses the CodeRank metric to present the most
frequently called/used components earlier. Merobase allows searches on binaries as
well as source code. Exemplar matches search to concepts in the APIs used by an
application to return relevant candidates.

Developers often want a snippet of code to see an example solution to a problem
or how to use an API (Application Program Interface). Tools such as Strathcona [9],
Assieme [13], XSnippet [20] and many others return a “snippet” of code that can
be adapted or cut-and-pasted into a project. Strathcona provides examples of how
to use an API, while Assieme helps a developer find an appropriate API. XSnippet
provides examples of how to instantiate a certain type of object.

4.2.2 Studying User Behavior

There are a number of approaches to studying user behavior, including log analysis,
field observations, and experiments.

Transaction logs from Web search engines have been analyzed to learn about
query structure and query revision strategies of users [? ]. Logs are a good source of
data, because they are intrusive and can be used to obtain data from a large number
of users.

Observational field studies can also be used to study user behavior [? ]. In these
studies, a researcher observes users, with or without search mediators, as they con-
duct searches in naturalistic settings. Although labor intensive, observational studies
provide richer data than logs and insight into how people satisfy their own informa-
tion needs, rather than ones that have been assigned by the experimenter.

Controlled experiments can also be used to study user behavior in Web searching
to examine a wide variety of phenomena, such as differences between novices and
experts [? ] and where searchers look on a results page [? ]. This approach allows
researchers to look for general trends and tendencies in user behavior, by having
multiple subjects perform the same task.

A previous study, we found that searches for code on the Web tend to vary along
two continuous dimensions [32]. The first dimension is the intention behind the
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search. The endpoints on the continuum are reference example and as-is reuse.
Points along the continuum are distinguished by the amount of additional code
that needs to be written. Reference examples are reminders of syntax or how-to do
something. Once found, the developers usually write the code needed from scratch.
During searches motivated by as-is reuse, the developer is looking for components
to use without modification. The second dimension is the size of the source code
desired. We draw attention to three points along the continuum: block (few lines
of code); subsystem (class, package, or library); and system (a program that can be
used on its own).

Bajracharya and Lopes [2] analyzed the log of a code search engine to identify
common search topics. Brandt et al. [5] looked at how developers search for ex-
amples of how to use an API, using both logs and a laboratory experiment. They
concluded that the Web is used for learning and reminding. To our knowledge, there
are no observational field studies of code search on the Web. This paper reports on a
laboratory experiment where we studied how developers searched for source code.

4.3 Method

In this section, we describe the design of the laboratory experiment. Many of the
design decisions, such as the independent variables, search scenarios, and search
engines, were motivated by a previous study [32].

4.3.1 Independent Variables

There were three independent variables in this study and our analysis: size of search
target, intention of search and the search engine. Size of search target and intention
of search were between-subjects factors.

Size of search target refers to the amount of source code searched by the devel-
opers on the Web. This variable had two levels: block or a subsystem. Block refers
to few lines of code, for e.g. a function. Subsystem is a piece of functionality that is
not a stand-alone application and is used as a component.

Intention of search refers to the motivation for searching source code on the Web.
This variable had two levels: reuse as-is or reference example. Reusable code is
source code that can be simply dropped in a program without any modification. A
reference example is a piece of code that gives a direction to do something, for e.g.
how to use a particular GUI widget.

Search engine was a within-subjects independent variable with five levels: Koders,
Google Code Search, SourceForge, Google and Krugle.
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4.3.2 Dependent Variables

In our analysis, we used five dependent variables: number of terms in a query, num-
ber of queries in a session, clickthrough percentage, P@10 and time spent on a
search engine. These dependent variables helped us to study the search process of
developers.

A query term is defined as any string of characters separated by some delimiter
such as a space, a colon, or a period, depending on the syntax of the search specifi-
cation. We counted Boolean operators or search filters in a query as one term. For
example, the query “apache access log parser, lang:python” has five terms.

We counted as a query any search specification that was entered and results were
returned (including a null set).

Clickthrough percentage is the proportion of returned matches that a user clicked
on to view in detail.

P@10 is the relevance of the first ten matches as judged by the subject.
A session is considered to start when a user begins using a search engine and

to end when the relevance judgment is provided. The duration of a session is the
amount of time spent in seconds.

4.3.3 Scenarios

Multiple scenarios were constructed for every treatment. Two scenarios were gener-
ated for searches for blocks and three were constructed for searches for subsystems.
A complete list of scenarios has been described elsewhere [? ]. An example is pre-
sented below:

“You are working in the Python programming language, and need to have multi-
threading functionality in your program. You have never used threads before, and
would like to know how to create threads, to switch between threads, and so on.
Look for examples by which you can learn. Any thread implementations of Python
programs are relevant. Remember you will not be using the code directly, you would
like to learn how to use it.”

4.3.4 Procedure

The experiment consisted of three stages: training, experiment task, and debriefing.
In the training stage, the participants were given a warm up task to make them

familiar with the experimental setup and the think aloud procedure. To train the
participants on think aloud, we asked them to identify how many windows were in
their parents’ house. Generally, to answer this question they had to mentally walk
through the house and count the windows. To train the participants on the experi-



62 Susan Elliott Sim, Megha Agarwala, and Medha Umarji

ment procedure, we asked them to conduct a web search for a binary search tree.
Each participant was trained individually.

During the experiment, participants were randomly assigned a search scenario,
which was a combination of intention of search and size of search target. They had
to conduct the search using five search engines. They could choose the engines in
any order. They were free to change their query as many times they wished. Once
they found a page with satisfactory results, they had to rate the relevance of the first
ten matches (P@10). Finally, in the debriefing stage, the participants completed a
questionnaire on their preferences and background in code search.

4.3.5 Subjects

Twenty-four subjects participated in this study. They were recruited on the crite-
ria that they should have some prior programming experience in either a profes-
sional or an academic setting. The average age of subjects was 27.3 and on average
they had 4.3 years of programming experience. All of them had searched for source
code on the Web previously, worked with multiple programming languages and had
worked with a team. 50% of the subjects searched for source code “frequently”,
33% searched for it “occasionally,” and only 16% of the subjects searched for source
code “rarely.” 67% of the subjects declared their primary job responsibility as “Pro-
gramming.” 23 subjects had experience with Java, 22 subjects had experience with
HTML, 21 subjects had experience with C and 20 subjects had experience with C++.
Seventy-one percent of the subjects had worked on small sized teams and 29% of
the subjects had worked on medium sized teams.

4.3.6 Hypotheses

We planned to examine the effect of intention, size of search target, and search
engine on the search process. We identified the following hypotheses to be tested in
our study.

4.3.6.1 Main Effects

Since there were three independent variables, there were three main effects in our
analysis.

HI
1 : The search process is affected by the intention of search, i.e. user behavior

is different when searching for reference examples than when searching for code to
reuse as-is.
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HS
1 : The search process is affected by the size of the search target, i.e. user

behavior is different when searching for blocks of code than when searching for
subsystems.

HE
1 : The search process is affected by the search engine used, i.e. user behavior

is different when searching with Google, Koders, Google Code Search, Krugle and
SourceForge.

4.3.6.2 Interaction Effects

With the three independent variables, we had four possible interactions. We ex-
pected two of them to be significant, so we describe them here.

The first one is the interaction effect between intention of search and search en-
gine. We expected that user behavior with a particular search intention would be
affected by the search engine used. Some search engines would be better for refer-
ence examples than others, e.g. Google versus SourceForge.

HIE
1 : The search behavior when searching with a particular search intent (i.e.

reuse or reference example) is dependent on the search engine used.
The second interaction effect was between the size of search target and the search

engine. We predicted that user behavior when searching for a particular target size
would be affected by the search engine used. Some search engines would be better
at locating components than others.

HSE
1 : The search behavior when searching for a particular size of code (blocks

or subsystems) is dependent on the search engine used.

4.4 Results

We transcribed the audio, video, and screen recordings of the experiment. Using the
recordings and the transcripts, we coded for our independent variables. The signifi-
cant effects are summarized in Table 4.1.

4.4.1 Query Length

Overall, the average number of terms per query was found to be 4. The distribution
of the number of terms in a query is given in Figure 4.1.

We conducted an analysis of variance (ANOVA) on the number of terms in the
query and found four statistically significant effects. The query length was affected
by the intention of the search (F(1,265) = 9.29, p < 0.01). Searches for refer-
ence examples involved 4.3 terms on average, while searches for components had
only 3.8 terms on average. Query length was also affected by the search engine
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Table 4.1: Summary of statistically significant results

Fig. 4.1 Distribution of query length

(F(4,265) = 4.06, p < 0.01). Searches using Google tended to have the most terms
(4.7).

Google Koders Krugle GCS SourceForge
4.7 4.1 3.7 4.2 3.8

Table 4.2: Average terms per query by search engine
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An interaction effect was found between size of the search target and intention of
the search (F(1,265) = 45.63, p < 0.01) as shown in Figure 4.2a. More terms were
used when searching for block-sized reference examples than for subsystems to be
reused as-is. Another interaction was found between size of the search target and
search engine (F(4,265) = 2.83, p < 0.05). More terms were entered in Google for
block-sized code, but fewest when using Krugle to search for subsystems.

Fig. 4.2 Interaction effects on average terms per query

4.4.2 Query Revision

We found that on average, 2.38 queries were entered per subject per search engine.
The distribution of session length is depicted in Figure 4.3. Over all the queries,
42.2% used a filter and 8.7% used a Boolean operator.

The ANOVA found two statistically significant effects. The number of queries
made in a session was affected by the intention of the search (F(1,100) = 6.55, p <
0.05). More queries were entered when searching for reference examples (2.8) than
when searching for code to reuse as-is (1.8). The number of queries was also affected
by the size of the search target (F(1,100) = 4.57, p < 0.05). More queries were
entered when searching for blocks (2.7) than for subsystems (1.9).

After looking at the number of queries in a session, we examined how the queries
changed within a session. We coded the modifications between query n and n+1. We
used a coding scheme based on the one used by Brandt et al. [5] with adaptations to
fit with our study. The coding scheme had six different kinds of query refinements.

A generalization (G) refinement had a new search string with one of the follow-
ing properties: it was a substring of the original, it contained a proper subset of the
tokens in the original, it split a single token into multiple tokens and left the rest
unchanged, or it led to removal of a filter.

A specialization (S) refinement had a new search string with one of the following
properties: it was a superstring of the original, it added tokens to the original, it
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Fig. 4.3 Distribution of queries per session

combined various tokens from the original into one and left the rest unchanged, or
it led to the adding of a filter.

A reformulation (R) refinement had a new search string that contained some
tokens in common with the original but was neither a generalization nor a special-
ization. It consisted of moving a token into a filter and vice versa or changing a filter
within a search engine.

A new query (N) had no tokens in common with the original.
Spelling (SP) refinement was any query where spelling errors were corrected,

defined as a Levenshtein Distance (LD) [? ] between 1 and 3. Changes with larger
LDs were placed in one of the other categories.

A No Change (NC) refinement was any query that had all tokens in common
with the original.

There were a total of 286 queries issued by the subjects in our study, which led
to 144 refinements. The number of each type of query refinement is as given in
Table 4.3. We analyzed the sequences of query revisions occurring at query n and
its immediate next query, numbered n+ 1. We used a c-squared test of two-way
contingency tables to identify which sequences of refinements were significant. The
test would indicate if certain combinations of query revisions were more or less
likely to occur from other combinations.

Generalization Specialization Reformulation New Spelling No Change
13 61 57 4 7 2

Table 4.3: Number of query refinements by type
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When we looked at all of the queries, without regard to the independent variables,
we found two statistically significant query sequences at p < 0.05: specialization !
generalization, and new ! null.

We found that when developers specialized their query, their next likely step
was to generalize their query. We refer to this transition as SG, i.e. a specialization
followed by a generalization. We also found that developers often used a single
query to carry out search without reformulating the query. We refer to this transition
as N-null transition, i.e. a new query followed by no reformulation. In other words,
it was a session that consisted of a single query.

Further, we analyzed the sequence of query revisions by size of search target,
intention of search, and the search engine. The significant results are presented in
the following tables.

Size of Search Target Significant query transitions
Block SG, RS, NR, N-null

Subsystem N-null

Table 4.4: Effect of target size on revision sequences

Intention of search Significant query transitions
As-is reuse N-null

Reference examples SG, N-null

Table 4.5: Effect of intention on revision sequences

Search Engine Significant query transitions
Koders SG, NR, N-null

Google Code Search SG, N-null
SourceForge SG, N-null

Google RR, NS, N-null
Krugle N-null

Table 4.6: Effect of search engine on revision sequences
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4.4.3 Evaluating the Matches

We used two dependent variables to characterize how searchers evaluated the
matches: the proportion of the first ten matches that were judged as relevant (P@10)
and the proportion of these matches that were further investigated (clickthrough
rate).

The overall average P@10 was 0.35. We found three statistically significant ef-
fects using ANOVA: intention, engine, and size x engine. The first was a between-
subjects effect, because each subject only worked with one search scenario. The
latter two were within-subjects effects, because each subject used all five search
engines.

There was a main effect from the intention of the search (F(1, 32) = 4.99, p <
0.05). Searches for reference examples yielded a higher proportion of relevant re-
sults than searches for code to reuse as-is (0.43 versus 0.32). There was a main effect
of search engine: Google gave more relevant results (F(4,128) = 4.11, p < 0.01).
As well, there was an interaction effect between size of search target and the search
engine used (F(4,128) = 4.08, p < 0.01). Koders and Krugle performed better with
subsystems, while Google was better when searching for block-sized code.

df Sum of Squares Mean Sum of Squares F value p <
Between Subjects

Size 1 0.00 0.00 0.02 0.89
Intention 1 0.53 0.53 4.99 0.03 *
Size x Intention 1 0.01 0.01 0.14 0.72
Residuals 32 3.42 0.11

Within Subjects

Engine 4 0.98 0.25 4.11 0.00 *
Size x Engine 4 0.97 0.24 4.08 0.00 *
Motivation x Engine 4 0.11 0.03 0.44 0.78
Size x Intention x Engine 4 0.26 0.07 1.09 0.36
Residuals 128 7.64 0.06

Table 4.7: ANOVA Results on P@10

The overall clickthrough rate was 62%. The developers visited a larger propor-
tion of relevant results (81%) than irrelevant results (47%). An ANOVA found
three significant effects. There was a main effect from the intention of the search
(F(1,100) = 18.75, p < 0.01). There was a much higher clickthrough rate when
searching for reference examples (92%) than when searching for code to reuse as-is
(48%). The search engine used also had an effect on clickthrough rate (F(4,100) =



4 Internet-Scale Code Search Process In Vitro 69

Fig. 4.4 Effect of Intention on P@10

Fig. 4.5 Effect of Search Engines and Interaction Effect Search Engine and Size

6.44, p < 0.01). The highest rate occurred when using Google, whereas the lowest
rate occurred with SourceForge, as shown in Figure 4.6a. An interaction effect was
found between intention of the search and the search engine (F(4,100) = 2.55, p <
0.05). On SourceForge, the clickthrough rate was higher when searching for code
to reuse as-is than for reference examples; the opposite was true for all the other
search engines.

4.4.4 Time Spent

The search session as a whole was characterized by time spent. We found that devel-
opers spent an average of 6 minutes on any search engine for searching. An ANOVA
revealed three significant effects.

There was a main effect from the intention of search (F(1,100) = 4.66, p <
0.05). More time was spent looking for reference examples (417 seconds) than code
to reuse as-is (334 seconds). The size of the search target also affected the duration
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Fig. 4.6 Effect of search engine and interaction effect of intention and search engine

Fig. 4.7 Average time spent by search engine

of the search session (F(1,100) = 6.96, p < 0.01). More time was spent looking
for blocks of code (426 seconds) than subsystems (325 seconds). Finally, the search
engine used had an effect (F(4,100) = 3.24, p < 0.05). The most time was spent
when using Google, and the least with SourceForge.

4.4.5 Order Effects

In the experiment, subjects were given a list of search engines and were allowed to
choose the engines in any order. Consequently, we need to check whether the order
in which search engines were selected affected the dependent variables.

The original list consisted of search engines in the following order: Koders,
Google Code Search, SourceForge, Google, and Krugle. Thirteen out of 24 partic-
ipants used Koders first, 9 subjects started with Google and only 2 subjects started
with Google Code search. Finally, 19 people used Krugle at the end. We analyzed
the effect of order of search engines used on the different dependent variables: num-
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ber of terms in a query, number of queries, click-through percentage, and time spent
on the search engine. P@10 was not influenced by the order of use of search en-
gines. In other words, any given search engine received the same P@10 regardless
of whether it was used first, last, or anywhere in between.

We found two statistically significant order effects. An ANOVA revealed that the
clickthrough percentage was affected by order (F(4,92) = 2.89, p < 0.05). There
was a dip in clickthrough rates at the middle of the experiment session. In other
words, subjects navigated to a smaller proportion of matches than at the beginning
or end of the session, as shown in Table 4.8.

Source Sum of Squares df Mean Sum of Squares F Pr > F
Subject 5.98 23 .26 3.07 0.00⇤
Engine .98 4 .24 2.89 0.03⇤

Residual 7.80 92 .08

Table 4.8: ANOVA for order effect on clickthrough

Fig. 4.8 Order Effects

There was an order effect on the time spent (F(4,92) = 11.36,P < 0.01). Sub-
jects tended to spend more time on earlier search engines and spent less time on
subsequent search engines.

Figure 4.8b shows the amount of time spent on the search engines decreased from
the first engine to fifth engine. The small increase in time from fourth engine to fifth
engine was not significant.
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Source Sum of Squares df Mean Sum of Squares F Pr > F
Subject 2155478.19 23 93716.44 3.36 0.00⇤
Engine 1267185.88 4 316796.47 11.36 0.00⇤

Residual 2564786.52 92 27878.11

Table 4.9: ANOVA for order effect on time spent

4.4.6 Threats to Validity

The participants in our study had no special training or background on the use of
search engines. Consequently, different results are possible with subjects who are
more expert in creating and refining queries. However, our results are likely typical
for average users.

Another threat to the validity of the results is the fact that scenarios were as-
signed by the researchers and did not come from the searchers themselves. As well,
they were not required to use the search results. When one self-identifies a need for
source code, one likely has more background knowledge and more stringent criteria
for evaluating relevance. A similar argument could be made for judging suitability
for use in a project versus the relevance of a search result. In this study, we elected to
look at relevance only on assigned tasks, because this is standard practice in infor-
mation retrieval, which allows us to compare results from that research community.

Finally, using multiple search engines to find code for one scenario is not typical
behavior. In normal situations, users switch search engines only when they have
difficulty finding what they want. In our study, there was likely a learning effect
on query formulation and query refinement, but none was detected by statistical
analysis. The story with clickthrough rate and duration of session is more complex,
as indicated by the ANOVA results for order effect.

4.5 Analysis

4.5.1 Main Effect of Size (HS
1 )

The independent variable of size had two levels in our study, block and subsystem.
This variable affected the number of terms that subjects used in a query, number of
query revision, and the time spent on the engine. When searching for blocks of code,
subjects used more queries with more terms, made more revisions to the queries, and
spent more time.

It is possible that more effort is required to locate blocks because they are smaller
and tend to be embedded in a Web page. Additional terms in the query are needed
because the block is highly specific and focused on one topic or concept. More
queries are needed because the subject is trying to force more relevant results to the
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top of the list. In addition to the extra work, it takes longer to judge the relevance of
a match, because the subject has to navigate to the Web page and read portions of it.

4.5.2 Main Effect of Intention (HI
1)

The intention of the search affected all the dependent variables. This was the only
independent variable that had an effect across the board. Reference examples had a
positive effect on the values of all variables. Subjects expended more effort– queries
with more terms, sessions with more queries, a higher clickthrough rate, and longer
session duration and were rewarded with better results, i.e. a higher P@10 rate.

The additional time, queries, and terms indicate that the subjects were trying a
wider variety of searches. They were tweaking their queries by adding a term (spe-
cialization), which was often followed by removing a term (generalization.) They
were trying out search keywords and filters to reduce the large number of matches
and to bring the most relevant ones to the top of the results set.

Relevant reference examples were easier to find, likely because the criteria for
judging relevance were more flexible. Overall, subjects had a higher clickthrough
rate with relevant results. So the higher proportion of relevant results when searching
for reference examples led to the higher clickthrough rate.

4.5.3 Main Effect of Search Engine (HE
1 )

The search engine used affected all the dependent variables except for the number
of queries. Google seemed to stand out from the others: subjects used more terms,
judged greater P@10, navigated to more matches, and spent more time.

These differences were likely due to the larger quantity and variety of Web page
that were available through Google and subjects’ previous experience using this
search engine. Since Google indexes the entire Web, more pages were available,
so subjects had to be more specific in their queries by using more terms. The larger
number of pages likely contributed to the higher relevance rate. The variety of pages
likely led to the higher clickthrough rate and time spent, i.e. subjects had to look
more carefully at the matches.

4.5.4 Interaction Effects

We found four statistically significant interaction effects, each with a different com-
bination of independent and dependent variables.

There was an interaction effect on the number of terms in a query under combi-
nations of size and intention. Searches for blocks to be used as reference examples
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led to search specifications with more terms. When searching for block sized ref-
erence example, the developers issued the longest queries (4.9 terms) compared to
searches for subsystems to reuse (3.1 terms). It is likely that this effect arose due
to the greater specificity needed to search for blocks (as discussed in Section 4.5.1)
and the additional constraints when searching for reference examples (as discussed
in Section 4.5.2).

The different combinations of size and engine (HSE
1 ) also had an effect on the

number of terms in a query. Fewer terms were used on Krugle when searching for
a block than for subsystems. The opposite was true for the other search engines.
This effect was likely due to Krugle being used last by a large number of subjects
(19/24).

There was an interaction effect on the clickthrough rate under combinations of
search intention and the search engine (HIE

1 ). Subjects had to look at more matches
when using SourceForge to find code to reuse, but fewer when looking for reference
examples. The opposite was true for every other search engine. This difference likely
arose because it was quicker to judge that a project returned by SourceForge was not
relevant to a task that needed a reference example.

Lastly, there was an interaction effect on P@10 from combinations of size and
search engine. A higher proportion of results returned by Google were judged to be
relevant when looking for blocks of code. It was easier to find blocks using Google,
because Web pages tend to have more descriptive text on them, making it easier to
narrow down to relevant blocks.

4.5.5 Overall Process of Search

All of these statistically significant main and interaction effects are synthesized here
in the context of the overall search process. Figure 4.9 shows the different steps of
a search, the dependent variables associated with each step, and the independent
variables that had an effect.

Query formulation was affected by the size, intention, search engine, and two in-
teraction effects. In other words, the number of terms in a query was highly sensitive
to the independent variables. This trend suggests us that users would be responsive
to support for choosing search terms and filters. This is a promising direction for
improving code search on the Web.

Query revision was affected by only intention and size. It may be the case that
searching for blocks and reference examples involves more experimentation. We
suspect that searching for blocks to use as reference examples may be an unexplored
niche for code search engines.

Evaluation of matches was affected by intention, search engine, and two interac-
tion effects. We are dubious of the effect of intention, but this is clearly a question
that requires more research. The effect of engine suggests that the presentation can
affect evaluation. Presenting the appropriate details in the list of search results may
reduce the clickthrough rate.
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Fig. 4.9 Effect of independent variables on search process

The time spent on a search was affected by all the independent variables and no
interactions. This dependent variable is a good reflection of the amount of effort
required to find matches in different settings. Levels of the independent variables
that led to more time spent are kinds of searches that can be made more efficient.

4.5.6 Correlations Among Dependent Variables

We calculated the pairwise Pearson product-moment correlation coefficients (r2) to
determine if there was any relationship between the dependent variables. Table 4.10
shows the r2 statistic and their significance levels; statistically significant effects are
denoted by an asterix. A correlation greater than 0.7 is considered strong, below
0.3 is weak, and between these thresholds is a moderate relationship. We used a
Bonferroni adjustment for the significance calculations, because these tests were
performed post hoc.

We found four statistically significant correlations. Correlation only indicates
a relationship, not causality, so we must consider the underlying phenomenon to
interpret the statistic. The number of terms per query is moderately related with the
number of queries (r2 = 0.27, p < 0.04). This positive correlation is consistent with
our findings on query revision. Making more queries within a session is indicative
of experimentation and of creating more complex queries. The duration of a session
was related to the number of queries (r2 = 0.46, p < 0.001) and to the clickthrough
rate (r2 = 0.28, p < 0.03). These relationships are not surprising, because making
more queries and clicking on more search results takes time, thereby increasing
session duration.

There is a moderate, but strongly significant relationship, between the click-
through rate and P@10 (r2 = 0.44, p < 0.001). It is not clear whether a higher
clickthrough rate resulted in a higher P@10 rate, or vice versa, or if some other
factor cause both to rise together. The “mere exposure effect” tells us that we tend
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r2 Terms Queries Clickthrough Time
p-value per query per session rate spent
Queries 0.27 1.00

0.04⇤

Clickthrough 0.02 -0.02 1.00
1.00 1.00

Time 0.15 0.46 0.28 1.00
1.00 0.001⇤ 0.03⇤ 1.00

P@10 0.02 -0.10 0.44 0.03
1.00 1.00 0.001⇤ 1.00

Table 4.10: Table of correlation coefficients and p-values

to prefer items that we are more familiar with [? ]. The increased exposure could be
greater frequency or greater total time. In this context, participants may have been
more likely to consider an item relevant if they had clicked through on it previ-
ously. But we also know that participants clicked on a higher proportion of relevant
matches than irrelevant ones, which suggests a causal relationship in the opposite
direction. A clear explanation will require further study.

4.6 Discussion

We compare user behavior when searching for code on the Web with other kinds of
search.

4.6.1 Comparison with General Search

User behavior when searching for code on the Web shared a mix of characteristics
with user behavior in other kinds of search. A prior study by Jansen and Pooch [?
] summarized characteristics of user behavior when using Web search engines, tra-
ditional information retrieval systems, and online public access catalogs (OPAC).
An example of a traditional information retrieval system would be the INSPEC
database of scholarly articles in engineering, physics, and other fields. Historically,
these databases were available only in libraries and designed to be used primarily
by librarians. OPAC are more commonly known as online library catalogs and the
designed to be used primarily by patrons. We reproduce their table here and add our
data.
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Code search uses a similar number of queries in a session compared to Web
searches and OPAC searches, but fewer than traditional IR systems. Users conduct-
ing Web code searches use a larger number of terms in their queries compared to
Web search and OPAC search, but fewer than traditional IR search. We required the
subjects in our study to examine ten matches, so it is difficult to compare the number
of documents viewed per session.

Users conducting Web code searches are far more likely to use advanced fea-
tures in the search engine than in the other three kinds of searches. The percentage
of queries that use Boolean operators is similar to Web searches, but far more than
OPAC searches and far less than traditional IR searches. We were not able to mea-
sure failure rate in our study, so no comparison is possible.

Category Code search Web Traditional OPAC
in our study system IR systems systems

Session length 2.38 1 to 2 7 to 16 2 to 5
(number of queries per user per session)
Query length 4.19 2 6 to 9 1 to 2
(number of terms per query)
Relevant documents viewed 10 required  10 ⇡ 10 < 50
(number per session)
Use of advanced features 42% 9% 9% 8%
(proportion of queries)
Use of Boolean operators 8.7% 8% 37% 1%
(proportion of queries)
Failure rate N/A 10% 17% 7-19%
(proportion improperly formatted queries)

Table 4.11: Comparison of user behavior during search

4.6.2 Comparison with Log Analysis

Bajracharya and Lopes [? ] analyzed one year of log data from Koders, a commer-
cial code-specific search engine. Overall, we found the results from our respective
studies to be consistent, and in some cases virtually identical. They found that the
average number of terms per query was 1.31, which was fewer than our study where
subjects used an average of 4 terms. This difference may be due to how we counted
query terms. In the Koders log, the average number of queries per session was 2.62
and in our study, the same figure was nearly the same at 2.38 queries per session.
Bajracharya and Lopes found only 43% of search sessions included a download.
This figure is close to our overall P@10 of 0.35. Most sessions were short: 84%
were 3 minutes or less in duration and only 3.5% had durations of greater than 10
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minutes. In our study, subjects spent on average 6 minutes, but they were required
to judge the relevance of the first ten results. When conducting a search on the web,
it is more common to take the first good match and stop. The distribution of all these
variables followed an exponential curve, similar to the ones in our study.

4.6.3 Comparison of Searches for Reference Examples and
Components to be Used As-Is

The independent variable of Intention had a consistent effect on every dependent
variable. Searches for reference examples required more effort than searches for
components to be reused as-is, and yield a higher proportion of results. The breadth
of this effect suggests that there is an important difference between these two kinds
of searches.

The separation between reference examples and as-is reuse searches was previ-
ously identified in an online survey [32]. A similar separation can be seen in proto-
types search tools. As mentioned in Section 4.2, some tools were designed to search
for components, while others are intended to retrieve snippets. Components tend to
be reused as-is, or with a minimum of modification, adapting, or wrapping. Snip-
pets tend to be modified most extensively, or only consulted as an example, so that
a developer can make use of that knowledge.

We speculate that snippets for reference and components for reuse tap into differ-
ent ways of thinking about programming. Components are black boxes of technol-
ogy, assumed to work, with internals that are not necessarily understood. Snippets
are pieces of knowledge that needs to be understood well enough in order to be
reused. They are kind of how-to knowledge that is embedded in the context of an
example.

4.6.4 Implications for Design

A consistent trend in our study is developers expended more effort to search for
reference examples than for code to reuse, and were rewarded with more results that
were perceived to be relevant. These findings suggest that creating tools to help find
components to reuse as-is will be a challenge. Developers seem to be less willing
to expend effort, and there are additional constraints on the suitability of the search
results, for example, architectural match and compatibility of the software license.
However, we found it encouraging that subjects were willing to experiment with
query terms and features in the search engines.

Subjects using Google employed a higher average number of terms per query,
a higher average clickthrough rate, and more time overall. Again, this additional
effort was rewarded by a more matches that were perceived relevant. The success
of Google was likely due to the number and variety of pages that it indexes and
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participants’ familiarity with the search engine. Both aspects pose additional chal-
lenges for searching for code to reuse as-is, because they are difficult to overcome.
Repository size is a more tractable problem, because building a large corpus only
requires effort, albeit a significant one. In contrast, user comfort and familiarity with
Google is almost insurmountable. One possible solution is to make searching with
keywords more robust, by improving algorithms behind a simple search box. For
example, Exemplar uses information retrieval and static analysis techniques to im-
prove matching [11]. Another approach is to avoid querying entirely and build a
recommender system into the IDE for code to reuse, as was done by Code Conjurer
[17].

Taken together, these observations suggest that a “scaffolded” approach to Internet-
scale code search might be effective [? ]. The starting point could be a familiar and
comfortable text box, with the search results presented along with a variety of addi-
tional information to facilitate exploration. This approach is similar to the one used
in geographical searches, e.g. when looking for restaurants in a region using Google
Maps. Advanced features could be added to the results page to allow filtering by
a characteristic, viewing of additional details about a match, and further searching
within the results.

4.7 Conclusion

We conducted a study of user behavior during code search on the Web. In a lab-
oratory study, subjects were given a scenario and asked to find code to satisfy the
scenario using five different search engines. We measured the effect of the size of
the desired source code, the intention behind the scenario, and the search engine
used on the number of terms in a query, the number of queries in a session, the
clickthrough rate, relevance judgments, and duration of a search session. We found
statistically significant main effects and interaction effects and here we summarize
their effects on the user behavior.

• Query formulation, as indicated by number of terms in the query, was most sen-
sitive to the independent variables. This finding suggests that users would be
highly receptive to tool support for creating queries.

• Query revision, as indicated by the number and type of modifications, was af-
fected by manipulations on the scenario. This result suggests that specialized
search tools may be beneficial for specific kinds of searches, such as looking for
blocks of code to use as reference examples.

• Evaluation of matches returned was influenced by the search engines used. The
presentation of the matches clearly had an effect on how subjects performed their
evaluations.

• The duration, or time spent, on a search was also affected by all the independent
variables. This trend also indicates that certain kinds of searches require more
effort than others using existing tools.
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Our study represents initial work on this topic. Further study is needed to better
understand some of the effects that we found. For instance, we were skeptical of
one result, the effect of intention on query revision. We were surprised that more
queries were needed to find reference examples than code to reuse as-is. This may
be an artifact of our experiment design, but we do not yet have the data to give a
definitive answer. To our knowledge, there have been no observational field studies
of developers as they search for source code as part of their daily work. Such a study
would be a helpful complement to the experiment reported on here and would aid
in validating and expanding the results.
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Part II
From Data Structures to Infrastructure



The creation of ground-breaking search engines for code retrieval required ingenuity
in the adaptation of existing technology and in the creation of new algorithms and
data structures. This section provides glimpses into this process at the macroscopic
and the microscopic levels.

In Chapter 5, “Artifact Representation Techniques for Large-Scale Software
Search Engines,” Hummel, Atkinson, and Schumacher give a historical overview
of the data structures and representations behind the search engines. They start with
the relational databases in use at the turn of the century and include contemporary
experiments with XML databases and object-oriented databases.

A more personal history is given by Ken Krugler in Chapter 6, “Krugle Code
Search Architecture.” In this article, he traces the evolution of Krugle over seven
years, and includes lessons learned on web crawling, system architecture, and source
code analysis.

The final two chapters in this Part follows more recent innovations. In Chapter 7,
Almeida writes about his “Experiences and Lessons Learned with the Development
of a Source Code Search Engine.” As part of this process, he experimented with
alternative indexing and matching techniques, including facets and Folksonomy. Fi-
nally, Bajracharya considers the code retrieval engine as a starting point for a suite of
software development tools. He writes about this work in Chapter 8, “Infrastructure
for Building Code Search Applications for Developers.”



Chapter 5
Artifact Representation Techniques for
Large-Scale Software Search Engines

Oliver Hummel, Colin Atkinson and Marcus Schumacher

Abstract The first generation of software retrieval systems developed some 25 years
ago used simple bibliographic indexing techniques adapted from library science
to support the retrieval of relatively small numbers of in-house software artifacts.
While these were sufficient at the time, they were completely unscaleable to the vast
numbers of software artifacts available today. The second generation of software
search engines, representing the state-of-the-practice today, tackles this problem by
using full-text search frameworks such as Lucene to support text-based searches on
large software collections. However, these typically provide no inherent support for
sophisticated search use cases which exploit structure and “meaning” of software
artifacts. In this chapter we describe the core techniques used in current text-based
code search engines and advanced techniques that can be used to support sophis-
ticated forms of searches that exploit the structure of software. We then survey the
challenges and opportunities encountered in the development of the next (third) gen-
eration of software search engines based on new, currently emerging data storage
platforms.

5.1 Introduction

In the early years of software reuse research, the notion of “software retrieval" was
essentially confined to the problem of finding potentially reusable software arti-
facts from a relatively small library of self-written, in-house software components
[28, 27, 9, 36]. Since the number of components was so small (rarely reaching 3
figures), the efficiency of storage and retrieval technologies was of no great con-
cern and bibliographic indexing techniques adapted from library science were thus
considered sufficient. Even in the late 1990s, when software component collections
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had grown to a few hundred artifacts and several new software retrieval techniques
had been developed, as described by Mili et al. [29], relatively simple systems were
still able to deliver usable results. However, as Mili et al. predicted, the ever increas-
ing size of modern software repositories (particularly those generated by the open
source movement) quickly created the need for more powerful software retrieval
solutions with better efficiency.

At the turn of the millennium, software researchers were therefore faced with
the challenge of developing a new generation of software search engines that were
able to cope with the dramatically increased numbers of software components that
had become available. The most mature platform for handling such large quanti-
ties of data at the time was Relational Database Management Systems (RDBMS)
which had become (and still are) the dominant data storage technology for main-
stream software applications and information systems. RDBMS products offer a
mature technology supporting the efficient, reliable and scaleable storage of large
amounts of information of any type, including text. They also provide robust and
efficient mechanisms for managing concurrent updates and searches (transaction
management) over such data. However, traditional RDBMS products have a couple
of significant weaknesses when it comes to supporting search engine functional-
ity. First, they are optimized for structured SQL queries based on a relational table
model rather than for keyword-based searches on unstructured text. Second they do
not provide a relevance ranking for the elements in result sets. Since this second
feature is commonly seen as a central element of modern search engines [33] it is
obviously also a fundamental requirement for software search engines.

An alternative platform that became mature enough to use for this purpose around
the turn of the millennium are Full-Text Search Frameworks (FTSF). The most well
known example is the open source Lucene framework initially developed by Doug
Cutting, which became an Apache project in 2001 [16]. FTSFs such as Lucene
were developed to accelerate exactly the weak text search functionality of tradi-
tional RDBMSs. They specialize in creating indices from the textual elements of
documents (i.e. words) and are optimized for full text searches with relevance es-
timates and ranking for the members of result sets. Since all the data necessary to
support searches is stored in the indices, no other repository of information (such as
a normal database) is needed to drive a search engine. The second generation of soft-
ware search engines that started to emerge around 2005 (e.g. Koders [22], Krugle
[20], Sourcerer [44], Merobase [19]) was therefore predominately based on such
FTSFs, most notably Lucene, although some of them were supported by RDBMs as
well.

Using an FTSF alone to drive a search engine also has disadvantages, however.
First, pure full-text search engines provide no inherent support for structured queries
on the properties and relationships of the concepts indexed. Second, they provide
only rudimentary support for concurrent read and write access, based on simple
locking concepts. Thus, updating the index is an expensive, time consuming opera-
tion compared to relational databases. The first of these issues is particularly chal-
lenging and raised the key research question of whether it is possible to efficiently
support structured queries in a software search engine built on top of an FTFS.
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Given the growing importance of making information accessible and searchable
over the Internet in the last few years, the value of integrating the capabilities of
traditional RDBMSs and FTSFs into a single, off-the-shelf product has become ap-
parent for all types of data. Most vendors of modern RDBMS products therefore are
now working on integrating full-text searching capability into their products. This
provides the foundation for a new, “third" generation of code search engines built
on top of such hybrid (relational/indexed) databases and other advanced forms of
databases.

In the remainder of this chapter we describe the techniques used in the current
generation of software search engines to support sophisticated search use cases on
top of an FTSF. We begin in the next section by summarizing the different index-
ing techniques used in the first generation of code search engines and the various
categories of storage and retrieval techniques they developed. The following three
sections then describe the techniques used to represent software components in the
current (second) generation of software search engines. Section 3 describes how
FTSFs can form the underlying platform for these engines. Section 4 then goes on
to describe the basic software representation techniques used in FTSF-based soft-
ware search engines, while section 5 describes some advanced techniques that can
be used to support more sophisticated search use cases, such as interface (API) based
searches, on top of an FTSF index. Section 6 then discusses some of the issues faced
by the emerging third generation of software search engines based on more sophis-
ticated data storage platforms. The final section then concludes with a summary and
some final remarks.

5.2 First Generation Software Retrieval Concepts

Most work in the area of software retrieval before the turn of the millennium was
driven by the desire to support the reuse of existing software artifacts in the cre-
ation of new applications in order to avoid programming them from scratch. Since
the main goal of the software reuse research community at that time was to create
a library of reusable artifacts, most early publications in this area were influenced
by ideas from general library science. Frakes and Pole [10], for example, defined
the representation of software artifacts in a retrieval system as “a language used
to describe a set of objects [...] [that] allows operations that would be more diffi-
cult or impossible on the represented object itself." As an example they describe
bibliographic records of books that are easier to sort and maintain than the books
themselves. Indexing in this context is the process of creating the records, i.e. trans-
lating the actual objects into the logical model used to store the information. The
same basic approach is still used today in all kinds of search engines, whether it be
for books, websites or software artifacts.

Again, according to Frakes and Pole, library science has developed four basic
representation methods that can be used in the context of software retrieval as well,
namely âĂŞ
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1. controlled vocabularies that use a set of predefined keywords to describe an arti-
fact,

2. enumerated classification schemes that separate an area into mutually exclusive,
typically hierarchical classes to create a taxonomy,

3. free text indexing that uses the complete text in an artifact itself, or metadata
about the artifact, to create searchable records,

4. faceted classification schemes [36] that combine multiple facets describing an
artifact from different viewpoints usually ordered by descending generality.

Most modern (software) search engines rely on some kind of faceted classifi-
cation approach and store content and metadata about artifacts in various fields of
name/value pairs. These fields may contain data from controlled vocabularies, enu-
merated classification schemes or indexed free text and can usually be searched
independently from each other. Thus, facets can be used to constrain searches in
certain ways. For example, as well as allowing search terms to be concatenated with
Boolean operators, Google’s general web search engine contains a facet for the file-
type of the indexed document so that searches can be restricted to PDF files (by
adding filetype:pdf to a query), for instance. Most existing software search engines
(cf. to Hummel et al. [19] for a comprehensive overview) offer similar features in
order to limit keyword based searches to a given programming language or to a
specific portion of the code (such as class or operation names). While today’s large-
scale collections obviously require automated indexing based on special parsers,
early prototypes often required manual indexing of artifacts.

5.2.1 Retrieval Approaches

Although the relatively simple approaches adapted from bibliographic retrieval tech-
niques worked reasonably well on small collections of software artifacts, researchers
quickly recognized that the idiosyncrasies of software often stretched the precision
of searches to their limits since the structure and the “meaning" of software artifacts
were not taken into account. Various enhancements were therefore developed dur-
ing the 1990s as summarized in Mili et al.’s systematic survey [29] that identified
the following six main classes of software retrieval approaches:

1. Information retrieval methods
2. Descriptive methods
3. Denotational semantics methods
4. Operational semantics methods
5. Structural methods
6. Topological methods

Information retrieval and descriptive methods basically cover the text-based and
bibliographic retrieval approaches introduced before. While the former focus on
keyword matching “within" the artifacts, the latter usually rely on externally ob-
tained metadata (such as language, domain etc.) for retrieval. In general, Mili et
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al. characterize descriptive methods as a subset of information retrieval methods,
but since this family of approaches was so widely used at the time of their survey
they decided to list it as a separate category. Denotational semantics methods drive
the retrieval process based on signatures (see e.g. [49]) resp. formal specifications
[50] of the indexed assets. While signature matching is considered being useful in
practice, software retrieval based on formal specifications, suffers from a variety of
disadvantages. For instance, the specifications are difficult to create and evaluate
(e.g. due to the complexity of the associated decision problems) and cause a sig-
nificant creation and maintenance overhead. Operational semantics approaches use
exemplary input values (or so-called “samples” [34]) to execute syntactically match-
ing artifacts contained in a collection. Although they are quite expensive to execute
they have recently received a lot of attention in association with test-driven reuse
approaches (as described in another chapter of this book [11]). Structural methods
do not deal with the code of the assets directly but rather with internal program
patterns or designs. Since, the formulation of queries for approaches of this class is
not yet well understood, it remains an academic research area for the time being.
The common property of the topological methods, the sixth group listed by Mili et
al., is that they calculate some kind of “distance" between the query and the results.
Hence, today, they would be better classified as approaches supporting the ranking
of search results.

5.2.2 Limitations

Although this basic classification provided a good starting point, it quickly be-
came clear that modern software collections containing potentially millions of (open
source) artifacts quickly stretch these traditional methods to their limits. Not only
that a manual indexing is impossible with collections of this size, the precision of
the above approaches is simply not sufficient. Suppose, for example, that a text-
based software search engine is requested to find a reusable stack data structure.
Simply searching for the string stack within the indexed artifacts typically delivers
thousands of results that merely contain this string somewhere in their source code.
Thus, many of the delivered results will not actually be stacks but may merely use
a stack somewhere in their implementation. The same holds true for pure signa-
ture matching techniques that can also deliver thousands of results for sufficiently
generic signatures (more examples and some preliminary investigation results on
this can be found in a previous publication [19]).

In order to support more practical software search use cases (as e.g. listed by
Sim et al. [43] or more recently by Janjic et al. [25]), more precise and specialized
query possibilities are urgently required. In particular, more sophisticated types of
queries that allow the form of software artifacts to be taken into account are needed.
One of the most important examples is the ability to search for software artifacts
offering a specific provided interface (i.e. API). This need is reinforced by a recent
study by Hoffmann et al. [8] showing that the majority of queries related to Java
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in a mainstream search engine are for APIs. Other scenarios that purely text-based
search engines struggle to support include searches for API usage examples [45]
or for the set of artifacts impacted by envisaged changes to a piece of code in a
maintenance context [31].

5.3 Full-Text Search Frameworks

The advent of Lucene [16] at the turn of the millennium made a powerful and effi-
cient FTSF freely available as an open source product. Lucene not only offers a very
fast full-text search capability with relevance ranking, which is vital for all search
engines as understood today, but is supported by a suite of other helpful tools such
as the crawler Nutch or the index browsing tool Luke. On contemporary hardware,
the Lucene tool suite has become mature enough to be used out-of-the-box for im-
plementing large-scale search engines as underlined by the “powered by" section
[15] on the Lucene website currently listing about 150 search engines including
high profile websites such as Wikipedia, for example. The typical approach used to
create such an index with Lucene is sketched in Figure 5.1. Documents containing
text usually coming from the Internet (though other data sources such as local file-
servers are also possible) are crawled with the help of Nutch which forwards them
to an appropriate document parser based on their filetype (such as HTML, PDF
etc.). Once the pure text is extracted, it can be analyzed, tokenized and mapped in
a document that is stored in the actual index. Beyond the mere content, a document
may contain other fields for its title, its origin (i.e. URL), its headings etc. that allow
more targeted searches.

Fig. 5.1 Basic structure of a Lucene-based search engine implementation.

Technically, FTSFs such as Lucene usually index the terms (i.e. the tokens) found
in a set of documents in a so-called term-document-matrix, i.e. they store the number
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of occurrences of each term per document. A single document is thus represented as
a vector, the so-called term-document-vector, with one dimension per unique term
found over all documents. Searches for a keyword can then be easily carried out by
looking up the desired term (on all or just a limited set of fields) and delivering all
documents where the term appears. To optimize the search process, such an index is
actually stored either in a hashtable or as a B-Tree based data structure. Clearly, the
usage of Boolean operators (AND, OR, NOT) is also straightforward to implement
in this context.

Even a comparison of two documents is easy using mathematical tools such as
the so-called cosine measure. In its simplest form only Boolean values (i.e. zeros
or ones) are used to represent each term (resp. dimension in the vector) indicating
whether it is present in a given document or not. More sophisticated approaches
store the number of occurrences of each term per document (the so-called term
frequency) or even multiply this value with the inverse number of occurrences over
all documents (which is called inverse document frequency). This yields the so-
called TFIDF (term frequency inverse document frequency) that reduces the impact
of terms appearing all too frequently. Common information retrieval textbooks (such
as [3] or [16]) provide more details on these technical aspects.

5.4 Representing Software in an FTSF

Since they are optimized for text-based searches and include relevance ranking for
the members of results set, FTSFs such as Lucene intuitively provide a better foun-
dation for more efficient and scaleable software search engines than databases. Con-
sequently, around the middle of the previous decade a new generation of software
search engines based on Lucene begun to emerge. Some of the main examples in-
clude Krugle [16], Merobase [19], or Sourcerer [25]. Others such as Google Code
Search used similar full-text search approaches based on proprietary FTSF imple-
mentations. Although they are based on a much more powerful indexing and re-
trieval platform these search engines still essentially indexed software in the same
basic way as the first generation of search engines, treating software artifacts as nat-
ural language documents in the first place. In other words, they essentially treated
source code artifacts as “just another text document" and indexed them in the tra-
ditional way as shown in Figure 5.2 that is largely identical to Figure 5.1. Only
Merobase and Sourcerer are already providing advanced structural searches as dis-
cussed later.

Just as it is valuable to extract certain kinds of elements from textual documents
in general search engines as described before, it is also helpful to extract additional
information about the software artifact in order to store it in additional fields of
the document (e.g. methods or unit names, superclasses etc.). This can easily be
achieved by extending the basic Nutch crawler with programming language parsers
which can analyze source code syntax. The remainder of this section illustrates a
basic representation scheme used in an FTSF-based code search engines to index
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Fig. 5.2 Using Lucene to implement a software search engine.

software artifacts. It actually describes the Merobase [19] Lucene document struc-
ture, but other Lucence based implementations (such as Sourcerer [44] or Krugle
[20]) are very similar in this regard. In terms of the approaches described by Milli
et al., this corresponds to a faceted classification scheme: each field in the Lucene
document template describes a different facet of the software artifact as described
in Table 12.1. There, each field is described by its name, a brief description of its
content, how often it can appear per document (i.e. its multiplicity) and the actual
approach used to index it.

Table 5.1: Overview of commonly used fields in software search engines.

Field Description Multipl. Vocabulary

content source sode 1 free text

url the URL the artifact was retrieved from 1 free text

host the hostname contained in the URL 1 free text

name the artifact’s name 1 free text

lang programming language 1 controlled

form source or binary 1 controlled

requires URL’s of recognized dependencies 0..* free text

kind
if recognized, a special kind of artifact
such as applet, test case, EJB etc. 0..1 controlled

namespace the artifact’s namespace 0..1 enumerated

extends direct superclass of the artifact 1 enumerated

implements names of implemented interfaces 0..* free text

method the contained operation names 0..* free text
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license (open source) license 0..1 controlled

lictype classification according to copyleft 1 enumerated

author author(s) of the artifact 0..* free text

Since an artifact will usually require fields that have a multiplicity larger than 1
(for instance for storing the operation names of an artifact) it is useful that Lucene
allows several entries per document to be stored with the same field name. During
the indexing process the content of each of the above fields is tokenized. This means
that before it is actually indexed it is fed to Lucene’s standard analyzer that separates
it into a stream of searchable tokens (i.e. typically words). Since software developers
often concatenate words to create more expressive operation or variable names using
approaches such as the ”camel case”, enhancing the Lucene analyzer to reverse this
process may improve search quality (see Bajracharya et al. [25], for example).

In order to avoid maintaining an extra database with additional information about
the indexed artifacts that can be used for result presentation (as well as more ad-
vanced searches, as e.g. implemented in Sourcerer [44]), it makes sense to store a
number of additional fields that are not directly used in the search process. Exam-
ples include the date when a document was added, various source code metrics and
a unique hash value that allows a simple duplicate recognition. Furthermore, since
Lucene used to ”destroy” all formatting information (i.e. upper and lower casing),
free text fields that are of interest to the user need to be stored a second time in a
non-tokenized and non-searchable way for optimized result presentation. Although
this practice increases the index size considerably, the impact on search speed is
negligible. Fortunately, more recent versions of Lucene are even able to handle this
internally so that copying the fields is no longer necessary. With this relatively sim-
ple index structure, the full performance of Lucene’s query engine (as e.g. described
in [16]) including wildcards, range queries etc. is available on the tokenized fields
and can be used to support keyword based retrieval of software artifacts.

5.5 Advanced Representation Techniques

As mentioned above, Lucene allows values to be stored in different fields and thus
supports faceted retrieval approaches (as we discussed in section 12.4) out of the
box. This makes it possible to index the source code of software artifacts and to
enhance records with metadata such as the artifact’s language, project environment,
documentation, etc. The ranking of search results is also included so that the best
matching result is always delivered first. The drawback is, however, that Lucene’s
fields cannot be relationally connected as in a database, which makes it difficult to
search for operation signatures, for example. Queries such as “give me all artifacts
containing two methods add and sub receiving two int parameters and returning an
int” are thus not directly feasible. Using Boolean operators makes it actually pos-
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sible to concatenate fields from simple searches for individual operation interfaces
(as proposed for Sourcerer [25], for instance), but this is still too limited for precise
signature- and API-based searches. Consider the previous request as an example.
Even if there were additional fields for parameters and return types in the same style
as before, the maximum possible precision of a query of the form –

method:add AND method:sub AND param:int AND return:int

would retrieve all artifacts that have a method add, a method sub and any arbi-
trary method with at least one int parameter and one with int as return type. The
reason for this behavior is – as indicated before – that fields cannot be related to one
another in an FTSF. In other words, because no relational information is present in
the index, the search engine cannot work out whether the specified operation names
and the desired types belong to the same operation. Hence, no higher-level struc-
tural information related to the structure of software artifacts (e.g. class structure,
methods structure, parameter structure etc.) can be utilized for searching. Clearly,
such structural information would be directly available in an RDBMS system (as
e.g. additionally used in Sourcerer for this purpose, cf. [37] in this book), but for
search engines based on an FTSF index alone it is not automatically present.

Therefore, to support more sophisticated, structure-based queries it is necessary
to employ additional techniques that capture important code-related structure within
the facetted storage approach that underlies FTSF-based indices such as those pre-
sented before. Many superficially appealing techniques do not work in practice on
closer analysis, however. For example, why not directly store complete operation
interfaces (such as e.g. public int doSomethingUseful(int i, String s)) extracted from
a programming language parser in order to overcome the challenge just described?
Unfortunately, such a relatively simple implementation is not possible since tok-
enization during the indexing would tear the operation signature apart into individ-
ual tokens, which would make it impossible to subsequently distinguish between the
various elements again. The only apparent way to overcome this problem is by forc-
ing the FTSF to deliver only exact matches. However, even if the parameter names
were ignored through the help of wildcards, or not stored at all, the FTSF would
still deliver only those results with identical parameter order so that searches would
still be limited. Another approach that worked in theory was supported by Google
Code Search (which was closed down in early 2012 [24], however). This not only
supported simple wildcards, but full regular expressions that allowed users to spec-
ify appropriate searches. However, the resulting queries for that purpose were so
complicated that they were barely usable in practice (cf. [20]).

It is, nevertheless, possible to apply some relatively simple “tricks" to signifi-
cantly enhance the sophistication of the queries that can be supported on a FTSF-
based search engine. In the following we explain how we enhanced the current ver-
sion of the Merobase search engine in this way. The basic idea is to store operation
signatures in a “flattened" form (in database terminology this might be called a “de-
normalized" form) in non-tokenized fields in a way that ignores parameter orders,
i.e. that yields the same entry for a method no matter in what order the parameters
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appear (i.e. int, String or String, int). This is possible by sorting parameter types
alphabetically and by concatenating (“flattening") method names, parameter and re-
turn types into a single field as shown in the following example:

mn:doSomethingUseful_rt:int_pt:int_pt:String

In order to avoid confusing operation names with parameter types and visibility,
special separators are added to the field entry for the sake of human readability.
To enable searches with and without visibility modifiers, the above example can be
stored twice, once as shown and once with e.g. “vs:public” added to it to indicate
its visibility. It should be obvious that search requests have to be translated into
this format by an appropriate query parser before searches are executed in order to
increase usability. We discuss this issue in more detail in the next subsection.

Unfortunately, wildcard searches on these structures (e.g. ignoring the method
name) are not possible due to internal restrictions of Lucene. However, it is possible
to enable at least pure signature matching [49] for the operations by storing another,
largely identical field without the method name merely containing parameter and
return types. In the case of the above example, this would yield:

rt:int_pt:int_pt:String

Yet another problem can occur in this context when an identical signature is re-
quired more than once in one artifact since it is not directly possible to specify the
number of required occurrences. Again, it is possible to circumvent the problem,
this time by preceding each signature with a counter of the number of times it ap-
pears in the component, i.e.

1_rt:int_pt:int_pt:String
2_rt:int_pt:int_pt:String

When an incoming search request is “translated" appropriately, this makes it possi-
ble to search for classes that contain the required signature once as well as twice,
or any required number of times. As shown in Table 5.2, Merobase adds five more
fields to the previously described index template based on the concepts just de-
scribed.

Table 5.2: Additional index fields for structural searches.

Field Example

methodHeader mn:doSomething_rt:int_pt:int_pt:String

methodHeaderV mn:doSomething_rt:int_pt:int_pt:String_vs:public

methodSignature rt:int_pt:int_pt:String

constrHeader pt:int_pt:String



96 Oliver Hummel, Colin Atkinson and Marcus Schumacher

constrHeaderV pt:int_pt:String_vs:public

In addition to the three fields for method headers there are two special fields for
class constructors. Fortunately, we do not need to store the class name here as this is
unique for every stored entity and can thus be added as necessary via an AND query
on the name field.

5.5.1 Query Parsing

Although it might seem simple at first sight, finding a good approach to generically
formulate queries for software search engines is an interesting problem in its own
right since at least three different styles of query formulation need to be supported
- namely free text queries, signature-based queries and API-based queries. Once a
search infrastructure as described above is in place it is in principle possible to use
the field structure of the index to support searches on directly expressed queries.
In simple cases this might be satisfactory (as e.g. for name-based queries in the
commercial Koders search engine), however, for API-driven searches this would
require a deeper knowledge and understanding of the internal index structure and
hence is definitively an unintuitive approach.

In order to overcome this challenge, it makes sense to support a query formu-
lation and parsing approach that only uses concepts that are already familiar to
software developers (i.e. the user of a software search engine). To our knowledge,
Merobase is currently the only software search engine that supports such an ap-
proach directly by accepting code in supported programming languages as query
(the Eclipse plugin CodeGenie has a similar capability on the client side, though
[46]). Thus, all queries in Merobase are first fed to a modified Java/C# parser that
is able to recognize class and method interfaces such as the following API-based
search for a simple Matrix class:

public class Matrix {
public Matrix add(Matrix m) {}
public Matrix multiply(Matrix m) {}

}

This approach easily allows developers to search in their favorite programming lan-
guage and even makes the development of recommender tools that issue searches
directly from a development environment straightforward. However, since a query
interface should ideally be programming language independent and customizable,
Merobase also includes a small intuitive retrieval language that supports method
headers (such as random(float,float):float;) and class interface descriptions as pro-
gramming language independent input. It is based on the textual representation of
operations in UML class diagrams. The following snippet provides an example:
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Customer (
getAddress():String;
setAddress(String):void;

)

In contrast to ordinary programming languages, this language also supports ad-
ditional search constraints (such as lang:java) – or in other words issuing faceted
searches – and even special wildcards that finally make formulating pure signature-
based searches possible as well. In order to not interfere with Lucene, the dollar sign
can be used to replace all names in an interface, i.e. either Customer, getAddress or
setAddress in case of the above example, yielding $(String):void for the last method,
for instance.

5.5.2 Retrieval Heuristics

It is intuitively clear that the more complex an API-based query becomes, the less
components are likely to match it [34]. Thus, the number of retrieved results usually
drops quickly with the size of the desired API. A similar observation has been made
by Zaremski and Wing in the context of signature matching [49]. They therefore
propose so called “relaxed searches” that also allow imperfect matches in the result
set. The basic idea is to implement a signature-aware relevancy estimation approach
that boosts the relevancy of search results that are likely to better conform to the
users expectations (in Merobase currently focused on a reuse context). Consider
the “matrix” example used previously: Lucene’s standard ranking algorithm would
assign the highest relevancy to those artifacts that contain the term “matrix” most
often. An actual matrix implementation that perhaps contains the term just once in
its class definition will therefore usually receive a rather low relevancy in contrast
to artifacts using it multiple times. This can be overcome by attaching certain fields
(such as class or method names) to the query with extra weight (in Lucene termi-
nology the terms are “boosted”). In order to avoid “overlooking” the term in the
actual content when it does not appear in the name the fields are concatenated with
a Boolean OR as in the following simple example:

content:matrix OR name:matrixˆ2

Although the term “matrix” is searched for within the whole content of the index en-
tries, special attention is given to the name of the class since this is assigned double
importance. Hence a result file that is actually named Matrix will be automatically
ranked higher by Lucene than one that just contains the string “matrix” somewhere.
This approach can be easily extended with methods to –

content:matrix content:add content:multiply OR name:matrixˆ2
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OR method:multiply OR method:add

Similar approaches are possible to better support camelCased search terms (e.g.
addItem could be split into add OR item, more on this approach can also be found
in another chapter of this book [37]) or even signature and API based searches.

Since FTSFs such as Lucene not only support the boosting of search terms during
query time, but also the boosting of documents (i.e. artifacts) when they are indexed,
it should also be straightforward to implement the Component Rank approach de-
veloped by Inoue et al. [24] with an FTSF. A search engine based on this approach
would simply assign a higher boost value to those artifacts that are more often used
by other artifacts during the indexing process and the FTSF would deal with ranking
the search results during searches.

As for every information retrieval system, the use of synonyms still remains a
significant challenge for software retrieval, not only for text-based queries. Since
programmers might use different names describing identical concepts, it is cur-
rently not possible to recognize signatures that contain different object types (such
as CharSequence instead of String) even if they might be compatible. While it might
be possible to add additional entries based on a kind of “programming thesaurus”
for fairly standard cases such as the one just mentioned, already the “Matrix vs. Ma-
trixImpl" example demonstrates that this would significantly increase the index size
and require a thesaurus for artifact names and common programming terminology
that to our knowledge does not exist so far. As of today, however, a detailed inves-
tigation of the effects of each heuristic on result quality has yet to be carried out
[22].

5.6 Towards Third Generation Code Search Engines

The FTSFs-based technology described in the previous three sections successfully
met the challenge of scaling software search engines up to the vast numbers of open-
source software artifacts available over the Internet. Most online search engines
today index well over a million software artifacts. Table 5.3, for example, gives an
idea of the size of the Merobase index, which is one of the largest software search
engines currently available on the Web.

Table 5.3: Number of components services indexed in Merobase.

Programming
Language

No. of
Files Percentage

Java 8,011,883 79.57%
Source 3,927,475 49.02%
Binary 4,084,408 50.98%

C# 207,092 2.06%
C 1,399,455 13.90%
WSDL 3,228 0.03%
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.NET assemblies 447,801 4.45%
Total 10,069,459 100%

This also illustrates that the FTSF platform is versatile enough to support source
code in various common languages such as Java, C# and C as well as online web
services and binary code (not containing searchable source content, of course) as
well. Based on a (rather low end) contemporary Ubuntu Linux server with 4 cores
(2.6 GHz each), 300 GB disk space, 8 GB RAM, and Lucene 3.4.0, searches on
the above index (requiring slightly over 50 GB disk space with the index structure
explained before) are usually carried out in around 1.5 seconds in the case of a
single keyword and require up to around 3 to 5 seconds if more complex searches
for APIs are issued. Hence, the base FTSF technology should be easily capable of
handling even more artifacts by upgrading the underlying server or by distributing
it to a number of machines as soon as the index becomes too large to handle on
one. Lucene already provides basic support for distributed searches, and a more
sophisticated tool for that purpose is available in the form of Solr [16].

5.6.1 Limitations of FTSF-based Search Engines

As mentioned previously, the central weakness of the current generation of FTSF-
based search engines is their limited support for structured queries that exploit the
structure and semantics of software artifacts. Using the techniques described in the
previous section it is possible to support certain kinds of structured searches (i.e.
searches based on the structure of interfaces), but these have to be defined a-priori
and are thus fixed. It is not possible for users to define new kinds of structured
searches on-the-fly that were not foreseen when an index was created. Hence, an
ideal platform would combine the full-text search capabilities of an FTSF such as
Lucene with the arbitrary structured search capabilities of an RDBMS on a single,
unified data repository. This would allow users to perform full-text searches and
all imaginable, software-relevant structured searches on a single logical corpus of
software artifacts. Hence, it should allow keyword, signature and API matching to
be integrated as described in this chapter with other interesting applications such as
API recommendations [45] and maintenance-driven search approaches [31].

It is also likely that further advances in software search technology will increase
the demand from practitioners as well as researchers for such more advanced forms
of queries. A recent (but probably still not exhaustive) overview of software re-
trieval usage scenarios was presented by Janjic et al. [19]. This identifies a dozen
applications that might benefit from powerful software retrieval tools and illustrates
in which phases of the software development lifecycle these are likely to be used.
In the next subsection we hence discuss some of the emerging platforms that could
serve as the basis for such “third generation” software search engines.
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5.6.2 Ongoing Work

The most obvious approach for creating such a platform is to integrate a relational
database and full-text search index into a single logical product. Practically, all large
database vendors now offer full text search capabilities as part of their database
products, such as Oracle Text or MySQL Fulltext. However, performance still seems
to be an issue in this context since Linping and Lidong [29] have found in a recent
comparison of simple keyword searches in Lucene and Oracle Text that Lucene is
about an order of magnitude faster as long as the result set becomes not too large
(under roughly 1,500 results). Since it is likely that a combination with various join
operations required for API-based retrieval will slow down RDBM-based retrieval
even further it is clear that pure FSTF platforms using the techniques outlined above
will still be superior for some time. An interesting practical alternative is to run a
database alongside an FTSF index on the same corpus of artifacts (as e.g. already
done in the backend of Sourcerer [37]), with software to automatically keep the
latter up to date with the former. Hibernate Search [23] is a recently developed open
source framework that achieves this by making text search available on a domain
model stored in a database by the object-relational mapper Hibernate. This offers
the user the best of both worlds in terms of querying options, but at the expense of
supporting two stores of the search base, one in the RDBMs and the other in the
FTSF (i.e. Lucence).

The database part of such a hybrid system can be searched using standard SQL
queries, thus allowing arbitrary structured searches to take advantage of its relational
structure. For example, the new schema for the upcoming version of Merobase, built
using Hibernate Search, is shown in Figure 5.3 as a UML class diagram. A similar
scheme for the Sourcerer search engine is documented in another chapter of this
book [37]. The main advantage of Hibernate Search is that it automatically creates,
and synchronizes, a Lucene full-text search index from the content in the RDBMs.
The overall memory required is obviously greater, but the Lucene index itself is
much leaner than the original and the new version of Merobase therefore supports
all the FTFS capabilities of the original, but allows SQL queries to be applied to the
same search base. The transaction-safe updating capabilities of the RDBS also allow
the content of the search base being updated much more dynamically by multiple
concurrent crawlers and data mining engines.

Using a relational database it is also possible to support precise searches for com-
ponents with particular combinations of properties on-the fly, for example searching
for a specific version of a component that is used as a parameter in a method. Con-
sider the case of a developer who is faced with the task of learning to use a particular
framework. With an FTFS-based system it is only possible to filter for the version of
the actual search result, i.e. the file that illustrates how to use a framework. However,
searches may often deliver many unsuitable results using outdated tutorials or doc-
uments describing the use of old versions of the framework containing deprecated
methods, or old orchestrations of component that are no longer applicable (e.g. ini-
tialization). A software developer trying to discover how to use the latest version
of a framework would find it extremely helpful to be able to search for examples
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Fig. 5.3 Hibernate Search data model of the Merobase search engine.

using a specific version of a framework. The following SQL statement illustrates
this with the help of an example where a developer is looking for the QueryBuilder
of Hibernate Search version 4.0:

Hibernate :
SELECT c.name FROM MClass c

LEFT JOIN c.methods AS ms LEFT JOIN ms.parameters AS p
WHERE p.paramClass.project.jarVersion = ’4.0’
AND p.type = ’QueryBuilder’

With this search capability only those components using the required QueryBuilder
in version 4.0 are returned, and all the other “deprecated" results are filtered out.

To support even more flexible and powerful ad-hoc structure searches, the
database side of such a hybrid system should ideally store software artifacts at the
level of granularity of the abstract syntax of the programming language used to rep-
resent them. In other words, the search base ideally stores the abstract syntax tree
of each software artifact. However, efficiently storing trees in relational databases



102 Oliver Hummel, Colin Atkinson and Marcus Schumacher

(and in search engines) is a non-trivial problem. A recent trend in the database com-
munity that might become helpful in this context are so-called XML databases that
supporting tree structures due to the way XML is structured. Panchenko et al. [30]
have recently sketched how to use the MonetDB/XQuery system in order to store
the ASTs of software artifacts that can then be queried with the help of the XPath
query language and hence would allow defining all kinds of structured queries on
the fly. Such an approach is currently considered being especially useful for support-
ing maintenance activities by allowing queries such as “give me all files in project x
where the global variable y is used in an if statement”.

5.7 Conclusion

In this chapter we have presented an overview of the evolution of software search
and retrieval in the last 25 years with a special focus on the data representation ap-
proaches that have been developed to describe software artifacts with the help of
full-text search frameworks in the last five years. While the first generation of ap-
proaches was largely based on simple indexing ideas adapted from library science
and were thus rather limited, the current (second) generation has made internet-
scale software search engines a reality. Various systems based upon freely available
full-text search frameworks have recently demonstrated that software search engines
containing millions of artifacts are feasible today. With the help of special heuris-
tics (or additional databases) these are not only able to support simple text-based
searches, but also searches for signatures and APIs of software artifacts. Advanced
ranking approaches also support the retrieval of imperfectly matching search results.

Although a great variety of software search engines is available today, so far none
of them supports the complete state of the art in retrieval techniques (i.e. API-based
searches, usage relations, and advanced text-processing techniques from informa-
tion retrieval), so we are still waiting for the first engine that stretches pure FTSF-
based techniques to its limit. Furthermore, it is not yet clear to what degree the
various search techniques support existing (and upcoming) usage scenarios since
most approaches have not been systematically evaluated and comparisons of ap-
proaches have not been carried out so far due to the large effort involved in such an
undertaking. Thus, we also expect to see increasing efforts put into the systematic
investigation of the retrieval performance of various software retrieval approaches
in the near future.

Since one current trend in software retrieval seems to go into the direction of
better utilizing the structure of software artifacts for search, let it be for API-based
searches, API usage recommendations or maintenance-oriented applications, we ex-
pect to see a number of solutions optimized for these purposes in the future. Under
these prerequisites it is no surprise that various research groups are working towards
utilizing new hybrid data storage solutions that integrate the power of relational or
XML-based data representation and full-text search capabilities for software search.
Although it is not yet foreseeable, it is nevertheless likely that this third generation
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of software search engines will also facilitate new and exciting applications such
as code clone detection or automation of refactorings, for example, in the not too
distant future.
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Chapter 6
Krugle Code Search Architecture

Ken Krugler

Abstract Krugle was one of the earliest commercial portals for searching open
source software. This chapter reviews the history of Krugle from initial inception
to present day. It follows the the search engine from the initial public version to the
enterprise offering, with a particular focus on lessons learned from design decisions
on topics such as web crawling, indexing, system architecture, and deployment.

6.1 Introduction

Krugle is a search engine for searching in source code and related technical infor-
mation. There is a public site at Krugle.org, which has information on the top 3500
open source projects, including project descriptions, licenses, software configura-
tion management activity, and most importantly the source code— more than 400
million lines and growing.

There is also an enterprise version, which runs inside of company firewalls and
provides the same search functionality against internal code and technical informa-
tion.

In this chapter, I’ll be describing the Krugle architecture, how it evolved over
time, and the lessons we learned during that process.

6.2 Background

In 2004 I got actively involved in my first open source project, the ill-fated Chandler
PIM. It slowly dawned on me that there were literally billions of lines of open source
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code available, but no good way to find error messages, examples of API usage, or
even the source for an open source component being used.

At the same time, a friend at a startup mentioned to me that the most power
tool their developers had wasn’t a debugger, or an IDE, or a build system— it was
Google. This then led me to start thinking about how you’d create the ultimate pro-
grammer’s search tool, and (in a broader sense) what “search-driven development”
would look like.

In 2005 I started development of Krugle with a small team of friends. We got our
first round of venture capital funding in September, and unveiled the Krugle site at
the 2006 DEMO conference in February.

In 2006 we started work on the enterprise version of the product, which had a
very different architecture. This was released to beta customers in April 2007.

In 2008 we switched the public site from the original distributed architecture to
a version that uses a single large Krugle Enterprise appliance.

In 2011 the public site switched to the third version of our architecture, though
still running on a Krugle Enterprise appliance.

6.3 Initial Public Version

We collected three types of information— web pages, source code and project de-
scriptions. Each had its own collection, processing and searching infrastructure.

The web page and source code processing infrastructure was based on an early
version of Hadoop, running on a cluster of 14 slave servers and one master.

The project descriptions were extracted and processed on a single server, coordi-
nating with a MySQL database running on another server.

6.3.1 Web Page Crawling

We used Nutch to crawl technical web pages, collecting and extracting informa-
tion that would be of use to software developers. Examples of such “interesting”
pages included open source projects, programming tutorials, mailing lists, and bug
databases.

We modified Nutch to implement a “focused crawler.” The diagram below ex-
plains the fundamental steps in a focused crawl— the key point is that each “fetch
loop” only fetches a percentage of all known URLs, and the pages with the highest
estimated score are fetched first. This allows us to focus the crawler on areas of the
web that would prove most likely to contain quality pages.
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Fig. 6.1 Focused Crawl in Initial Public Version

URL State Database This database (often called a “CrawlDB”) maintains one
entry for each unique URL, along with status (e.g. “have we fetched this page
yet?”), the page score of fetched pages, and the link score. The actual approach
used for this database varies, depending on the scale of the crawl, the availability
of a scalable column-based DB or key/value store, etc.

Page Score Every fetched page is processed by a page scorer. This calculates a
numeric value for the page, where higher values correspond to pages that are of
greater interest, given the focus of the crawl. A page scorer can be anything from
a simple target term frequency calculation to a complex NLP (natural language
processing) analyzer.

Link Score Every URL has a score that represents the sum of page scores from
all pages that contain an outbound link that matches the URL. Page scores are
divided up across all outbound links, thus the increase in a URLÕs link score
from a page with many outbound links will be minimized.

Fetched Pages Database This is where all fetched pages are stored, using the
URL as the key. Typically this isnÕt a real database, but rather an optimized,
compressed read-only representation.

With terminology out of the way, we can discuss the steps in a focused crawl
workflow.
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1. The first step is to load the URL State database with an initial set of URLs. These
can be a broad set of top-level domains such as the 1.7 million web sites with the
highest US-based traffic, or the results from selective searches against another
index, or manually selected URLs that point to specific, high quality pages.

2. Once the URL State database has been loaded with some initial URLs, the first
loop in the focused crawl can begin. The first step in each loop is to extract all of
the unprocessed URLs, and sort them by their link score.

3. Next comes one of the two critical steps in the workflow. A decision is made
about how many of the top-scoring URLs to process in this loop. The fewer the
number, the ÒtighterÓ the focus of the crawl. There are many options for de-
ciding how many URLs to accept Ð for example, based on a fixed minimum
score, a fixed percentage of all URLs, or a maximum count. More sophisticated
approaches include picking a cutoff score that represents the transition point (el-
bow) in a power curve.

4. Once the set of accepted URLs has been created, the standard fetch process be-
gins. This includes all of the usual steps required for polite and efficient fetching,
such as robots.txt processing. Pages that are successfully fetched can then be
parsed.

5. Typically fetched pages are also saved into the Fetched Pages database.
6. Now comes the second of the two critical steps. The parsed page content is

given to the page scorer, which returns a value representing how closely the page
matches the focus of the crawl. Typically this is a value from 0.0 to 1.0, with
higher scores being better.

7. Once the page has been scored, each outlink found in the parse is extracted.
8. The score for the page is divided among all of the outlinks.
9. Finally, the URL State database is updated with the results of fetch attempts

(succeeded, failed), all newly discovered URLs are added, and any existing URLs
get their link score increased by all matching outlinks that were extracted during
this loop.

At this point the focused crawl can terminate, if sufficient pages of high enough
quality (score) have been found, or the next loop can begin.

In this manner the crawl proceeds in a depth-first manner, focusing on areas of
the web graph where the most high scoring pages are found.

In the end we wound up with about 50 million pages, and a “crawlDB” that
contained around 250 million URLs, of which about half were scored high enough
such that we would eventually want to crawl them.

6.3.2 Web Page Processing

Once we had fetched a web page (or document, such as a PDF) then weÕd parse it,
to extract the title and text. Again, we leveraged the support that was already there
in Nutch.
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We also extracted information about source code repositories during the crawl,
which allowed us to build a large list of CVS and SVN repositories for the source
code crawler.

6.3.3 Web Page Searching

Finally, we used NutchÕs search support (built on top of Lucene) to support search-
ing these web pages. The actual indexes were stored on multiple page searchers,
since (at that time) a typical 4 core box with 8GB of ram could comfortably handled
10-20M pages, and our index was bigger than that. Nutch provided the support to
distribute a search request to multiple searchers, each with a slice (“shard”) of the
index, then combine the results.

6.3.4 Source Code Crawling

The source code crawler was also based on Nutch. We added “protocol handlers”
for CVS and SVN, which let us leverage the distributed fetching and parsing support
that was built into Nutch.

The “crawlDB” for the source code crawler contained HTTP-based URLs to
SVN and CVS repositories. We manually entered many of these URLs that were
found via manual searching, but we also included URLs that were discovered dur-
ing the web page crawl as described previously. Finally, the project processing code
(see below) also provided us with repository information.

One of the challenges we ran into was deciding whether to only get the trunk of
projectÕs code, or some number of the tags and branches as well. Initially we just
went after the trunk, but eventually we settled on logic that would fetch the trunk,
plus the Òmost interestingÓ tags, which we defined as being the latest point release
for each major and minor version. Thus weÕd go for the 1.0.4, 2.0 and 2.1.3 tags,
but not 1.0.1, 1.0.2, 1.0.3, 2.1.0, etc.

We also found out quickly that we needed to be careful about monitoring and
constraining the load that we put on CVS and SVN repositories. Due to a bug in
the code, we accidentally wound up trying to download the complete Apache.org
SVN repository— the trunk and all branches and tags from every project. This was
crushing their infrastructure, and the ops team at Apache wisely blocked our crawler
IP addresses, to prevent melt down. After some groveling and negotiations, plus
more unit tests, we were unblocked and could resume the crawl at a more reasonable
rate.

For some of the larger repositories, we looked into mirroring them, and eventu-
ally did set up an rsync of several. Unfortunately we were never able to negotiate
a mirroring agreement with SourceForge, which was the biggest single repository
that we needed to crawl. And the total number of unique repositories (more 100)
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made it impractical to negotiate that many data sharing deals, especially since many
of these repositories only consisted of a few projects.

The situation in 2012 would be better suited to specific data mirroring agreements
with a few repositories, given the larger number of code hosting sites that have
significant number of projects (e.g. Google Code, GitHub). Note, though, that we
would still need to crawl project descriptions independent of the code, as very few
hosting sites or projects have adopted the use of standardized project metadata such
as DOAP (description of a project) or fully specified Maven pom.xml files.

In the end, we wound up crawling over 130,000 projects found on more than 100
sites.

6.3.5 Source Code Processing

The meat of our system was the parsing infrastructure that we built, using ANTLR
3.0 grammars. We developed over 30 grammars, which we use to turn source code
into something internally we refer to as a “use-def tree.”

As an example of what ANTLR grammar looks like, hereÕs a snippet from the
python.g file:

classdef
scope EnclosingScope;

: ’class’ (NAME->class(name={$NAME.text},
begin={start($NAME)},
end={stop($NAME)}))

{ $EnclosingScope::st = $classdef.st; }
(LPAREN testlist RPAREN)? COLON
{ $st.setAttribute("comments", comments()); }
suite
// catch comment in classes without func defs
{$st.setAttribute("containedComments", comments());}

;

This tree, which we saved as XML, essentially tagged text in the source file as
being comments, code, or whitespace. In addition the code sections would be further
tagged as class definitions, function definitions, and function calls.

An example of the resulting XML for a Java file looks like:

<krugleparse version="0.3">
<uri>test/EndianUtils.udt</uri>
<language>Java</language>
<udt>
<c b="0" e="803"><![CDATA[/* * Licensed to É */]]></c>
<pkg n="org.apache.commons.io" b="813" e="833">

<im n="java.io.EOFException" b="844" e="863"/>
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<im n="java.io.IOException" b="873" e="891"/>
<im n="java.io.InputStream" b="901" e="919"/>
<c b="952" e="1636"><![CDATA[/** * Utility code É */]]></c>
<im n="java.io.OutputStream" b="929" e="948"/>
<cd n="EndianUtils" b="1651" e="1661">

<c b="1670" e="1748"><![CDATA[/* Instances should ...*/]]></c>
<fd n="swapShort" b="2038" e="2046">
</fd>

In order to pick the right parser, we had a preliminary analysis step that used the
file name and regex patterns to determine the programming language.

We also ran additional tools over the code, including one that calculated ac-
tual lines of code, and another that extracted open source license information from
source file comments and non-code text files. These results were then fed back into
the project processing phase (see below) to add additional metadata to each project.

As part of a “virtuous cycle,” we also found URLs in comments, and added these
to the crawlDB. This in turn helped us find pages with references to additional code
repositories, which we could then crawl and parse— and the cycle repeats.

Finally, we processed the parse trees to create Lucene documents. Each XML
document for one source file would become one Lucene document, with many of
the fields (e.g. “function call”) being multi-valued, since one XML file could have
many separate sections for each type of entity identified in the source.

We stored the actual source code separately, in regular files. One of our chal-
lenges became the management of large amounts of data— we were using custom-
built filers (servers with lots of drives) to store many terabytes of source code, and
keeping everything in sync, up to date, backed up, and available for processing was
one of the major daily headaches. At this time Hadoop was not yet mature enough
for us to trust it with our data— in fact we lost all of our crawl data once due to a
bug in one of the first releases.

In the end we wound up with 2.6 billion lines of real source code in about 75
million source files.

6.3.6 Source Code Searching

Finally, we again used NutchÕs search support to handle searching the source code.
A search request would be distributed to multiple code searchers, each with a slice
of the total index. Nutch would then handle combining the results.

We did wind up having to add a few enhancements to the search process, specifi-
cally enabling time limits on queries. The problem was that certain complex queries
could take up to minutes to get results, and during this time they would cause all
other queries to “stack up,” leading to poor search performance for all users. Our
solution was to enable early search termination at a low level (in Lucene), where af-
ter a specified amount of time the search would terminate even if it hadnÕt reached
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the end of the index. This would then return potentially different results, if the set
of documents found prior to termination didnÕt include all of the top results that
would normally be returned, but we felt this was an acceptable tradeoff.

Source code searching required a special query parser, to support custom tok-
enization and other tweaks that we did to improve code searching. This query pars-
ing was handled by the master search server, before queries were sent out to the four
search slaves.

6.3.7 Project Crawling

Initially we were only “crawling” projects (scraping pages) to find the repository
information needed for our source code crawler. In early 2006, however, we realized
that rich project metadata was critical to providing context for source code search
results.

This changed the nature of our project crawling support, as it was no longer
sufficient to use a page to extra repository data— instead, we needed to create a web
mining system that could determine things like the project license.

The project crawl was all about discovering the URLs to project home pages.
This typically involved custom Python code to do a very specific “discovery crawl”
on an open source hoster site, e.g. Java.net. We also used data dumps from Source-
Forge.net and a few other sites that provided project listings in a format where we
could then easily construct project home page URLs.

6.3.8 Project Processing

Once the discovery crawl had found a number of project home page URLs, we
would web mine those pages to extract the project name, license, and other useful
metadata.

Each open source hosting site had its own HTML page format, which meant
writing detail extractors (again, in Python) for each hoster. As you might imagine
this wasnÕt the most interesting thing to be working on, but it was critical for us
to have structured data about projects to help augment code search results, as other-
wise it was very challenging for end-users to understand and evaluate code search
results. Providing project details added context that significantly improved the user
experience.

The results of this web mining would be saved to a MySQL database, where our
librarian could review and correct any obvious errors. With over 130,000 projects it
wasnÕt possible to review each one, so we ranked projects by their size and level of
activity.
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Packaging up the results included getting statistics out of the source code project
(see the source code processing section), determining the location of the source on
the code filer, and building a searchable index.

6.3.9 Project Searching

By the time we added support for projects as separate entities in the system, CNet
had open-sourced their enterprise search application (“Solr”). Solr provided a nice
layer on top of Lucene, which simplified the work we had to do to add project-
centric search support.

We created a Solr index schema that had the following fields, among others:

Table 6.1: Excerpt from Solr Index Schema for Projects

6.4 Public Site Architecture

The above describes a mixture of ad hoc back end systems, and the components
used to provide search services. The actual architecture used to handle both end
user (browser-based) queries and partner/enterprise API requests is a combination
of a few additional systems.
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6.4.1 Load Balancer

At the very top of the stack we had a load balancer, coupled with a firewall. All
requests, either from end users (browsers) or via the Krugle API would go through
a firewall and then to a load balancer, which would distribute the request to one of
four servers sitting in the web tier.

6.4.2 Web Tier

The four web tier servers all ran identical versions of Perl code that acted as an
intermediary between the lower-level Krugle API (implemented in Java, uses XML)
and higher-level requests coming from web pages, partners, and external Krugle
Enterprise boxes.
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This Perl layer gave us extra flexibility, which meant we could quickly fix prob-
lems in the lower-level API and add additional functionality without having to re-
build and redeploy the search infrastructure sitting below the web tier.

In retrospect I think we should have spent more time making sure the Krugle API
was correct and complete, versus back-filling and patching via Perl code in the web
tier. We didnÕt have a good way to test the web tier layer, versus the many unit tests
we implemented against the Krugle API.

6.4.3 Master Searcher

The single main searcher used a bigger hardware configuration, with more memory.
The master searcher was responsible for the Krugle API, which was used by every-
body (web tier, partners, and Krugle enterprise systems) to interact with the search
indexes and data maintained by the public site.

The main searcher also ran the Solr search server responsible for project search
requests.

6.4.4 Page Searchers

We had four servers, each with one large/slow disk to store the web page content,
and a second faster disk to store to the search index. These four “slave” searchers
provided distributed search across the index, and a separate front-end process run-
ning on a master search server then combined the results.

6.4.5 Code Searchers

Similar to web pages, we had four servers, though each of these had two fast disks to
store to the search index. The actual code files were stored on a separate file server
called the code filer.

6.4.6 Code Filer

All of the actual code files were stored on a separate “code filer”, which was a big
server stuffed with drives that were RAIDed together.

These files were fronted by the Lighttpd web server, which was configured to
require a time-limited token for authorized access.
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6.4.7 Live versus Stand-by versus Dev Systems

The actual infrastructure was even more complex than what has been described
above. The code searchers, page searchers, master searcher and code filer all com-
prised a snapshot of the state of the system, for both code and data. As such, we
had three copies of these— one in production, one on standby, and one being provi-
sioned as the next “live” system.

6.4.8 Release Process

Whenever our “dev” system was sufficiently tested, we would do a “flip.” This con-
sisted of switching the VIPs (virtual IP addresses) for the master server and code
filer to the new system, which would then cause the web tier to start using the
new code and data. The previously live system would become the backup, which
we could easily flip back to if the new live system had serious problems. And the
previous backup system would become the new dev system, which we would start
provisioning as the next live system.

This continuous rotation of systems worked well, but at the cost of lots of extra
hardware. We also spent a lot of time pushing data around, as provisioning a new
server meant copying many terabytes of data to the searchers and the filer from our
back-end systems.

6.4.9 Post Mortem

The public search system worked, but required a lot of manual labor to build and
deploy updates to the data, and had a lot of moving pieces. This complexity resulted
in a lot of time spent keeping the system alive and happy, versus improving and
extended the search functionality.

In retrospect it would have made more sense to first focus on the Krugle En-
terprise system, and handle the public site via setting up multiple instances of these
servers, each with a slice of the total projects. Then the delta between a stock Krugle
Enterprise system and the public site would have been a top-level “master” that han-
dles distributing search requests and combining the results.

We would still have needed a back-end system to handle crawling web pages and
handling search requests, but thatÕs a much more isolated problem, and one with
better existing support from Nutch.
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6.5 Krugle Enterprise

The architecture described above worked well for handling billions of lines of code,
but it wasn’t suitable for a stand-alone enterprise product that could run reliably
without daily care and feeding. In addition, we didn’t have the commit comment
data from the SCM systems that hosted the project source code, which was a highly
valuable source of information for both searches and analytics.

So we created a workflow system (internally called “the Hub”) that handled the
crawling and processing of data, and converted the original multi-server search sys-
tem into a single-server solution (“the API”).

The enterprise version doesn’t support crawling web pages, and it relies on users
manually defining projects— specifying the repository type and location, the de-
scription of the project, etc. This information is still stored in a MySQL database.

6.5.1 SCM Comments

We added support for fetching, parsing and searching SCM comments that we re-
trieved from SCM systems. These comments were stored in the same Solr search
server used for project search, but in a different Solr “core.”

We created a Solr index schema that had the following fields, among others:

Table 6.2: Excerpt from Solr Index Schema for SCM Data
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6.5.2 SCMI Architecture

Early on we realized that it would be impossible to install and run all of the many
different types of source code management system (SCM) clients on the enterprise
server. For example, a ClearCase SCM requires a matching client, which in turn has
to be custom installed.

Our solution was to define a standard protocol between the Hub and “helper” ap-
plications that could run on other servers. This SCM interface (SCMI) let us quickly
build connectors to many different SCM systems, including ClearCase, Perforce,
StarTeam, and git, as well as non-SCM sources of information such as Jira and
Bugzilla.

6.5.3 Performance

For an enterprise search appliance, a basic issue is how to do two things well at the
same time— updating a live index, and handling search requests. Both tasks can
require extensive CPU, disk and memory resources, so it’s easy to wind up with
resource contention issues that kill your performance.

We made three decisions that helped us avoid the above. First, we pushed a signif-
icant amount of work “off the box” by putting a lot of the heavy lifting work into the
hands of small clients called Source Code Management Interfaces (SCMIs). These
run on external customer servers instead of on our appliance, and act as collectors for
information about projects, SCM comments, source code and other development-
oriented information. The information is then partially digested before being sent
back to the appliance via a typical HTTP RESTful protocol.

Second, we use separate JVMs for the data processing/indexing tasks versus the
searching/browsing tasks. This let us better control memory usage, at the cost of
some wasted memory. The Hub data processing JVM receives data from the SCMI
clients, manages the workflow for parsing/indexing/analyzing the results, and builds
a new “snapshot.” This snapshot is a combination of multiple Lucene indexes, plus
all of the content and other analysis results. When a new snapshot is ready, a “flip”
request is sent to the API JVM that handles the search side of things, and this new
snapshot is gracefully swapped in.

On a typical appliance, we have two 32-bit JVMs running, each with 1.5GB of
memory. One other advantage to this approach is that we can shut down and restart
each JVM separately, which makes it easier to do live upgrades and debug problems.

Finally, we tune the disks being used to avoid seek contention. There are two
drives devoted to snapshots, while one is serving up the current snapshot, the other
is being used to build the new snapshot. The Hub also uses two other drives for raw
data and processed data, again to allow multiple tasks to run in a multi-threaded
manner without running into disk thrashing.

The end result is an architecture that looks like this:
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Fig. 6.3 Architecture of Krugle Enterprise

6.5.4 Parsing Source Code

During early beta testing, we learned a lot about how developers search in code,
with two in particular being important. First, we needed to support semi-structured
searches, for example where the user wants to limit the search to only find hits in
class definition names.

In order to support this, we had to be able to parse the source code. But “parsing
the source code” is a rather vague description. There are lots of compilers out there
that obviously parse source code, but full compilation means that you need to know
about include paths (or classpaths), compiler-specific switches, the settings for the
macro preprocessor in C/C++, etc. The end result is that you effectively need to be
able to build the project in order to parse it, and that in turn means you wind up
with a system that requires constant care and feeding to keep it running. Often that
doesn’t happen, so the end result is shelfware.

Early on we made a key decision, that we had to be able to process files indi-
vidually, without knowledge of build settings, compiler versions, etc. We also had
to handle a wide range of languages. This in turn meant that the type of parsing we
could do was constrained by what features we could extract from a very fuzzy parse.
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We couldn’t build a symbol table, for example, as that would require processing all
of the includes/imports.

Depending on the language, the level of single-file parsing varies widely. Python,
Java and C# are examples of languages where you can generate a good parse tree,
while C/C++ are at the other end of the spectrum. Languages such as C/C++ that
supports macros and conditional compilation are especially challenging. Dynamic
languages like Ruby and Perl create their own unique problems, as the meaning of
a term (is it a variable or a function) sometimes isn’t determined until run-time.

So what we wind up with a best guess, where we’re right most of the time but
we’ll occasionally get it wrong.

We use ANTLR to handle most of our parsing needs. Terr Parr, the author of
ANTLR, added some memoization support to version 3.0, which allowed us to use
fairly flexible lexer rules without paying a huge performance penalty for frequent
back-tracking.

6.5.5 Substring Searching

The second important thing we learned from our beta testing was that we had to sup-
port some form of substring searching. For example, when a user searches on “ldap”
she expects to find documents containing terms like “getLDAPConfig” , “ldapTime-
out” , and “find_details_with_ldap” .

We could treat every search term as if it had implicit wildcards, like “*ldap*” ,
but that is both noisy and slow. The noise (false positive hits) comes from treating
all contiguous runs of characters as potential matches, so a search for “heap” finds
a term like “theAPI” .

The performance hit comes from having to: a) first enumerate all terms in the
index to find any that contain <term> as a substring, and then b) use the resulting set
of matching terms in a (potentially very large) OR query. BooleanQuery allows a
maximum of 1024 clauses by default— searching on the Lucene mailing list shows
many people have encountered this limit while trying to support wildcard queries.

There are a number of approaches to solving the wildcard search problem, some
of which are covered in the book. For example, you can take every term and index
it using all possible suffix substrings of the text. For example, “myLDAP” gets in-
dexed as “myl”, “yld”, “lda”, and so on. This then lets you turn a search for “*ldap*”
into “ldap*”, which cuts down on the term enumeration time by being able to do a
binary search for terms starting with “ldap”, versus enumerating all terms. You still
can wind up with a very large number of clauses in the resulting OR query, however.
And the index gets significantly larger, due to term expansion.

Another approach is to convert each term into n-grams, for example, using 3-
grams the term “myLDAP” would become “myl”, “yld”, “lda”, “dap”, and so on.
Then a search for “ldap” becomes a search for “lda dap” in 3-grams, which would
match. This works as long as N (e.g. 3, in this example) is greater than or equal to
the minimum length of any substring you’d want to find. It also significantly grows
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the size of the index, and for long terms results in a large number of corresponding
n-grams.

Another approach is to pre-process the index, creating a secondary index that
maps from each distinct substring to the set of all full terms that contain the sub-
string. During a query, the first step is to use this secondary index to quickly find
all possible terms that contain the query term as a substring, then use that list to
generate the set of sub-clauses for an OR query, similar to above. This gives you
acceptable query-time speed, at the cost of additional time during index generation.
And you’re still faced with potentially exceeding the max sub-clause limit.

We chose a fourth approach, based on the ways identifiers naturally decompose
into substrings. We observed that arbitrary substring searches were not as important
as searches for whole sub-words. For example, users expect a search for "ldap" to
find documents containing “getLDAPConfig”, but it would be very unusual for the
user to search for “apcon” with the same expectation.

To support this, we implemented a token filter that recognizes compound identi-
fiers and splits them up into sub-words, a process vaguely similar to stemming. The
filter looks for identifiers that follow common conventions like camelCase, or con-
taining numbers or underscores. Some programming languages allow other char-
acters in identifiers, or indeed, any character; we stuck with letters, numbers, and
underscores as the most common baseline. Other characters are treated as punctu-
ation, so identifiers containing them are still split at those points. The difference is
that the next step, sub-range enumeration, will not cross the punctuation boundary.

When we encounter a suitable compound identifier, we examine it to locate the
offsets of sub-word boundaries. For example, “getLDAPConfig” appears to be com-
posed of the words "get", “LDAP”, and “Config”, so the boundary offsets are at 0,
3, 7, and 13. Then we produce a term for each pair of offsets (i,j) such that i <j.
All terms with a common start offset share a common Lucene index position value;
each new start offset gets a position increment of one.

6.5.6 Query versus Search

One of the challenges we ran into was the fundamentally different perception of
results. In pure search, the user doesn’t know the full set of results, and is searching
for the most relevant matches. For example, when a user does a search for “lucene”
using Google, they are looking for useful pages, but they have little to no idea about
the exact set of matching pages.

In what I’m calling a query-style search request the user has more knowledge
about the result set, and expects to see all hits. They might not look at each hit,
but if a hit is missing then this is viewed as a bug. For example, when one of our
users searches for all callers of a particular function call in their company’s source
code, they typically don’t know about every single source file where that API is used
(otherwise they wouldn’t need us), but they certainly do know of many files which
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should be part of the result set. And if that “well known hit” is missing, then we’ve
got big problems.

So where did we run into this situation? When files are very large, the default
setting for Nutch was to only process the first 10K terms. This in general is OK for
web pages, but completely fails the query test when dealing with source code. Hell
hath no fury like a developer who doesn’t find a large file they know should be a hit,
because the search term only exists near the end.

Another example is where we miss-classified a file, for example, if file xxx.h was
a C++ header versus a C header. When the user filters search results by programming
language, this can exclude files that they know of and are expecting to see in the
result set.

There wasn’t a silver bullet for this problem, but we did manage to catch a lot
of problems once we figured out ways to feed our data back on itself. For example,
we’d take a large, random selection of source files from the http://www.krugle.org
site, and generate a list of all possible multi-line (“code snippet”) searches in a
variety of sizes (e.g. 1 to 10 lines). We’d then verify that for every one of these code
snippets, we got a hit in the original source document.

6.5.7 Post Mortem

The Krugle enterprise search system is in active use today at a mixture of Fortune
100 and mid-size technology companies. The major benefits seen by customers are:
a) increased code re-use, primarily at the project level; and b) a decrease in time
spent fixing the same piece of code that exists in multiple projects.

A major challenge has been to provide potential customers with a way to quantify
potential benefits. There’s a general perception that search is important, e.g. it’s easy
to agree with statements like “If you can’t find it, you can’t fix it.” It’s difficult,
though, to determine how much time and money such a system would save, and
thus whether investing in a Krugle system is justified.

One additional and unexpected hurdle has been integration of Krugle systems
into existing infrastructure, primarily for authentication and authorization. Many
large enterprise customers are very sensitive about who can access source code,
and even between groups in the same company a lack of trust means that provid-
ing enterprise-wide access control that all parties accept often leads to protracted
engagements with significant profession services overhead.

Acknowledgements Portions of this chapter were adapted from a case study written by the author
that was previously published in the book “Lucene In Action, 2nd Edition” by Michael McCand-
less, Erik Hatcher, and Otis Gospodnetić.



Chapter 7
Experiences and Lessons Learned with the
Development of a Source Code Search Engine

Eduardo Santana de Almeida

Abstract Search and retrieval tools are an important mechanism to achieve software
reuse. In this chapter, I present the experience at the RiSE Labs developing a search
engine based on different techniques such as keywords, facets, Folksonomy and so
on. Moreover, the lessons learned and some insights are also discussed.

7.1 Introduction

Software reuse, the process of using existing software artifacts rather than building
them from scratch [13], is generally regarded as the most important mechanism for
more efficient software development. This belief has been systematically enforced
by empirical studies that have, over the years, demonstrated the reuse effects on
software development in terms of quality, time-to-market and costs [2, 8, 14, 17, 25].

This reuse vision started to be idealized in the end of 1968, when [21], moti-
vated by the software crisis, wrote a seminal paper on software reuse entitled “Mass
Produced Software Components". Since then, many discussions took place, involv-
ing issues such as the possibility of a software industrial revolution [4], in which
programmers would stop coding everything from scratch and begin assembling ap-
plications from well stocked catalogs of reusable software components [23]. Nev-
ertheless, in the achievement of such benefits, the adoption of a systematic reuse
program is essential. Such program must include investments in different directions,
both technical and non technical. Among the possibilities, many organizations in-
vest in tools to promote the reuse activity, such as source code search engines [26].
Such tools allow software developers to efficiently search, retrieve and reuse source
code from many different repositories, avoiding the writing of brand new code ev-
ery time, because a similar solution could have been implemented by somebody else
[24].
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The reuse literature presents [10, 15, 22] several approaches and tools related
to source code search and retrieval, including a wide variety of mechanisms and
techniques, from keywords and facets to context awareness. In this chapter, I present
the experience at RiSE (Reuse in Software Engineering) Labs1 along the years,
with the B.A.R.T. (Basic Asset Retrieval Tool) project, whose main goal was the
development of a search engine for software code.

The remainder of this chapter is organized as follows. Section 12.2 presents the
B.A.R.T project and its different versions. Section 12.3 discusses the lessons learned
and some insight thoughts in the area. Finally, Section 12.4 concludes this chapter.

7.2 The B.A.R.T project

The B.A.R.T project, formerly called Maracatu [12], was created based on the fol-
lowing motivation: in order to start the formation of a reuse culture in organizations
and obtain its initial benefits, first it is necessary to provide subsidies and tools for
the reuse of source code that is already available in the organization itself, from
previous projects, or from repositories available on the Internet.

Based on an extensive literature review [15] and our industrial experience at Re-
cife Center for Advanced Studies and Systems (C.E.S.A.R), we defined the set of
requirements for B.A.R.T’s first version [12]. The main design decision was that a
source code search engine should consider the evolving and dynamic environment
that surrounds many development organizations. Differently from black-box reuse,
where there is usually more time to encapsulate the components and provide well-
structured documentation that facilitates searching, in many development reposito-
ries documentation is usually minimal, and mostly not structured. Figure 7.1 shows
the version using the Folksonomy mechanism (Section 2.2).

In this sense, a search engine should support two basic processes: i) to locate
all reusable software artifacts that are stored in project repositories and maintain an
index of them. The indexing process should be automatic, and should consider non-
structured (free text) documentation; and ii) to allow the user to search and retrieve
these artifacts, taking advantage of the index created in process i).

Since in this scenario the artifacts are constantly changing, the first process must
be automatically performed on the background, maintaining the indexes always up-
dated and optimized according to a prescribed way. On the other hand, the developer
is responsible for starting the second, requesting possible reusable artifacts that suits
his/her problem.

Thus, in order to execute these two basic processes, some macro requirements
were defined:

1. Artifacts filtering. Although ideally all kinds of artifacts should be considered
for reuse (requirements, design specification, source code, test cases, test scripts
and so on), an automatic mechanism depends on a certain level of quality that the

1 http:// labs.rise.com.br
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Fig. 7.1 Screenshot of the Folksonomy-based version of B.A.R.T.

artifact must have. For example, keyword-based search requires that the artifacts
contain a considerable amount of free text describing it, otherwise the engine
cannot perform the keyword match. In this sense, a qualitative analysis of the
artifacts must be performed, in order to eliminate low-quality artifacts that could
hinder search efficiency.

2. Repository selection. The developer must be able to manually include the list
of the repositories where to search for reusable artifacts. It must be possible, at
any moment, to perform a search on these repositories in order to find newer
versions of the artifacts already found, or new artifacts. For example, a developer
can include the repositories related to Project A, Project B and Project C.

3. Local storage. All artifacts that were found must be locally stored in a cache, in
order to improve performance (reusable components repository centralization).
In a real scenario, a software factory has several projects in the repository. Thus,
in order to avoid several accesses to the repository, a local cache is very useful.

4. Index update. Periodically, the repositories that are registered must be accessed
to verify the existence of new artifacts, or newer versions of already indexed
artifacts. In this case, the index must be rebuilt to include the changes.

5. Optimization. Performance is a critical issue, specially in scenarios where thou-
sands of artifacts are stored into several repositories. Thus, optimization tech-
niques should be adopted. A simple and practical example is to avoid analyzing
and indexing software artifacts that were already indexed by the mechanism.

6. Keyword search. The search can be based on keywords, like many web search
engines, thus avoiding the need for learning a new method. Thus, the search must
accept a string as the input, and must interpret logical operators such as “AND"
and “OR".



128 Eduardo Santana de Almeida

7. Search results presentation. The search result must be presented in the devel-
oper’s environment, so he/she can more easily reuse the artifacts into the project
he/she is currently working on.

B.A.R.T’s architecture was based on the client-server model, and used Web Ser-
vices technology for message exchange among the subsystems. This implementa-
tion strategy allowed B.A.R.T to be available anywhere on the Internet, or even on a
corporate Intranet, in scenarios where the components are proprietary. B.A.R.T was
composed of two subsystems:

1. B.A.R.T Service: This subsystem is a Web Service, responsible for indexing
the components, in background, and responding to user queries. It is composed
of the following modules: the CVS module, which accesses the repositories in
the search for reusable components; the Analyzer, responsible for analyzing the
code in order to determine if it is suitable for indexing; the Indexer, responsible
for indexing the Java files that passed through the Analyzer, also rebuilding the
indexes when components are modified or inserted; the Download module, which
helps the download (check-out) process, when the source code is transferred to
the developer machine, after a request; and the Search module, which receives
the parameters of a query, interprets it (for example, "AND" and "OR" operators),
searches the index, and returns a set of index entries.

2. Eclipse plug-in: This subsystem is the visual interface the developer sees. It acts
as a Web Service client to access the B.A.R.T Service.

7.2.1 The Active Search Mechanism

B.A.R.T’s first version performed search and retrieval essentially based on keywords
and facets. Moreover, the search mechanism was based on passive search, often used
in search engines, i.e. the mechanism waits passively until the user defines a set of
keywords and requests a search operation. For these reasons, much of the reuse
potential of the repositories being searched was being ignored, because in many
situations the developer does not have enough knowledge of the available assets
to start looking for them. Even with proper knowledge regarding the repositories,
the developer could simply fail to recognize a situation where a search could be
performed. In other words, the tool was lacking context awareness and a more active
behavior, in order to anticipate the developer’s needs [30].

In this context, a second version of the tool was proposed [6, 20, 27] to con-
sider these and other issues. The following requirements were elicited for this new
version:

1. Extensibility: Software development involves a large number of steps and dif-
ferent intermediate types of asset are produced along the path. There are usu-
ally multiple alternative formats to build each type of asset and on top of that,
the information contained in the assets may be encoded in different languages.
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Examples of asset types include use case specifications, documentation and pro-
gramming units. A programming unit may be defined in a COBOL program, a C
file, a Java class or in any of the several existing programming languages.

2. High Precision: Information retrieval performance is often measured in terms of
precision and recall. The tool heavily depends on information retrieval strategies
to (1) assess the reuse potential of a set of assets given a legacy asset repository
and (2) try to maintain a high level of reuse activity by actively delivering reuse
candidates for the user tasks.

3. Ubiquity: “No attempt to reuse” is the number one cause for software reuse
failure [7] and that is mainly due to the lack of knowledge of existing assets
that could be reused. An approach for reuse within development [30] must be
employed, making the cost of finding reusable work products as low as possible.
Thus, the tool should provide programmers with a comprehensive set of tools that
smoothly merge with existing development environments in order to minimize
the effort of achieving higher levels of reuse activity.

4. Scalability: The potential amount of operations performed for an active informa-
tion delivery for a single user pushes for a solution that properly scales according
to the number of users. Large organizations usually have hundreds or thousands
of users performing development activities concurrently.
In this sense, an active information delivery approach has a potential side ef-
fect of changing the course of action of the user according to the task at hand
and the information delivered. The time when the information is delivered is
of paramount importance for this to properly occur. Therefore, the information
retrieval mechanism must yield results in a reasonable time regardless of the
number of concurrent users and the activity load performed by them.

5. Continuous Metrics Extraction: From the organizational perspective, the reuse
activity must be systematically monitored so the impacts of reuse over other
development aspects, such as quality and cost, can be assessed and deviations
can be timely detected and handled. For this reason, automated metric extraction
tools must be provided by the solution in consonance with existing continuous
integration practices.

Besides these requirements, the main improvement related to this version was
the reuse metric that was defined [19] and implemented in the tool. The existing
reuse metrics [19] have in common the fact that they basically aim at assessing,
although in different ways, how much was reused during the construction of a soft-
ware product. For this reason, they can all be seen as realized (or achieved) reuse
metrics.

While this is a fundamental aspect to be considered when assessing the reuse
activity, there is a critical detail that is lacking on all proposed reuse metrics so far:
the reuse potential of a product relative to a repository of legacy assets. That is, given
a repository of (semi) reusable assets, the following question must be answered:
“How much could be reused when building this new application?".

Once the need for defining a reuse potential (rp) metric was agreed upon, the
remaining issue was how to perform the calculation of such metric and for that,
some information retrieval concepts must be employed. The artifacts produced in a
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specific project belong to the query space, while the assets available in a repository
belong to the search space. The proposed metric was defined in terms of the set of
queries extracted from the query space and, from this set, the number of successful
queries against the search space.

The new search and retrieval process designed for B.A.R.T was composed of a
set of phases. The legacy content retrieval phase consisted on continuously monitor-
ing the produced assets and passing them for indexing. An asset evaluation policy
was necessary for determining whether a specific set of assets is proper for future
indexing. This policy was responsible for filtering low quality assets that would
negatively impact retrieval performance or cause problems if reused. It was also
responsible for determining when the index should be updated.

Once the assets were retrieved, the indexing phase took place. During this phase,
performed by B.A.R.T’s Indexer module, the artifacts’ contents were parsed and
analyzed before being actually indexed. The contents of the available artifacts were
converted to a common representation. This common representation was then inter-
preted during analysis and indexed, if considered relevant. The ubiquity requirement
was satisfied mainly by the Listener module, which monitored and interpreted user
activities, like adding a method to a Java source file. From this interpretation, queries
were formulated and executed against the repository and reuse candidates could be
suggested to the user. This consisted on the active information delivery mechanism
of B.A.R.T. The queries were formulated by the query formulation agent, contained
in the Searcher module. The formulation was based on the contents of the artifacts
being edited by the developer in a similar approach to the repository indexing phase,
although the actual analysis performed could differ due to the distinct nature of de-
velopment for and with reuse.

The results evaluation and presentation phase was composed by the result eval-
uator agent, contained in the Searcher module, responsible for detecting candidates
that should not be presented to the user, based on the feedback provided from previ-
ous interactions or on information that was not available in the index and therefore
could not be taken into account during search time. The remaining results from the
analysis were then manipulated and finally presented to the user by the Presenter
module. This module was responsible for determining how and when these candi-
dates were presented to the user. Cognitive issues like the level of intrusiveness of
the delivery were also taken into account when making these decisions.

The search results were presented to the user by the Presenter module. The next
step was the indexed contents retrieval phase, performed by the Searcher module,
initiated upon user request. This phase was responsible for providing the system
with user feedback (which assets were considered relevant to his context) and re-
trieving the actual asset from the repository system. The phases presented so far
corresponded to the active information delivery cycle. Complementarily to this cy-
cle, the metrics extraction phase took a more general look at the produced artifacts
from the organizational perspective. All previous phases, except the legacy contents
retrieval and repository indexing phases, were focused on reuse from the individual
perspective, aiming at helping developers in achieving a higher reuse activity. This
phase, performed by the Extractor module, was responsible for ensuring that given



7 Experiences and Lessons from Source Code Search Engine 131

a set of artifacts being produced and the available repository, the development team
extracted the most out of the repository when building the new set of assets. That is,
good reuse candidates presented by the system have not been neglected.

7.2.2 The Folksonomy Mechanism

The second version of B.A.R.T introduced important improvements in the search
and retrieval process. The mechanism developed to suggest assets before an explicit
search by the user was very important in this sense. Nevertheless, there were some
deficiencies, such as the facet mechanism, which was based on a limited set of terms,
such as platform, component type and so on. In this sense, we decided to explore
the idea of Folksonomy [29] in the third version.

Folksonomy, combining “folk" and “taxonomy", refers to a collaborative way in
which information is categorized on the web. Instead of using a centralized classifi-
cation scheme such as facets, users are encouraged to freely assign chosen keywords
(called tags) to pieces of data, in a process known as tagging. Thus, the following
requirements were defined for this version:

1. Integration with different search techniques: The mechanism should use the
Folksonomy technique combined with traditional schemes of classification to
improve search precision.

2. Association of tags with components: Through this functionality, the user
should be able to associate tags to components according to its domain.

3. Search by tags: It should be possible to discover all items from all users that
match a specific tag. Moreover, the engine should support the discovery of items
tagged from specific users that match the tag.

4. Tag Cloud: The frequently used tags should be listed and emphasized with dif-
ferent colors, organized by relevance, to aid the search by tags.

5. Database persistence: Tags, related to a specific component and author should
be stored in a persistent database for future reuse. It means that data can be ac-
cessed at any time by the tool.

In order to support the defined requirements, two new modules were designed
in the architecture. The Folksonomy Classifier was responsible to perform the per-
sistence of the tags in a database structured. Thus, while the users were classifying
the components, the tags used were stored in an XML archive with the respective
component and the related author. The Folksonomy Search managed the search per-
formed through Folksonomy, without losing the functionalities of text mining and
facet-based search techniques.
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7.2.3 The Semantic Mechanism

The third version of the tool presented a complementary mechanism based on tags,
which improved the facet mechanism. However, as several users often used the key-
word search, it was necessary to define new ways to improve its precision and re-
call. Thus, the fourth version [5] of B.A.R.T improved the keyword search process,
combining the original search mechanism with semantic features such as ontology
reasoning for assistance in query construction and machine learning techniques for
code comprehension.

For this version, the following requirements were specified:

1. Existence of a domain ontology: A domain ontology should be created and
completed with a vocabulary that contained infrastructure terms handled by
source code.

2. Reasoning over user query: Technical terms associated with the user query
should be exhibited in B.A.R.T’s user interface in order to help users during
query construction.

3. Search by semantic terms: Users could choose one of the semantic terms in
order to contextualize the keyword query.

4. Source code analysis and classification: Source code had to be analyzed and
classified into a proper domain category.

The architecture designed to accommodate these new requirements was com-
posed of two new modules: (i) the reasoner, where all ontology management oc-
curred, together with the tasks associated with reasoning and inference. The rea-
soner module was responsible for providing the domain terms related with a given
query in order to help end users to contextualize its keyword query. (ii) The analyzer
was a new module that composed the semantic layer. This module fed the Indexer
with the semantic classification from the source code analysis.

The reasoner and analyzer modules encapsulated two self-contained compo-
nents: the Semantic Query Reasoner and the Semantic Code Analyzer. The first
one assisted users during search to match relevant source code. In a nutshell, this
component contextualized the user query with domain terms related to the keyword
through an ontology reasoning process. In order to provide appropriate domain
terms, the component reasoned over a domain ontology while ordinary keyword
search was being performed. As a consequence, in addition to the returned code,
related domain terms were suggested for placing the query into a specific context.
Once a domain term was chosen, the search was focused on code belonging to the
selected domain. More information about the domain ontology can be seen in [5].

The Semantic Code Analyzer was responsible for source code analysis and do-
main classification. Essentially, it classified source codes according to an infrastruc-
ture category so that this information was used to create the index structure. This
component compared the source code with a knowledge base taking into account
content similarities to perform the categorization. For categorization, the compo-
nent used a naive Bayes probabilistic classifier with strong (naive) independence
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assumptions. Its use was justified by the fact that this method is usually applicable
for unstructured text documents, such as source code.

Although the main task of the component was to classify source code, it per-
formed other tasks such as knowledge base (kb) compressing, code filtering and
comment erasure in order to make the analysis more efficient:

• Kb compressing: Once the knowledge base was updated with new infrastructure
domains, new source code was incorporated and thus more space was needed.
By compressing the knowledge base into a single file, the component was able
to speed up the access to the knowledge base.

• File filtering: The filtering process constrained the classification to restricted
file types specified by the user. During the classification process, the component
ignored unspecified extensions and handled only those that matched the user’s
choice.

• Comments erasure: After the filtering phase, the selected files had the com-
ments erased in order to improve the accuracy of the classification. Although
comments are used for giving contextual information about the program, it is
speculated that they might confuse the categorization because there is no vo-
cabulary control. The objective was to avoid the comparison between statements
written in natural language and the kb’s code, whose syntax follows a specific
programming language’s grammar.

7.2.4 The Data Mining Mechanism

The feedback received with the fourth version of B.A.R.T was interesting. However,
the user still needed to build queries every time using the passive search. This turned
out to be inconvenient in some situations such as dependencies among the compo-
nents, because sometimes the returned assets did not solve the entire problem, and
the developer had to find additional components to complement the entire solution.
These dependencies were identified only on demand, when the developer tried to
search for another component.

In this way, the fifth version of B.A.R.T [18] was improved with an approach that
used data mining techniques to solve the query formulation problem by reducing the
conceptual gap on the queries built. The solution was based on the reduction of the
performed queries. Thus, the main goal was to optimize the component search and
retrieval process by monitoring the usage history through a logging mechanism. The
following requirements were specified in this version:

1. Suggest Associated Assets: The tool must suggest associated assets for the
search engine users. These associations should be based on the knowledge ex-
tracted from log files.

2. Extract Association Rules: The associations are extracted according to associ-
ation rules. This approach must extract the rules using well-defined algorithms
such asApriori [1], Dynamic Itemset Counting (DIC) [3], and FP-Growth [11].
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3. Parser the Log Mechanisms Artifacts: The log mechanisms used in the tool are
log files. The knowledge extraction process used these data to extract the rules.

The B.A.R.T architecture was extended with two new modules: Association
Rules Extractor (AR Extractor) and Association Rules Viewer (AR Viewer). The
first one was responsible for the knowledge extraction from log files, using the fol-
lowing procedure: (i) to parse the file and (ii) to extract the association rules. The
second module was responsible for showing the results to the user. These results
were plotted as a graph and shown as recommendations.

The AR Extractor was divided in two sub-modules: XML Descriptor Extractor
and Algorithm Manager. The XML Descriptor Extractor was responsible for pars-
ing the log files and grouping the information according to the transactions. These
transactions represented the files that each user downloaded in a specific time win-
dow.

In the Algorithm Manager, the data mining phase took place and a proper al-
gorithm was selected. This choice depended on the situation (single or distributed
database) and the analysis of some characteristics, such as performance, CPU pro-
cess, memory usage and return time. During the evaluation, some rules were ac-
cepted and others were left behind. This step was important to improve the final
rules quality. The last module was responsible for generating the XML file.

The AR Viewer was composed of four sub-modules. The Communication layer
provided a way to connect the client and server sides. This layer was implemented
using Web Services and RMI. The Interpreters (Rules and Query Result) were used
to transform the XML returned from the server and prepare it to graph render. This
graph was provided by the last sub-module that plotted the result for the user.

7.3 Lessons Learned

During seven years, I was involved with the development of the B.A.R.T project and
I believe that some aspects should be highlighted for researchers and practitioners
interested in new developments in the field:

• Software architecture. B.A.R.T’s different versions had their architecture de-
signed before the implementation, but several violations were found in the design
x implementation scenario (what was designed versus what was actually imple-
mented) [28]. As in some software development projects, because of the need of
results in short time, the implementation sacrificed the design phase and some
problems related to quality were identified.

• Non-functional Requirements. In general, during the project, the main non-
functional requirement considered by the team was performance. However, in
order to have a tool used by hundreds of software engineers in the same organi-
zation, other aspects such as availability and fault tolerance should be considered.

• Ranking process. The research and development team developed different mech-
anisms to improve search and retrieval. However, the ranking process was not
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investigated. All the implementations were based on the Lucene search engine
and some improvements could be made in this sense, considering for example,
information about the current project, background and expertise from the user
and so on.

• Traceability. The reuse dream is to reuse not only source code but also several
assets in the software development environment. Our team had the idea to link
source code with other assets, such as requirements and test cases. This feature
would be very useful. For example, a software engineer could search some re-
quirements and retrieve not only them, but also part of the architecture, source
code and test cases. However, this feature was not considered in the project, nor
in any of B.A.R.T’s previous versions.

• Observations. Nowadays, there are several projects based on Eclipse, for exam-
ple, to monitor and log the user’s activity during software development. In the
project, we did not use it and I believe that this perception - with the consen-
sus of the user, of course - could be very important to understand how software
engineers reuse assets.

• Software Product Lines. The different versions in the B.A.R.T project were de-
veloped separately. Currently, I believe that software product line ideas could
be very useful to manage the different "products" and features available in the
source code search domain.

• Reuse. The area of search and retrieval of software components is not new and
several solutions were proposed. However, in general, they are created from
scratch. I believe that several projects from the past could be used as a starting
point to develop new tools and approaches.

• Database for benchmarking. In some areas it is common to use standard bench-
marking. In the search and retrieval area this issue was solved some years ago
[12]. Its use is crucial to understand the current limitations of the solutions and
to propose new ones.

• Services and Models. Service-oriented development and Model-Driven develop-
ment are becoming more popular and mature. I believe that the new efforts in the
search and retrieval area should consider these issues in the development of new
solutions. A preliminary work in this direction can be seen in [16].

• Google. Along the years of the B.A.R.T project, a frequent nightmare was related
to Google. All the team was constantly worried with the possibility of Google en-
tering in this game. Some years later, the nightmare is still there. As a personal
opinion, I think researchers in the area should consider this aspect, but not de-
crease the efforts because of it.

7.4 Conclusion

Software reuse is an important aspect for organizations interested in benefits re-
lated to cost, productivity and quality. The reuse literature presents different ways
to achieve it, such as methods, processes, and specially, environments and tools.
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Among the reuse tools, the search and retrieval of source code had an important
role since the reuse of source code is the most common way to perform reuse (even
non-systematic). This area is very rich in proposed solutions, however, the available
publications are related to isolated efforts. In this sense, this chapter presented seven
years of experience with the B.A.R.T project. It discussed the main improvements
in the tool along the years, as well as some insightful thoughts that can be useful for
researchers in the field. I believe that the area presented some advances but the tool
or environment in the sense idealized by McIlroy is not ready so far and the road is
open for researchers and companies interested on it.

As future direction, in my research group, we are interested in performing em-
pirical studies with the different tools for search and retrieval. I believe that several
advances were achieved in the area along the years, but few empirical studies were
conducted considering different research methods.
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Chapter 8
Infrastructure for Building Code Search
Applications for Developers

Sushil Krishna Bajracharya

Abstract The large availability of open source code on the Web provides great op-
portunities to build useful code search applications for developers. Building such
applications requires addressing several challenges inherent in collecting and ana-
lyzing code from open source repositories to make them available for search. An
infrastructure that supports collection, analysis, and search services for open source
code available on the Web can greatly facilitate building effective code search appli-
cations. This chapter presents such an infrastructure called Sourcerer that facilitates
collection, analysis, and search of source code available in code repositories on the
Web. This chapter provides useful information to researchers and implementors of
code search applications interested in harnessing the large availability of source
code in the repositories on the Web. In particular, this chapter highlights key as-
pects of Sourcerer that supports combining Software Engineering and Information
Retrieval techniques to build effective code search applications.

8.1 Introduction

Building a search application for source code available on the Web can be a major
undertaking. The specificities and needs for code search pose interesting opportuni-
ties and challenges to build effective code search applications. For example, unlike
natural language text, source code has an inherent scarcity of terms that describe the
underlying implementation. From an information retrieval perspective source code
can be much harder artifact to retrieve if we rely solely on the terms that are present
in it. On the other hand, source code has rich structure compared to natural language
text. The structure comes from the organization of source code entities in the imple-
mentation, and also the various relations that exist among those entities. As a result,
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code search applications can leverage structural information extracted from source
code for effective retrieval.

Sourcerer is an infrastructure that facilitates collection, analysis, and searching
of source code harnessing its inherent structural information. This chapter provides
details on the aspects of Sourcerer that makes it a unique state-of-the-art platform
to build code search applications. Rest of the chapter is organized as follows. Sec-
tion 8.2 provides an overview of three code search applications that Sourcerer sup-
ported, and presents the infrastructure requirements demanded by the code search
applications. Section 8.3 introduces the key elements of Sourcerer’s Architecure.
Section 8.4 provides an in-depth discussion of various models that lie at the core
of Sourcerer’s architecture. Section 8.5 summarizes the contents that are stored in
Sourcerer’s repository, and Section 8.6 discusses services that allow access to the
stored contents. Section 8.7 provides details on the tools developed to build the con-
tents and services in Sourcerer. This chapter concludes by summarizing key features
that enabled the three code search applications (Section 8.8) and discusses related
work in Section 8.9.

8.2 Infrastructure Requirements for Code Search Applications

Sourcerer enabled building three code search applications during the course of its
development. These code search applications put forth various requirements on
Sourcerer as a code search infrastructure. Overall, these requirements boil down
to three basic functionalities:

1. Collection and Storage: Fetching source code from forges on the Web and stor-
ing them locally with required metadata intact.

2. Analysis and Indexing: Extract both lexical (textual) and strcutural information
(entities and relations) from the source code downloaded from the Web.

3. Search and Retrieval: Provide access to underlying contents (source, search
index, and structural information) as needed by different applications

The core of these requirements demanded code-specific analyses and heuristics
to be incorporated into various models, services and tools. A pragmatic decision was
made to only provide support for the Java programming language in Sourcerer to be
able to meet these requirements without being overburdened with the complexity of
analyzing and supporting all possible programming languages.

Next, we briefly introduce the three code search applications and look at the
infrastructure requirements they brought in.
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8.2.1 Sourcerer Code Search Engine

Sourcerer Code Search Engine (SCSE) is a web-based code search engine to find
code entities in open source projects. SCSE provides a central user interface, code
specific search operators (e.g. limiting search on comments or code portions), and
employs a ranking scheme that leverages underlying structure and relations in code.
As a code search engine, SCSE aggregates and presents meta-data related to code
entities in the search results. This meta-data includes the origin information about
the code (i.e. the name and location of the open source project where the code came
from), license information, version, and category of the project. SCSE also allows
viewing and browsing source code, following usage relations, and provide detail
information on code structure (threading properties, Java attributes, and micropat-
terns [11])1. With these features SCSE allowed a central access to search thou-
sands of open source projects. Implementation of SCSE itself required development
and integration of several core infrastructure pieces of Sourcerer. Since its develop-
ment several commercial applications are now available that offer similar features
as Sourcerer. Therefore, the infrastructure requirements for SCSE resemble much
similarity to the requirements to build a large-scale code search engine.

8.2.2 CodeGenie – A Test-Driven Code Search Application

CodeGenie is a code search application that allows a developer to start from a unit
test and search for a working set of code entities (classes) that would implement
the desired feature as specified in the unit test. CodeGenie is a plugin for Eclipse
IDE that works as a Test-Driven Code Search (TDCS) application. TDCS combines
the ‘Test-First’ principle of Test-Driven Development with code search. CodeGenie
allows a developer to start from an existing unit test that specifies a desired func-
tionality to be implemented. After this, CodeGenie can construct a query from the
unit tests, execute a search using the query on Sourcerer, and bring back found code
entities. A developer can choose any of the found entity, look at its source code, and
merge the code in her workspace to get the desired functionality originally being
tested in the unit test. While merging the code, CodeGenie uses a special service
provided by Sourcerer, called the code slicing service, that computes and extracts
a dependency slice (a set of synthesized code entities that makes the found code
entity compilable and workable in the workspace). CodeGenie has features external
to the infrastructure that eases the selection and merging process, for example an
‘unmerge’ operation to get rid of previously merged code and select a new entity
to be merged in the workspace. CodeGenie relies on Sourcerer for these features to
work. For example, CodeGenie provides the merging and unmerging of code enti-

1 These code structure information was originally intended to be used in implementing code simi-
larity techniques based on detailed code structures, but was not developed further as development
in Sourcerer proceeded
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ties that came from the dependency slice by using a unique identifier given to the
dependency slice by Sourcerer.

8.2.3 Sourcerer API Search

Sourcerer API Search (SAS) helps developers to find code snippets that serve
as API usage examples. Developers working with large frameworks and libraries
might not know or remember all APIs available to them. SAS attempts to provide
an exploratory search interface to help such developers in finding code snippets to
learn the names and usage patterns of APIs to perform certain programming tasks.

There are four major features in SAS that make finding code snippets easier. First,
a list of code snippets that show sections of code with auto-generated comments
highlighting the APIs that are used (showing their fully qualified names) and their
patterns of usage (by showing relations such as calls, instantiations etc). Second, a
list of code entities that constitute the most popular APIs in a given search result;
these APIs can be used as filters to narrow down search results. Third, a set of
words as tag-cloud with every result set, where the words can be used for query
reformulation. These words are picked by analyzing the names of the code entities
found, names of the popular APIs used, and names of code entities that are similar to
the entities in the result in terms of API usage. Fourth, a more like this feature to find
similar code entities based on API usage. This allows users to get recommendation
on entities that exhibit similar API usage patterns which is helpful to find more
examples once a candidate example (or code entity) is found.

Structural Semantic Indexing (SSI): SAS uses an index with a set of relevant
terms mapped to each code entity found in a code collection. These terms are
extracted from various places: the source for the entity itself, the source for the
APIs that the entity uses, and the source for the code entities that have similar
API usage as the code entity. With terms coming from various places the index
is able to match queries with relevant code entities (for API examples) even
if the source for the entity does not contain all of the terms in the query. The
indexing technique used for this is called Structural Semantic Indexing (SSI),
and was enabled using various pieces of the Sourcerer infrastructure.

8.2.4 Infrastructure Requirements

SCSE, being the first and the most general application has the basic requirements.
CodeGenie and SAS have some common requirements as SCSE, along with some
new ones of their own. The overall infrastructure requirements to build the three
different code search applications emerge out as follows:
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Common Requirements:

– crawling open source forges, extracting project metadata; downloading and
checking out source code from open source forges and associating project
metadata with the checked out code

– language aware parsing of source code to extract structural information (enti-
ties and relations)

– indexing source code entities to make them searchable
– ability to store and retrieve source code for code entities

SCSE:

– compute rank using structural and lexical information

CodeGenie:

– code search service that could accept a structured code query, where the query
expresses matches on various parts of the code such as class name, method
signature, return types, and method arity (number of arguments)

– search results at the granularity of code entities such as classes and methods
so that the IDE can show types and method signatures in the result pane

– a special code slicing service that could construct a set of synthesized code
entities that makes the retrieved code entity declaratively complete (i.e., all
dependencies must be resolved)

SAS:

– data sources to produce an index using SSI
– for a given set of code entities in search result, ability to get a list of most

popular APIs that are used by the code entities
– for a given code entity, ability to get a list of other code entities that have

similar API usage
– for a given code entity, and a set of APIs, ability to provide details on where

and how the APIs are used

8.3 Infrastructure Architecture

Sourcerer provides the requirements posed by three code search applications through
a collection of services. These services provide programmatic access to the under-
lying data (stored contents) that Sourcerer produces and stores. The format and
schema of the data is defined by a set of models that are developed considering var-
ious needs for storage and retrieval needed for the services. Sourcerer also consists
a set of standalone tools that collect, analyze, produce, and persist the needed con-
tents. Figure 8.2 depicts how services, stored contents, Models, Tools, and (Code
Search) Applications constitute Sourcerer’s overall architecture.
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Fig. 8.1 Elements of Sourcerer Infrastructure

8.4 Models

Three models define the basic mechanisms for storing and retrieving information
from the source code available in Sourcerer’s repository.

8.4.1 Storage Model

The Storage Model defines the structure and physical layout of files in Sourcerer’s
local repository. A layered directory structure was chosen for two main reasons.
First, it allows projects from the same source to be grouped together, which makes
adding or removing contents more straightforward. Second, some sort of branching
turned out to be required, not to overburden the file system with tens of thousands
of subdirectories in a single directory. The files collected from open source projects
are stored in a folder according to the following template:

<repo_root>/<batch>/<id>

Above, <repo_root> is a folder assigned as the root of Sourcerer’s file repos-
itory. Given the root folder, the individual project files are stored in a two-level
directory structure defined by the path fragment <batch>/<id>. <batch> is a top-
level folder in the directory structure that indicates a given batch. For example, a
crawl from a specific online repository or a collection of fixed number of projects
can denote a batch. Inside <batch>, another set of folders exists. Each second-level
folder in the local repository, indicated by <id> in the above template, contains the
contents of a specific project. Each <id> directory contains a single file and two
sub-directories, as shown below:

<repo_root>/<batch>/<id>/project.properties
<repo_root>/<batch>/<id>/download/
<repo_root>/<batch>/<id>/content/

Above, project.properties is a text file that stores the project metadata as
a list of name value pairs. download is a folder that contains the compressed file
packages that were fetched from the originating repository (e.g., a project’s distri-
bution in Sourceforge). content contains the expanded contents of the download

directory. Once the contents of the download directory have been expanded, the
directory itself is usually emptied in order to free up space.
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The project contents in the content directory can take two different forms, de-
pending on its format in the initial repository. If the project contents are checked
out from a remote software configuration management (SCM) system such as svn
and cvs, the file located at a relative path path in the originating repository (e.g.,
Sourceforge) exists in Sourcerer’s file repository at the following absolute path:

<repo_root>/<batch>/<id>/content/<path>

Instead, if the project is fetched from a package distribution, a source file can be
found in Sourcerer’s file repository at the following absolute path:

<repo_root>/<batch>/<id>/content/package.<i>/<path>

Above, package.<i> indicates a unique folder for each ith package that is found
in a remote repository. path indicates a relative path of a source code file that is
found inside the ith archived package, which is unarchived inside the package.<i>
folder.

Project metadata: The project.properties file is a generic project descrip-
tion format that generalizes the project metadata from the online repositories. Many
attributes in project.properties are optional, except for the following:

• crawledDate: indicates when the crawler picked up the project information
• originRepositoryUrl: URL of the originating repository; e.g., http://sourceforge.net
• name: project’s name as given in the originating repository
• containerUrl : project’s unique URL in the originating repository

And, one or both of the following: (i) Information on project’s SCM system in-
dicated by scmUrl (ii) Information on project’s source package distributed on the
originating repository, as indicated by the following fields:

• package.size indicating total number of packages distributed.
• package.name.i indicating name of the ith package, where 1<= i<= package.size,

and i indicates a unique integer denoting a package number.
• package.sourceUrl.i indicating the URL to get the ith package from the orig-

inating repository.

The example below shows metadata description for a project crawled from
Google code hosting.

00 #Thu Sep 24 16:15:01 PDT 2009
01 releaseDate=null
02 name=dlctarea1
03 category=DLC, Java, Netbeans, FileChooser
04 languageGuessed=Java
05 versionGuessed=$SCM
06 scmUrl=svn checkout

http\://dlctarea1.googlecode.com/svn/trunk/
dlctarea1-read-only

07 license=GNU General Public License v2
08 keywords=null
09 sourceUrl=null
10 exractedVersion=$SCM
11 projectDescription=Tarea n\uFFFD 1
12 fileExtensions=null
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13 originRepositoryUrl=http\://code.google.com
14 containerUrl=http\://code.google.com/p/dlctarea1/
15 contentDescription=null
16 crawledDate=2009-Sep-23

Jar Storage: In addition to the top-level batch directories described above, the
local repository also contains a single jars directory. The jars directory is structured
as follows:

<repo_root>/jars/project/<jar_path>
<repo_root>/jars/maven/<jar_path>
<repo_root>/jars/index.txt

The project subdirectory contains all of the jar files that come packaged with
the projects in the main repository. This directory is populated by crawling through
the repository itself, and copying every jar found. The copying is done so that these
jar files can be modified, if necessary, without altering the original projects. The
maven subdirectory contains a mirror of the Maven2 central repository 2 [43].
Lastly, index.txt contains an index that maps from the MD5 hash of a jar file to
its location in the directory structure. This index is used to link the jar files from the
projects to the files contained in the jars directory.

Sourcerer’s project metadata format enables capturing description of projects
and contents across various online repositories.

The Storage Model provides a standard for storing project files in Sourcerer and
is not directly used by applications. Applications rely on other higher-level abstrac-
tions to access the contents stored in Sourcerer.

8.4.2 Relational Model

Sourcerer’s relational model defines the basic source code elements and the relations
between those elements. It supports a fine-grained representation of the structural
information extracted from source code. It also links the code elements/relations
with their locations in physical artifacts.

Two major goals guided the design of Sourcerer’s relational model. First, it had to
be sufficiently expressive to allow fine-grained structure-based analyses and search
over code structure. Second, it had to be efficient and scalable enough to include
the large amount of code from thousands of open source projects. To meet these
two goals we decided to use an adapted version of Chen et al.’s [7] C++ entity-
relationship-based metamodel as Sourcerer’s relational model for source code. In

2 Maven is a build system for Java that provides the facility to fetch required libraries from a central
repository [42].
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Fig. 8.2 Sourcerer’s Relational Model

particular, their decision to focus on what they termed a top-level declaration gran-
ularity provides a good compromise between the excessive size of finer granularities
and the analysis limitations of coarser ones.

The relational model consists of the following five elements: Project, File, Entity,
Comment, and Relation.

A Project model element exists for every project contained in Sourcerer’s repos-
itory, as well as every unique Jar file. A project therefore contains either a collection
of Java source files and jar files, or a collection of class files. A File model element
represents these three types of files: source (.java), jar (.jar) or class (.class).
Both source and class files are linked to sets of Entities contained within them, and
to the Relations that have these entities as their source and target. Jar files, on the
other hand, are linked to their corresponding jar projects, which in turn contains all
of the Entities and Relations.

An Entity model element either corresponds to an explicit declaration in the
source code (e.g., Class, Interface, Method), a Java package, 3 or Java types that are

3 Packages are not considered to be standard declared entities as they do not have a single declara-
tion
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used but do not correspond to a known explicitly declared type (e.g., Array, Type
Variable). An entity type is UNKNOWN when the type cannot be determined due to
uncertainty in the analysis. Table 8.1 lists all entity model element types defined in
Sourcerer. These types adhere to their standard meaning in Java, as defined in the
Java Language Specification (JLS) [12].

A Relation model element represents a dependency between two Entities. A de-
pendency d originating from a source entity s to a target entity t is stored as a Rela-
tion r from s to t. Table 8.2 contains a complete list of the relation types with a brief
description and example for each. All of the relations are binary, linking a source
entity to a target. The source entity for a relation is smallest entity that contains the
code that triggers that relation. While containment is clear for most of the entities,
it should be noted that FIELDs are considered to contain their initializer code and
ENUM CONSTANTs are considered to call their constructors. The source entity is al-
ways found within the project being examined. This is not necessarily true of the
target entity. It can be a reference to the Java Standard Library or any other external
jar. In fact, due to missing dependencies, sometimes it is impossible to resolve the
type of the target entity.

PACKAGE
CLASS
INTERFACE
ENUM
ANNOTATION
INITIALIZER
FIELD
ENUM CONSTANT
CONSTRUCTOR
METHOD
ANNOTATION ELEMENT
PARAMETER
LOCAL VARIABLE
PRIMITIVE
ARRAY
TYPE VARIABLE
WILDCARD
PARAMETRIZED TYPE
UNKNOWN

Table 8.1: Entity Types

A Comment model element represents the comments defined in the Java source
code.

Figure 8.2 shows Sourcerer’s relational model using an ER-diagram. It shows the
five elements of Sourcerer’s relational model and a set of attributes for each of them.
Table 8.3 provides the details on all the attributes of the model elements. Figure
8.2 and Table 8.3 provide information on how the model elements are linked with
each other, and how the attributes in the relational model link the relational model
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elements with the storage model. For example, Project element’s ‘path’ attribute
links it to the physical location defined by the storage model.

Relation Description Example
INSIDE Physical containment java.lang.String INSIDE java.lang

EXTENDS Class extension java.util.LinkedList EXTENDS
java.util.AbstractSequentialList

IMPLEMENTS Interface implementation java.util.LinkedList IMPLEMENTS
java.util.List

Interface extension java.util.List IMPLEMENTS
java.util.Collection

HOLDS Field type java.lang.String.offset HOLDS int

RETURNS Method return type java.lang.String.toCharArray()
RETURNS char[]

READS Field read ...String.<init>(java.lang.String)
READS java.lang.String.offset

WRITES Field write java.lang.String.<init>() WRITES
java.lang.String.offset

CALLS Method invocation ...String.indexOf(int) CALLS
java.lang.String.indexOf(int,int)

INSTANTIATES Constructor invocation foo() INSTANTIATES
java.lang.String.<init>

THROWS Declared checked exception java.io.Writer.write(int) THROWS
java.io.IOException

CASTS A cast expression java.langString.equals(
java.lang.Object) CASTS
java.lang.String

CHECKS An instanceof expression java.langString.equals(
java.lang.Object) CHECKS
java.lang.String

ANNOTATED BY Annotation java.lang.Override ANNOTATED BY
java.lang.annotation.Target

USES Any reference java.lang.String.<init>() USES
char

HAS ELEMENTS OF Array element type char[] HAS ELEMENTS OF char

PARAMETRIZED BY Associated type variables java.util.List PARAMETRIZED BY <E>

HAS BASE TYPE Generic base type java.util.List<java.lang.String>
HAS BASE TYPE java.util.List

HAS TYPE ARGUMENT Generic type argument java.util.List<java.lang.String>
HAS TYPE ARGUMENT java.lang.String

HAS UPPER BOUND ? extends <? extends java.util.List> HAS
UPPER BOUND java.util.List

HAS LOWER BOUND ? super <? super java.util.List> HAS LOWER
BOUND java.util.List

Table 8.2: Relation Types

Various tools in Sourcerer make use of this information to connect the relational
information with the textual contents stored in the physical files.
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Entities and Relations are the key elements of the Sourcerer’s relational model
that enables code specific search capabilities. Capturing and associating fully
qualified names for code entities allows referring and looking up code entities
across projects using the FQNs as keys. Therefore, FQNs for entities enables
analysis of relations across projects. This led to innovative use of structural
information in code search applications such as: (i) computing CodeRank
(adaptation of Google’s Pagerank algorithm on code graph) and using it as
a ranking heuristic in SCSE, (ii) and using feature vectors made up of FQNs
of used entities as a basis to compute usage similarity for entities in SSI.

8.4.3 Index Model

The Index Model complements Sourcerer’s relational model by facilitating appli-
cation of information retrieval techniques on the code entities. The index model
specifies a Document representation for each code Entity in the relational model.
A document in the index model is made up of a collection of Fields. Each field has
a name and different types of values associated with them, the most fundamental
being a collection of Terms. A term is a basic unit for search/retrieval. Terms are
extracted from various parts of an entity, and stored in a corresponding field of a
document representing a code entity.

Sourcerer’s information retrieval component is based on the popular Lucene [41]
information retrieval engine. Therefore, its index model confirms to how Lucene
models its contents. More details on Lucene’s contents model are available in [25].

Fields in Sourcerer’s index models can be categorized into five types:

1. Fields for basic retrieval that store terms coming from various parts of a code
entity.

2. Fields for retrieval with signatures that store terms coming from method signa-
tures and also terms that indicate number of arguments a method has.

3. Fields storing metadata, for example the type of the entity, so that a search could
be limited to one or more types of entities.

4. Fields that store information to facilitate retrieval based on structural similar-
ity (e.g., fields storing fully qualified names (FQNs) of used entities and terms
extracted from similar entities).

5. Fields that pertain to some metric computed on an entity.
6. Fields that store unique identifiers (ids) of entities for navigational/browsing

queries

Being based on Lucene, Sourcerer’s index model is quite flexible. Depending on
a specific search application, an instance of a Sourcerer’s index schema can have a
subset of various field types listed above. The three code search applications built
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Description
Project
project_id unique identifier for a project
project_type denotes whether this project represents a crawled project, or a Jar file
name name of the project as it appears in the originating Internet repository
description description of the project from the originating Internet repository
version version of this project as extracted from originating Internet repository
groop specific field applicable to Maven Jars
path corresponds to the <batch>/<id> path fragment as defined by the storage model
has_source denotes whether the project contains source files
File
file_id unique identifier for a file
file_type denotes the file’s type - source, Jar, class
name name of the file in the file system
path corresponds to either <batch>/<id>/content/<path>, or jars/<jar_path> as de-

fined by the storage model
hash unique MD5 hash, applicable for Jars only
project_id project_id that this file belongs to
Entity
entity_id unique identifier for an Entity
entity_type one of the several code entity types. (e.g., CLASS, METHOD)
fqn Fully qualified name (FQN) of the entity
modifiers modifiers defined for the code entity
multi denotes array dimension, applicable for ARRAY types only
file_id file_id that this entity is extracted from
offset start position of this entity in the source file
length length of this entity in the text (source file)
Relation
relation_id unique identifier for a relation
relation_type one of the several code relation types. (e.g., CALLS, EXTENDS)
relation_class denotes whether the relation terminates to a library or a local entity
lhs_eid the source entity that the relation originates from
rhs_eid the target entity that the relation terminates into
offset start position in the source entity’s corresponding file where this relation exists
length length of the text in source code where this relation spans
Comment
comment_id unique identifier for a comment
comment_type denotes the comment’s type - Javadoc, Block, Line
containing_eid the immediate code entity that contains this comment
following_eid the immediate code entity that follows this comment
file_id file where this comment is found
offset start position of comment in the source file
length length of this comment in text (source file)

Table 8.3: Sourcerer’s Relational Model Elements Details
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on top of Sourcerer have used code index schemas with different configurations of
fields and associated data sources.

Fields for retrieval with signatures allowed precise construction of queries for
expressing desired method signatures and relations expected in test cases in
CodeGenie. Fields storing retrieval based on structural similarity enabled re-
trieval schemes in SSI, and more like this queries based on usage in SAS. Rest
of the index fields supported basic operations of the code search applications
as in SCSE.

8.4.3.1 Structured Retrieval

Table 8.4 presents a subset of the fields available in the Sourcerer index. Sourcerer’s
search index can be searched using Lucene’s query language [41, 25] . The follow-
ing Lucene query demonstrates how different fields are utilized to express a query
that incorporates textual as well as structural information:

short_name: (day of week)
AND entity_type: METHOD
AND m_ret_type_sname_contents: String
AND m_args_fqn_contents: date
AND cdef: (date util)

The above query has the following meaning: find a method with terms day, of
and date in its short name (or simple name in JLS [12]), that returns a type with
short name String, and takes in any number of arguments with term date as part
of its argument in their FQNs. This is an example of a query that CodeGenie would
construct for a unit test that would have an assertion that looks like:

Date date = ...
Assert.assertTrue(‘‘Tuesday’’,DateUtil.dayOfWeek(date));

With an index structure that has fields resembling various structural elements in
code, Sourcerer provides a code-specific index model.

8.4.3.2 Code-specific Retrieval Schemes

Sourcerer’s index model enables implementation of retrieval schemes for a variety
of code search applications.

A retrieval scheme tuned for code search takes a query and returns relevant
code entities using a combination of code specific heuristics. A heuristic is an
idea to associate meaningful terms to code entities.
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Index Field Description
Fields for basic retrieval
fqn_contents tokenized terms from the FQN of an entity
short_name right most fragment of the FQN (w/o method

arguments for methods)
Fields for retrieval with signatures
m_args_fqn_contents method’s formal arguments tokenized into

terms
m_ret_type_sname_contents short name of the method’s return type tok-

enized into terms
Fields Storing metadata
entity_type string representation of entity type.(e.g.,

“CLASS”)
Fields for navigation
fan_in_mcall_local entity ids of all local callers for a method from

the same project

Table 8.4: Sample Search Index Fields

Consider a source code document in Java as shown in the top right part in Fig-
ure 8.3. If we focus on the method entity (createResource) shown inside the
code document, there can be multiple ways to associate meaningful terms to that
entity. On the top-left part in Figure 8.3, several metadata related to the method
createResource are shown. For example ‘FQN’ indicating the fully qualified name
of the method entity, ‘Used FQNs’ listing the FQNs of the APIs that the code entity
uses, and ‘Similar Entity’ indicating another method entity makeIcon that uses the
same two APIs as createResource uses.

Lower part of Figure 8.3 shows how we can define several heuristics that would
associate different meaningful terms with the method entity createResource.

The first heuristic ‘Code as TextâĂŹ treats source code entities as normal text
document. Based on some code specific parsing (such as removing symbols and
splitting on camel case) ‘Code as Text’ will associate the following terms with the
method entity createResource: create, resource, file, open.

While writing code developers often express their design in some hierarchic
fashion; for example the method createResource is defined inside the class en-
tity creatResource that is further defined inside the package util. Program-
ming languages allow expressing such information about hierarchic containment
in a naming scheme resulting in fully qualified names (FQNs) for entities. For
example, in Java, the FQN of the method createResource is given as follows:
util.ResourceManager.createResource(). The second heuristic ‘focus on names’
assumes FQNs express structure and design of code entities, and associate terms ex-
tracted from FQNs with code entities.

The third heuristic ‘Specificity’ says that the simple name of the method carries
more specific information about a code entity, and therefore terms extracted from
simple name should have some higher priority compared to others. This is repre-
sented as a boost value (shown as BV in Figure 8.3) for list of terms associated
with ‘Specificity’ heuristics.
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The ability to prioritize the heuristics differently allows experimentation and
choosing the most effective retrieval performance.

The fourth heuristic ‘Usage’ says that the FQNs of the used entities also carry
some important information about the functionality of the code entity, as it is by
using these FQNs the entity is implementing some feature in the code. Therefore
this heuristic extracts terms from the FQNs of the used entities.

Finally, ‘Usage Similarity’ says that, terms found in code entities that have sim-
ilar API usage patterns can be used to describe each other. For example, as shown
in Figure 8.3 both methods createResource and makeIcon are implementing
same behavior by using same APIs. This suggests that, to some extent, terms ex-
tracted from makeIcon can be used to describe the functionality implemented in
createResource.

Fig. 8.3 Heuristics for Code Retrieval

Sourcerer’s index model allows incorporating these code specific heuristics by
leveraging the semi-structured document model of Lucene. For each of the heuristics
the index model introduces a field that would store terms extracted based on the
heuristic. Each field is given an appropriate boosting value so that some heuristics
could be given higher priority (depending on the code search application). With such
an index model, a retrieval scheme for a code search application simply specifies
which fields to choose to match the user query. A different strategy to retrieve code
entities can be implemented by varying these schemes. For example, the top right
corner of Figure 8.4 shows the code snippet for the method entity createResource
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(previously shown in Figure 8.3). The bottom part of Figure 8.4 shows an index
document with five different fields capturing five different heuristics respectively.
The top left part of Figure 8.4 shows in a tabular form, how two schemes would
match the same query create icon to the index document (and thus the method
entity) differently. Scheme 1 uses only three heuristics, compared to Scheme 2 that
uses all five.

Scheme 1 looks over a limited set of terms associated with the method entity
createResource. This set only includes one of the terms create present in the
query create icon. Scheme 2 includes two more fields that makes it look over a
richer set of terms that includes both of the terms found in the query. Assuming that
all terms in query need to be matched for a document to be retrieved, Scheme 2
outperforms Scheme 1 because Scheme 2 uses additional heuristics to harvest more
meaningful words describing code entities.

Fig. 8.4 Incorporating Heuristics in Index Model

Vocabulary problem is a fundamental problem in information retrieval. It
arises from the fact that humans have different vocabulary to describe sim-
ilar concepts. Consequently, terms used in a query might not be present in all
relevant documents. This can severely hinder retrieval because not all users
would know the right terms to use to retrieve a relevant document. Sourcerer
provides a solution to harvest more meaningful words for code entities by
incorporating code-specific heuristics in the index model. This enables devel-
oping retrieval schemes that allows code entities to be matched with relevant
query terms even when the terms themselves are not originally present in the
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code entity. This contributes a unique solution to tackle the vocabulary prob-
lem in code search.

For an elaborate description of vocabulary problem, see [8]. SAS used Scheme
2 retrieval scheme shown in Figure 8.4 and used all five heuristics shown in Figure
8.3.

8.5 Stored Contents

The Sourcerer infrastructure maintains a collection of stored contents corresponding
to each of the three models.

A File Repository keeps a collection of files downloaded and fetched from open
source repositories in the Internet. The structure of the file repository follows the
storage model.

Two different databases store the relational information about the contents in the
file repository. First, ArtifactDB stores limited information about the jar files found
in the repository in order to enable the automated resolution of missing dependen-
cies [28]. Second, SourcererDB stores the relational information on all projects,
files and code entities that exist in the file repository. Both databases exist as MySql
databases whose schemas confirm to Sourcerer’s relational model.

A Lucene-based Search Index is available that stores information about terms
extracted from each code entity in the corresponding documents and fields. The
search index uses a code index schema following the index model.

Sourcerer’s web site [34] provides details on the most recent statistics on the
size of its contents. Currently, it repository contains above 3 million source files
from 18,826 open source projects.

8.6 Services

All the artifacts managed and stored in Sourcerer are accessible through a set of
Web services. These services provide a layer of abstraction and programmatic ac-
cess to rapidly build applications that can leverage the underlying contents stored in
Sourcerer.

Relational Query: Both ArtifactDB and SourcererDB are implemented as MySql
databases. They provide direct access to query the underlying structural/relational
information in Sourcerer using standard SQL. Relational Query is the basis for rich
structural queries over code. Dependency slicing, code rank, and usage similarity all
relied on SQL queries. As another use-case of using relational information, given
below are some details on snippet extraction (taken from [3]) implemented for SAS.
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Snippet Extraction in SAS

The retrieval scheme for SAS takes a keyword query and returns a ranked list of code
entities as search result. This ranked list of entities is called hits and each entry in the
list is called a hit. The retrieval scheme also returns the total number of entities in
the index that match the query. For each hit the corresponding ‘entity_id’ (a unique
identifier for a code entity) is available. Further details about the code entity can be
queried from SourcererDB using the ‘entity_id’. SAS uses the information returned
by its retrieval scheme to extract a corresponding code snippet for each hit (entity)
in the list.

input : hits = top ‘n’ hits returned as search results; where, n = max_of(10,
10% of total hits)

output: top_used = list of top used entities
1 begin
2 list_eid = all entity ids from hits;

/* getTopApis(..) selects top 5 non-JSL (Java Standard Library) entities of
each type (Interface, Method, Constructor, Classes) from SourcererDB
such that they are used by at least 3 entities in the hits */

3 top_used = getTopApis(list_eid);
4 end

Algorithm 1: Getting the List of Top Used Entities

Snippet extraction proceeds in two steps. First, given a set of hits, a list of top
APIs (used entities) is generated. This process is shown in Algorithm 1. As an input
Algorithm 1 takes a list of top ‘n’ hits where, ‘n’ is the greater of 10 or 10% of the
total number of hits. These ‘n’ hits give ‘n’ unique entity ids (Line 2). To find the list
of top used entities, the search application queries SourcererDB for the top non-JSL
entities that are used by the entities in the list (Line 3). For each entity the top 5
Interfaces, Methods, Constructors, and Classes are selected. Among all these used
entities in the list, only those entities that are used by at least 3 different entities are
returned as the top used entities (output of the algorithm).

The second step involves generating code snippet for each entity in the hits. This
is done using the list of top used entities and the ‘entity_id’ of a given hit. The
algorithm for this process is shown in Algorithm 2. The procedure first queries
SourcererDB to locate all the positions in the source of an entity where any of the top
APIs are used (Line 3). For all APIs that are used in a position, a rationale comment
is generated (Lines 5 - 8). A rationale comment indicates the type and FQN of the
used API. Then, a few of the surrounding lines of code are extracted from each
starting position (Line 9). Rationale comments are inserted on top of these extracted
lines (Lines 10 - 13). Finally, a sequence of these commented code fragments is
returned as an example code snippet. A sample Java code snippet generated using a
hit returned for a query “write to workbench error log” is shown in Figure 8.5.
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input : eid = entity id, top_used = top used entities
output: snip = an annotated code snippet

1 begin
2 snip = empty string;

/* getUsedPositions(..) looks up SourcererDB and returns all positions in
the code where top_used entities are used. Positions are mapped to a list
of used entities */

3 used_pos_map = getUsedPositions(top_used, eid);
4 forall the position IN used_pos_map do
5 rationale = empty string;
6 forall the used_entity IN used_pos_map[position] do

/* Below, append(a,b) returns a new string by appending string ‘b’
to ‘a’.createRationale(..) selects relation type and FQN of used
entity and creates a rationale as a comment */

7 rationale = append(rationale, createRationale(used_entity, eid));
8 end

/* extractFragment(..) extracts the surrounding expression in a code
entity from position */

9 snip_fragment = extractFragment(eid, position);
/* appendSnip(..) works same as append(..) and returns true if

rationale and snip_fragment do not already exist in snip */
10 if appendSnip(rationale, snip_fragment) /2 snip then
11 snip = appendSnip(snip, rationale);
12 snip = appendSnip(snip, snip_fragment);
13 end
14 end
15 end

Algorithm 2: Snippet Extraction

Fig. 8.5 Annotated API Usage Example for the Task of Programmatically Writing to Eclipse
Workbench’s Log
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In Figure 8.5, Lines 5 and 14 are two positions in the code where some top APIs
were found to be used. Lines 1 - 4 show rationale comments for two APIs (IStatus
and the constructor for class Status) that are used in Lines 6 - 10. Similarly, Lines
12 and 13 show rationale comments for two APIs that are used in Line 14.

Repository Access: This service provides access to the textual contents of three
of Sourcerer’s relational model elements: File, Entity, and Comment. Repository
access is a simple HTTP-based Web service that returns the full text for one of the
three relational model elements given their unique ids as parameters.

Dependency Slicing: This service provides dependency slices of the code en-
tities in SourcererDB. A dependency slice of an entity is a program (collection of
Java source files) that includes the entity as well as all the entities upon which it
depends. Requested slices are packaged into zip files, and should be immediately
compilable. The dependency slicing service can take in one or more entity ids and
return a zip file containing the collection of sliced/synthesized Java files that the
given set of entities depend on. The chapter by Ossher and Lopes in this volume
provides an in-depth discussion of dependency slicing.

Code Search: This service implements a query processing and a code retrieval
facility. Code search applications (such as CodeGenie [18, 16, 17, 19] and Sourcerer
API Search) can send queries as a combination of terms and fields and the service
returns a result set with detailed information on the entities that matched the queries.
The query language is based on Lucene’s implementation using which clients can
express structural information in the queries. The matching and scoring (ranking) of
entities follow Lucene’s implementation. Details on how Lucene matches the query
terms in index fields and score the matched entities are given in [37]. In summary,
a boolean retrieval is performed based on a Lucene query as described earlier in
Section 8.4.3, then all matched entities (documents) are ranked using the TF-IDF
measure [23].

Fig. 8.6 Usage Similarity Computation based on Feature Vectors

Similarity Calculation: The Similarity Calculation service takes in an entity_id
of an entity ‘e’ and returns a list of other entities that are similar to ‘e’. Currently, the
similarity calculator can suggest similar entities based on three different measures
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of usage similarity. For this purpose, the similarity calculator uses the usage infor-
mation stored in SourcererDB. The similarity calculation service works based on a
feature vector representation of code entities. As shown in Figure 8.6 for each code
entity such as the methods foo(..) and bar(..) a vector representation of used
APIs are stored, where each entry in the vector indicates usage frequency (could be
binary for certain similarity measures). For example, Figure 8.6 shows that foo(..)
uses API a1 once and API a2 twice. Given a measure of similarity based on feature
vector (for example Cosine Distance [23]), the similarity measure between two
code entities foo(..) and bar(..) can be computed (Usage_Similarity(foo(..),
bar(..)). With this collection of feature vectors, for each entity a given set of top
similar entities based on API usage can be computed by choosing an appropriate
similarity function that works on feature vectors. The Structural Semantic Indexing
(SSI) technique makes use of the similarity calculation service and uses three dif-
ferent measures of similarity. Further details on similarity calculation is available in
[3] and [6].

Except the Relational Query service, all other services are HTTP-based services.
Currently three services are open to the public. A detailed description of how to use
these services is available online [35].

8.7 Tools

A number of loosely coupled tools are available in the Sourcerer infrastructure.
These tools are primarily responsible for collecting/analyzing source code and pro-
ducing the stored contents.

Code Crawler: Sourcerer consists of a multithreaded plugin-based code crawler
that can crawl the Web pages in online source code repositories. One of the chal-
lenges in designing the Code Crawler was to adapt with the changes and differ-
ences with Web pages in different Internet repositories. To address this challenge,
the crawler follows a plugin-based design. A separate plugin can be written target-
ing the crawl of a repository. This makes it possible to just update the plugin (or
add new plugins) when a different (or new) Web site has to be crawled. Currently
the crawler consists of plugins for Sourceforge [44], Java.net [40], Tigris [45],
Google Code Hosting [39], and Apache [38]. The crawler takes a set of root URLs
as an input and produces a list of download URLs and version control links along
with other project specific metadata. This project specific metadata is in the form as
specified by (the project.properties file in) the storage model. Since Sourcerer
only supports Java source files, the crawler uses heuristics to detect the presence
of Java source files in a repository’s Web page. These heuristics are common pat-
terns specific to each repository. For example, a tag named ‘Java’ in a project from
Google Code Hosting, and the presence of keywords such as ‘java’, ‘eclipse’, ‘ant’,
etc in a project from Java.net are used as indicators that a project has source code
written in Java. These projects are candidates to be picked for further processing.
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Repository Creator: The repository creator tool is responsible for parsing the
code crawler’s output list, filtering noise from the list (e.g., removing duplicate
links), and downloading the contents from the online repositories to Sourcerer’s
local file repository. Given a local file repository’s root folder, the repository cre-
ator creates the required folder structure and places the contents as specified by
Sourcerer’s storage model. The repository creator first creates the two level folder
structure based on the number of projects it needs to add to the repository. Second, it
creates the project.properties file describing each project. Third, it fetches the
files from remote/original repositories. project.properties has metadata about
two contents sources in remote repositories: (i) SCM systems such as svn and cvs,
and (ii) downloadable packages such as compressed distributions (zips, tars, etc).
When information on a SCM repository is available, the repository creator first tries
to check out contents from the respective SCM system. If errors are encountered,
or if the SCM check out brings no contents, then the repository creator down-
loads all the packages, given that the information on links to the packages exist
in project.properties. After the download, the repository creator explodes the
archives inside the content folder corresponding to the project. The end result of
this process is a local Sourcerer file repository, based on the storage model, which
contains contents fetched from remote open source repositories.

Repository Manager: The repository manager tool is responsible for two tasks:
(i) library management, and (ii) optimizing the local repository for feature extrac-
tion. Under library management, the repository manager creates and maintains a
local mirror of all jar files from the Maven2 central repository. It also aggregates
all of the jar files from the individual projects into the jars directory. It then creates
an index of all the unique jar files in the repository. These jars can be used to pro-
vide missing types to projects in Sourcerer’s file repository during feature extraction
if needed. Under optimizing the local repository, the repository manager performs
tasks such as compressing the contents inside a project’s folder, and cleaning the
jars’ manifest files to avoid problems due to unexpected classpath additions.

Feature Extractor: The feature extractor in Sourcerer is responsible for ex-
tracting the detailed structural information from the source code files stored in
Sourcerer’s file repository. The feature extractor is built as a headless Eclipse plu-
gin, to make use of Eclipse’s (Abstract Syntax Tree) AST Parser. Before running the
feature extractor, the source code is preprocessed to detect missing libraries using
import statements. Some additional heuristics are used to be able to fully resolve the
bindings in the source code types and links to the libraries. These heuristics are fully
explained in an earlier publication [28]. The repository manager and the feature ex-
tractor together implement the required techniques for Automated Dependency Res-
olution, a key feature available in the Sourcerer infrastructure, that enables feature
extraction from large number of open source projects despite missing dependencies
and errors. In summary, automated dependency resolution works as follows. First,
the feature extraction runs through the available projects to detect missing types. It
creates the AST representation of code available in the projects and generates a list
of missing types reported by the underlying Eclipse parser. From the list of missing
types, the feature extractor generates a list of possible FQNs for those types to be
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found. It then looks up the ArtifactDB for possible jar files where the missing FQNs
could be found. While doing so it selects the jar files that can provide the maximum
number of missing FQNs. Once the jars are selected, they are included in the class-
path of the project with missing types and then the feature extractor runs again. This
process is repeated until all missing types are found or if no jars could be located for
remaining missing types. After this step, the feature extraction does a full extraction
of entities and relations from the projects. Our evaluation of automated dependency
resolution has shown that it can increase the percentage of declaratively complete
projects in Sourcerer’s file repository from 39% to 69%. Automated dependency
resolution is fully explained in [28].

Database Importer: This tool allows importing the Feature Extractor’s output
into the code databases: ArtifactDB and SourcererDB.

Code Indexer: The code indexer tool is responsible to index all code entities
in Sourcerer’s file repository using the textual and structural information available
for the entities. The code indexer obtains this information using three services, the
File Access Service - to obtain the full text corresponding to a code entity, Sourcer-
erDB to retrieve entities and comments related to a code entity being indexed, and
Similarity Calculation service to retrieve similar entities. As a result of the index-
ing process, the code indexer produces a semi-structured full text index based on
Lucene [41]. To index a code entity, the code indexer can retrieve all or some the
following data: the full-text for the corresponding entity, the fully qualified names
(FQNs) of related entities, comments of the used libraries, and FQNs of used enti-
ties. The search index schema will consist of fields to store the terms corresponding
to these data types. The terms are extracted from the FQNs and full text of source
code documents using code-specific analysis techniques (e.g., camel case splitting
and removing language keywords as stop words). The code indexer tool consists of
several of these code-specific analyzers.

Code Ranker: The code ranker tool constructs a graph representation of source
code analyzed in Sourcerer. Entities constitute the nodes and relations constitute
the egdes in the graph. After constructing this graph, code ranker applies Google’s
Pagerank [15] algorithm on top of this graph to compute the Pagerank (called
CodeRank) for each entity which can be used as a measure of popularity of a code
entity in the code graph. SCSE used the value of CodeRank as one of the heuristics
to rank retrieved results.

8.8 Summary

The combination of models, services, and tools makes Sourcerer a unique infras-
tructure supporting three different code search applications. Going back to the re-
quirements that were listed (in Section 8.2) for the three code search applications,
we can summarize how Sourcerer meets these requirements.

SCSE: The storage model, stored contents, and the crawler in Sourcerer allowed
collection of source code from large number of open source repositories, and store
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them locally making available for required further processing. The relational model
and the code parser tool allowed fine grained parsing and storing parsed information
in a readily available form. Being able to parse source code allowed storing and re-
trieving source code at the level of finer entities such as classes and methods. Using
fully qualified names as keys for entities, and following relations in SourcererDB,
SCSE provied a structure-based measure of CodeRank to rank code entities. As dis-
cussed in the index model, several code-specific heuristics were supported to build
retrieval schemes that were specific to source code.

CodeGenie: The semi-structure index model with fields that supported retrieval
using signatures provided basic retrieval for CodeGenie. Information about code
entities and relations between them, allowed implementation of dependency slicing
- a novel technique to extract and synthesize declaratively complete code snippet
collection for CodeGenie.

SAS: Information on entities and usage (relations such as method calls and class
extensions) allowed building API usage profiles for each code entities in the form
of feature vectors. This served as the basis for usage similarity computation among
code entities, allowing to devise novel indexing technique such as SSI using the us-
age similarity heuristic. Furthermore, full relational information on relations among
code entities allowed computing useful API usage statistics that helped implement-
ing useful snippet extraction technique.

The three code search applications were built one after another and Sourcerer
evolved as it had to support the requirements for the applications. These require-
ments can be seen as major challenges that code search infrastructure builders need
to address. A major lesson learnt with the implementation of three code search ap-
plications was that structural information provides valuable ways to build effec-
tive code search applications, and challenges inherent in building such applications
can be overcome by harnessing large collection of source code and libraries avail-
able over the Web. Two important factors contributed to Sourcerer’s success. First,
a principle of leveraging structural information in source code to build effective
search applications. This principle guided its design and implementation. Second, a
loosely coupled architecture that made it possible for selective use of smaller set of
elements across applications.

While SCSE, CodeGenie, and SAS represent three state-of-the art research pro-
totypes for code search, Sourcerer does not address needs to develop every code
search application that developers would need. For example, Sourcerer does not
provide support for information related to evolution and code changes, and there-
fore do not support search requirements around the problems related to evolution.
Also being focused solely on Java as the language of choice, Sourcerer does not
provide support to search in other languages. Sourcerer does not do any form of de-
duplication of source code while maintaining the repository for the three code search
applications. These could be some possible future improvements for Sourcerer and
next generation code search infrastructures.

Sourcerer’s contents as well as its implementation are freely available for oth-
ers to use. The content is released as a citable dataset [21]. The implementa-
tion is available as an open source project in Github [36]. These efforts have en-
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abled external researchers to use Sourcerer’s content and services in their research
[30, 24, 27, 33, 22].

8.9 Further Reading

Descriptions of earlier versions of Sourcerer are available in [2] and [20]. SCSE
was first described in [1]. Code specific heuristics used in SCSE and their formal
evaluation is discussed in [20] and [6]. Further details on CodeGenie is available
in earlier publications [18, 17]. For details on user experiments and effectiveness
evaluation of CodeGenie consult [6]. For detailed discussion on implementation
and evaluation of SSI refer to [3]. More details on SAS is given in [4]. A defini-
tive resource on details of the Sourcerer infrastructure, in particular the research
contribution it made along with all three code search applications presented earlier
(SCSE, CodeGenie, and SAS) is the author’s doctoral dissertation [6]. A revised
version of Chapter 3 from [6] appears in [5]. The chapter by Ossher and Lopes in
this book provides the most recent and detailed discussion on dependency slicing
that is one of the core services available in the Sourcerer infrastructure. The Soft-
ware Engineering research community has produced a large body of work related
to code search. A detailed review of some of these closely related to Sourcerer is
available in [6] (Chapter 1). Next we summarize some of the work that focused on
building code search application on top of a large-scale repository.

Merobase [14] is an infrastructure similar to Sourcerer. Like Sourcerer, Mer-
obase has built a large code repository, a code/component search engine and a Test-
Driven Search application using its repository. Merobase offers syntax aware code
search, and covers additional languages (C++ and ADA). There is no documented
evidence that Merobase includes structural ranking such as Sourcerer Code Search
Engine’s CodeRank, or advanced indexing techniques leveraging structural similar-
ity such as Sourcerer’s SSI. Its Test-Driven Code Search application, Code Conjurer,
provides a feature to do background search not present in CodeGenie (Sourcerer’s
TDCS application), but lacks automatic dependency slicing that allows declara-
tively complete program slices to be merged into a developer workspace to create
self-complete code fragments satisfying the unit tests. Sourcerer also provides tech-
niques to do deep parsing of declaratively incomplete code found in repositories;
this makes Sourcerer resilient and superior in terms of extracting and leveraging
structural information from source code collected from the ‘wild’. The chapter by
Hummel and Janjic in this volume provides an in-depth discussion of CodeConjurer.

Maracatu [10, 9] is another infrastructure built for code search. Similar to
Sourcerer, it is limited to searching Java source code. The authors of Maracatu
present useful requirements such as index update and optimization, but it is not clear
whether Maracatu implements all of such requirements. Sourcerer does not have a
proper mechanism to update its index to deal with changes in code repositories.
Maracatu also supports faceted search, where the facets are platform, component
type and component model. Sourcerer’s index model (being based on Lucene) sup-
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ports faceting out-of-the box on any metadata present in its index. However, the only
faceting that has been implemented in an end-user search application is in Sourcerer
API Search, where the top API elements can be used as facets to filter the code
results.

S6 [29] is another Test-Driven Code Search application, that applies code trans-
formations to convert source code found via code search into workable solutions.
Parseweb [31], is another code search application that uses source and destination
object types as input query to retrieve code files from existing code search engines.
It applies program analysis on retrieved files to extract method sequences that work
as code samples to get destination object types from source types. Applications
such as S6 and Pasrseweb can easily benefit from code search infrastructure such as
Sourcerer.

Portfolio [26] is a code search application that incorporates structural informa-
tion in ranking and retrieval. One of its unique feature is to show the call graph
of functions involved in the search results. Portfolio provides search access to over
18,000 C/C++ projects and 13,000 Java projects. As reported in its web site, the Java
projects used in portfolio come from Sourcerer and Merobase repositories [33].

Although not a code search infrastructure, FLOSSmole [13] is another major un-
dertaking in building large collection of metadata about open source projects on the
Web. Currently, FLOSSmole reports a massive data collection of more than 500,000
open source projects in its web site [32]. For code search infrastructure builders,
now it is possible to leverage FLOSSmole’s project metadata to build code reposito-
ries instead of spending an effort in implementing custom spiders and crawlers for
code.

Acknowledgements The author would like to thank Joel Ossher, Otavio Lemos, Trung Ngo, Huy
Hunh, Paul Rigor, and Erik Linsted for their contributions to the Sourcerer infrastructure. The
author would like to thank Cristina Lopes and Pierre Baldi for their advice and support in making
Sourcerer successful.

References

[1] Bajracharya, S., Ngo, T., Linstead, E., Dou, Y., Rigor, P., Baldi, P., Lopes, C.:
Sourcerer: a search engine for open source code supporting structure-based
search. pp. 681–682. ACM Press, New York, NY, USA (2006). DOI http:
//doi.acm.org/10.1145/1176617.1176671

[2] Bajracharya, S., Ossher, J., Lopes, C.: Sourcerer: An internet-scale software
repository. In: Proceedings of the 2009 ICSE Workshop on Search-Driven
Development-Users, Infrastructure, Tools and Evaluation, pp. 1–4. IEEE Com-
puter Society (2009)

[3] Bajracharya, S., Ossher, J., Lopes, C.: Leveraging usage similarity for effective
retrieval of examples in code repositories. 18th International Symposium on
the Foundations of Software Engineering (2010)



166 Sushil Krishna Bajracharya

[4] Bajracharya, S., Ossher, J., Lopes, C.: Searching API usage examples in code
repositories with sourcerer API search. In: Proceedings of 2010 ICSE Work-
shop on Search-driven Development: Users, Infrastructure, Tools and Evalua-
tion, pp. 5–8. ACM, Cape Town, South Africa (2010). DOI 10.1145/1809175.
1809177

[5] Bajracharya, S., Ossher, J., Lopes, C.: Sourcerer: An infrastructure for the
large-scale collection and analysis of open-source code. Science of Computer
Programming (To Appear) (2012)

[6] Bajracharya, S.K.: Facilitating internet-scale code retrieval. Ph.D. thesis, Uni-
versity of California Irvine (2010)

[7] Chen, Y., Gansner, E.R., Koutsofios, E.: A c++ data model supporting reacha-
bility analysis and dead code detection. IEEE Trans. Softw. Eng. 24(9), 682–
694 (1998)

[8] Furnas, G.W., Landauer, T.K., Gomez, L.M., Dumais, S.T.: The vocabulary
problem in human-system communication. Commun. ACM 30, 964–971
(1987). DOI 10.1145/32206.32212

[9] Garcia, V., de Almeida, E., Lisboa, L., Martins, A., Meira, S., Lucredio, D.,
de M. Fortes, R.: Toward a code search engine based on the State-of-Art and
practice. In: Software Engineering Conference, 2006. APSEC 2006. 13th Asia
Pacific, pp. 61–70 (2006)

[10] Garcia, V., Lucrédio, D., Durão, F., Santos, E., de Almeida, E., de Mat-
tos Fortes, R., de Lemos Meira, S.: From Specification to Experimentation:
A Software Component Search Engine Architecture. In: I. Gorton, G. Heine-
man, I. Crnkovic, H. Schmidt, J. Stafford, C. Szyperski, K. Wallnau (eds.)
Component-Based Software Engineering, Lecture Notes in Computer Science,
vol. 4063, pp. 82–97. Springer Berlin / Heidelberg (2006)

[11] Gil, J.Y., Maman, I.: Micro patterns in java code. In: OOPSLA ’05: Proceed-
ings of the 20th annual ACM SIGPLAN conference on Object oriented pro-
gramming systems languages and applications, pp. 97–116. ACM Press, New
York, NY, USA (2005). DOI http://doi.acm.org/10.1145/1094811.1094819

[12] Gosling, J., Joy, B., Steele, G., Bracha, G.: Java(TM) Language Specification,
The, 3 edn. Addison Wesley (2005)

[13] Howison, J., Conklin, M., Crowston, K.: FLOSSmole: A collaborative reposi-
tory for FLOSS research data and analyses. International Journal of Informa-
tion Technology and Web Engineering 1(3), 17–26 (2006)

[14] Hummel, O., Janjic, W., Atkinson, C.: Code conjurer: Pulling reusable soft-
ware out of thin air. IEEE Softw. 25(5), 45–52 (2008)

[15] Lawrence Page Sergey Brin, R.M., Winograd, T.: The pagerank citation rank-
ing: Bringing order to the web. Stanford Digital Library working paper SIDL-
WP-1999-0120 of 11/11/1999 (see: http://dbpubs.stanford.edu/pub/1999-66)

[16] Lemos, O.A.L., Bajracharya, S., Ossher, J., Masiero, P.C., Lopes, C.: Applying
test-driven code search to the reuse of auxiliary functionality. In: Proceedings
of the 2009 ACM symposium on Applied Computing, pp. 476–482. ACM,
Honolulu, Hawaii (2009). DOI 10.1145/1529282.1529384



8 Infrastructure for Building Code Search Applications for Developers 167

[17] Lemos, O.A.L., Bajracharya, S.K., Ossher, J.: CodeGenie: a tool for test-driven
source code search. In: Companion to the 22nd ACM SIGPLAN conference
on Object-oriented programming systems and applications companion, pp.
917–918. ACM, Montreal, Quebec, Canada (2007). DOI 10.1145/1297846.
1297944

[18] Lemos, O.A.L., Bajracharya, S.K., Ossher, J., Masiero, P.C., Lopes, C.V.: A
test-driven approach to code search and its application to the reuse of auxiliary
functionality. Information and Software Technology (2011)

[19] Lemos, O.A.L., Bajracharya, S.K., Ossher, J., Morla, R.S., Masiero, P.C.,
Baldi, P., Lopes, C.V.: CodeGenie: using test-cases to search and reuse source
code. In: Proceedings of the twenty-second IEEE/ACM international confer-
ence on Automated software engineering, pp. 525–526. ACM, Atlanta, Geor-
gia, USA (2007)

[20] Linstead, E., Bajracharya, S., Ngo, T., Rigor, P., Lopes, C., Baldi, P.:
Sourcerer: mining and searching internet-scale software repositories. Data
Mining and Knowledge Discovery 18(2), 300–336 (2009). DOI 10.1007/
s10618-008-0118-x

[21] Lopes, C., Bajracharya, S., Ossher, J., Baldi, P.: UCI source code
data sets (2010). URL http://www.ics.uci.edu/$\sim$lopes/
datasets/

[22] Lungu, M., Lanza, M., Nierstrasz, O.: Evolutionary and collaborative software
architecture recovery with softwarenaut. In: Science of Computer Program-
ming (SCP), (to appear) (2012)

[23] Manning, C.D., Raghavan, P., Schütze, H.: Introduction to Information Re-
trieval, 1 edn. Cambridge University Press (2008)

[24] Masuhara, H., Murakami, N., Watanabe, T.: Duplication removal for a search-
based recommendation system. In: Proceedings of the 4th International Work-
shop on Search-Driven Development: Users, Infrastructure, Tools, and Evalu-
ation, SUITE ’12. ACM, New York, NY, USA (2012)

[25] McCandless, M., Hatcher, E., Gospodnetic, O.: Lucene in Action, 2 edn. Man-
ning Publications (2010)

[26] McMillan, C., Grechanik, M., Poshyvanyk, D., Xie, Q., Fu, C.: Portfolio:
finding relevant functions and their usage. In: Software Engineering (ICSE),
2011 33rd International Conference on, pp. 111 –120 (2011). DOI 10.1145/
1985793.1985809

[27] Murakami, N., Masuhara, H., Watanabe, T.: Optimizing a search-based code
recommendation system. In: Proceedings of 3rd International Workshop on
Recommendation Systems for Software Engineering, RSSE ’12. ACM, New
York, NY, USA (2012)

[28] Ossher, J., Bajracharya, S., Lopes, C.: Automated dependency resolution for
open source software. In: 2010 7th IEEE Working Conference on Mining
Software Repositories (MSR 2010), pp. 130–140. Cape Town, South Africa
(2010). DOI 10.1109/MSR.2010.5463346



168 Sushil Krishna Bajracharya

[29] Reiss, S.P.: Semantics-based code search. In: Proceedings of the 2009 IEEE
31st International Conference on Software Engineering - Volume 00, pp. 243–
253. IEEE Computer Society (2009)

[30] Takuya, W., Masuhara, H.: A spontaneous code recommendation tool based
on associative search. In: Proceedings of the 3rd International Workshop
on Search-Driven Development: Users, Infrastructure, Tools, and Evalua-
tion, SUITE ’11, pp. 17–20. ACM, New York, NY, USA (2011). DOI
10.1145/1985429.1985434

[31] Thummalapenta, S., Xie, T.: Parseweb: a programmer assistant for reusing
open source code on the web. In: Proceedings of the twenty-second
IEEE/ACM international conference on Automated software engineering, pp.
204–213. ACM, Atlanta, Georgia, USA (2007). DOI 10.1145/1321631.
1321663

[32] Web Page for FLOSSmole Project: http://flossmole.org (2012)
[33] Web Page for Portfolio: http://www.searchportfolio.net/ (2012)
[34] Web Page for Sourcerer Project and the Sourcerer Code Search Engine:

http://sourcerer.ics.uci.edu (2012)
[35] Web Page for Sourcerer Web Services: http://sourcerer.ics.uci.edu/services

(2010)
[36] Web page for Sourcerer’s github repository:

http://github.com/sourcerer/Sourcerer (2010)
[37] Web Page on Apache Lucene Scoring:

http://lucene.apache.org/java/2_4_0/scoring.html (2010)
[38] Web Site for Apache Software Foundation: http://apache.org (2010)
[39] Web Site for Google Code Hosting: http://code.google.com/projecthosting

(2010)
[40] Web site for Java.net: http://java.net (2010)
[41] Web Site for Lucene: http://lucene.apache.org (2010)
[42] Web site for Maven: http://maven.apache.org (2010)
[43] Web Site for Maven’s Central Repository: http://repo1.maven.org/maven2/

(2010)
[44] Web Site for Sourceforge: http://sourceforge.net (2010)
[45] Web site for Tigris: http://tgris.org (2010)



Part III
Reuse: Components and Projects



In general, components and projects are reused with minimal modification. In this
Part, there are three chapters that look this phenomenon. Two of them examine the
decision-making surrounding reuse and the remaining two explain how program
analysis can be used to improve code retrieval.

In Chapter 9, “Developing Software with Open Source Software Components,"
Ayala et al. report on their interviews with software developers on how they selected
open source software to use in their projects. De’ and Rao asks similar questions to
CIOs (Chief Information Officers) and senior-level IT managers, in order to learn
how reuse decisions fit in with the overall strategy of a company. This work is re-
ported in Chapter 10, “Open Source Reuse and Strategic Imperatives.”

In the context of software reuse, code retrieval is primarily concerned with lo-
cating the components that best fit a query, need, or problem. In Chapter 11, Ossher
and Lopes describe how they added program analysis algorithms from software en-
gineering to improve existing code retrieval techniques. Similarly, Hummel and Jan-
jic write about how test cases can be used to specify searches in Chapter 12.



Chapter 9
Developing Software with Open Source Software
Components

Claudia Ayala, Xavier Franch, Reidar Conradi, Jingyue Li, and Daniela Cruzes

Abstract The success of Component-Based Software Development is based on the
ability of an implementer team to select, assemble and integrate third-party and other
components with own application software, in order to create a software system that
satisfies (most of) the customer/clientŠs stated needs in an economic and flexible
way. Nowadays, the reuse of Open Source Software (OSS) components available
from the Internet is playing a strategic role in the industry. This chapter aims at
providing empirical evidence on current industrial OSS selection practices based
on semi-structured interviews performed in 17 European organizations. In partic-
ular, the study tackles the following activities: 1) initial identification of available
OSS components, 2) closer evaluation of the identified components, 3) conclusive
decision-making of the chosen ones, and 4) updating of OSS-relevant experience
and knowledge for the actual company. For simplicity we have omitted system-wide
integration and testing activities. The results of this study ought to be valuable not
just for researchers, as a sobering basis in their quest for practical selection methods;
but also for practitioners that regularly drive OSS selection processes with potential
to learn from other colleagues’ work.

Claudia Ayala
Technical University of Catalunya, UPC Campus Nord-Omega, Barcelona ES-08034 e-mail:
cayala@essi.upc.edu

Xavier Franch
Technical University of Catalunya, UPC Campus Nord-Omega, Barcelona ES-08034 e-mail:
franch@essi.upc.edu

Reidar Conradi
Norwegian University of Science and Technology, NO-7491 Trondheim e-mail: conradi@idi.
ntnu.no

Jingyue Li
DNV Research & Innovation, Veritasveien 1, NO-1363 Høvik e-mail: jingyue.li@dnv.com

Daniela Cruzes
Norwegian University of Science and Technology, NO-7491 Trondheim e-mail: dcruzes@idi.
ntnu.no

171



172 Claudia Ayala, Xavier Franch, Reidar Conradi, Jingyue Li, and Daniela Cruzes

9.1 Introduction

Nowadays, the approach of building large software systems by reusing pre-made
software components1 is considered the standard way of developing software sys-
tems [9]. The main motivation is that systematic software reuse is like “avoiding
to re-invent the wheel”. Component-Based Software Development (CBSD) allows
companies to obtain faster adoption of new technology including standards, in-
creased innovation, and reduced costs and time-to-market [10][36].

In particular, the availability of Open Source Software (OSS) components has
greatly influenced the software development practices [20][23]. The evidence shows
for instance that from a sample of 769 companies 33% “provide solutions which are
based on OSS” [11]. Moreover, 48% of 62 software companies use OSS in their
business [42], and in a sample of 569 software companies, 46.8% integrate OSS
in their software systems [25]. These software systems represent a great variety of
application areas from all major vertical sectors [25]. Also, Nokia claims that as
much as 75-98% of the software architecture for its Internet tablet consists of OSS
[27].

However, reusing OSS components (and third party software in general) creates
challenges for their appropriate selection and proper integration, testing and main-
tenance [14]. In addition, licensing terms should be carefully addressed, especially
if an OSS-based system is going to be distributed or sold to the general market [26].

In this context there are two crucial activities that play a central role in the success
of the overall CBSD in the industry, namely selection of components and the knowl-
edge management strategies around the reused components [9][39][40] . Although
there has been a great body of research on component selection, evidence shows
that there is a limited knowledge about current industrial OSS selection practices.
Thus, there is often a gap between theory and practice, and the proposed methods
are hardly used in the industrial practice [28][34][44]. Furthermore, most of the ex-
isting methods lack appropriate knowledge management and reuse mechanisms [3].
As a consequence, software companies are still facing OSS component adoption un-
der considerable risk and uncertainty [8][9][29] and some of them are still reluctant
to arbitrate the risks and benefits of using OSS components.

Thus, focusing on industrial OSS component integrators, i.e., the implemen-
tor(s) in charge of selecting OSS components for their subsequent integration, we
performed a qualitative survey based on semi-structured interviews with compo-
nent integrators from 19 software-intensive organizations. The main goal of this
study is exploring and describing up-to-date industrial OSS selection practices.
The main findings from this initial work may help maturing OSS reuse practices,
since researchers and practitioners may use the evidence to understand the practical
challenges of OSS component selection, and properly align their efforts for facing
them. Furthermore, diverse actors related to the OSS component marketplace (e.g.,

1 “A software component is a unit of composition with contractually specified interfaces and ex-
plicit context dependencies only and can be composed according to a component model by third
party without modification [48]”.
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component providers, components intermediaries, and providers of services around
components) may use the presented evidence to identify and understand other OSS
selection practices and to envisage strategic actions for improvement.

9.2 Background

Systematic software reuse is an engineering strategy proposed to increase produc-
tivity and software quality, and to lead to economic benefit [41]. Although software
reuse has been an active research arena for several decades, the availability of OSS
greatly differs from the “classical” reuse environment based on centralized reposi-
tories with well-organized descriptions of their contents [4].

The Internet is a vital part of successful reuse of OSS components [16][37][50][52]
as it constitutes the fundamental place where components are developed, searched
for, provided, and evolved. Thus, the Internet constitutes the global and virtual OSS
marketplace, characterized by the uncontrolled growth of component offerings and
demands, new versions of existing components, and the lack of standards describing
these components.

The OSS marketplace includes the exchange interactions between reusers and
providers of OSS components, as well as the actions of other actors that facilitate
or promote such transactions. Providers (i.e., OSS communities or companies that
develop and release OSS components) offer OSS components through their own
websites. Reusers use a search mechanism or Intermediary services to find and
select components. Furthermore, a search mechanism is needed to allow naviga-
tion through the marketplace, i.e., either general purpose tools as Google, or spe-
cialized ones as Google Code Search or Koders. Intermediary services are profit
or non-profit organizations or individuals that index and/or distribute OSS compo-
nents or other related products and services. Examples are companies selling support
around certain components or domains, such as Forrester or Gartner; and General-
oriented or Domain specific portals such as SourceForge or TheServerSide, respec-
tively. Also, there are Promoters that are individuals and/or organizations whose
main aim is to foster the OSS movement. Examples are the Open Source Technol-
ogy Group (OSTG), the public-supported FriProg in Norway (www.friprog.no), the
Free Software Foundation (FSF), the Apache Foundation, and personal blogs with
useful resources. Practical research efforts from academia and/or industry can be
also found, such as University of MarylandŠs CeBASE repository that provides a
“lessons learned” database.

A recent systematic review on organizational adoption of OSS [26] shows that
most of the current OSS evidence mainly discusses: (1) the perceived benefits and
drawbacks of OSS or the motivations for adopting it, (2) the success factors for
adoption of OSS, and (3) the extent to which OSS is actually adopted. Furthermore,
there are limited empirical studies of the implications of pre-selecting OSS com-
ponents for later integration in new systems. The existing studies usually also refer
to single case studies or experience reports whose contexts are scarcely described
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and that provide limited information about how the OSS components are integrated.
Only a few studies have conducted large-scale field studies representing several in-
dustrial sectors [14][32][34]. However, all of these studies provide little concrete
advice related to OSS component selection and knowledge management activities,
which are two of the pressing problems that software integrators face every day.

The following subsections provide a brief background on OSS components se-
lection and knowledge management, and summarize the body of evidence that exist
in the area based on published surveys.

9.2.1 State-of-the-Art Component Selection and Knowledge
Management

Roughly speaking, component selection consists of three activities that are usually
staged [19][31][39]:

1. Identification of candidate components: It is aimed to locate one or more candi-
date components that may cover some of the system requirements (while avoid-
ing non-relevant components) and to acquire information that makes their evalu-
ation and comparison feasible.

2. Evaluating components with respect to the expected requirements: This activity
aim to assess to what extent the candidate component(s) covers/cover a major
part of the system requirements.

3. Choosing suitable component alternative(s): This refers to the comparison of the
candidate components to choose the one(s) that “best” fits/fit the stated require-
ments.

However, in all the above selection activities, non-functional requirements (also
called quality attributes) - like reliability, security, usability or maintainability Ű
are hardly covered, as they express hard-to-capture and late-emerging system-level
properties. On the other hand, most OSS components seem to fare satisfactorily on
quality issues [34]. Evidence exists that the practitioners’ perception of OSS in the
embedded systems area is also satisfactory [35].

9.2.1.1 Identification of OSS Components

Searching for reusable components was traditionally supported by centralized com-
ponent repository systems with specific classification and searching mechanisms
[21]. However, the free availability of OSS components has shifted this focus to a
global reuse approach [41]. Much effort to support component searching have been
devoted to classification structures and specialized search engines. Birkmeier and
Overhage provided a comprehensive overview of this in [8]. Several classification
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approaches and schemes2 have been proposed to describe component properties
(attributes) and their values. Likewise, many automatic or semi-automatic search
engines with various technologies have been proposed for finding and identifying
related hits, relying on a multitude of available component catalogues. Represen-
tative examples are Google’s code-specific search tool (Google_Code_Search) ad-
dressed to find OSS code on the Internet, and academic tools such as IPSCom (In-
telligent Portal for Searching Components) [1], or MoReCOTS [54]. In addition,
both Global Ontologies [13][47], and The Semantic Web [2] have been proposed
to deal with the lack of homogeneous descriptions of components. However, none
of these mechanisms and tools have been feasibly implemented or adopted in in-
dustrial practice [8][13]. Furthermore, component searching has been stated as a
complex and immature arena, that actually requires different common efforts from
very diverse areas such as software reuse, code search, information retrieval, and
program comprehension [22][51].

9.2.1.2 Evaluating and Choosing OSS Components

In recent years there has been a plethora of proposals aimed to support compo-
nent evaluation and decision making. These proposals range from suggesting sets of
evaluation criteria and changes to the software development processes, to propos-
ing novel technologies emerging from other areas such as decision support systems,
method engineering, strategic contracting and procurement, simulation and formal
reasoning. Early proposals mainly focused on proprietary closed source components
(i.e., COTS), but in the last years the potential benefits of OSS are gaining consid-
erable attention. Several proposals and large scale research projects focus on OSS
selection particularities. Some of the first examples are the OSMM (Open Source
Maturity Model)[24], OpenBRR (Open Business Readiness Rating)[43], and the
QSOS (Qualification and Selection of Open Source software)[46]. Besides suggest-
ing a number of new evaluation criteria that reflect the components’ OSS nature,
they share the same fundamental selection principles as those for COTS compo-
nents. Such evaluation criteria are further explored by, for instance, the QualOSS
Model Framework [15], the QualiPSo model of OSS trustworthiness [18], and [17].
Comprehensive surveys can be found in[28] [31][37][38][39]. However, regardless
of the kind of components, these proposals mainly address and mostly focus on
the evaluation criteria and decision-making phases, setting aside the practical prob-
lem of how to search for and locate components and to assign suitable information
about them [28][32]. As a result, there is no consensus on the applicability of these
proposals in industrial practice.

2 A classification schema corresponds to an ontology or taxonomy. Consider the joint work by
WHO and the National Institutes of Health in USA on a common term base for medicine, currently
with over 1.8 million terms. So, coping with the size, evolution, consistency, and up-front costs of
many classification schemas represent formidable challenges. In addition comes the more funda-
mental, “cultural-political” issues behind missing standardization or agreement on many terms,
simply due to incompatible perceptions of the world at large [12]
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9.2.1.3 OSS Components Knowledge Management

Many authors claim that in order to be successful, reuse must embrace not only the
reuse of components but also the reuse of experience around these components [6].
This would enhance the results of the selection processes, by for instance, reducing
the overall required evaluation time and effort, whilst increasing the reliability of the
results. Thus, it has been greatly recognized that documenting the process and deci-
sions related to OSS component selection is crucial to capitalize on the knowledge
gained [41]. However, the analysis of most existing methods show that while most of
them recommend saving the documentation from the selection process, they do not
address adequate mechanisms for recording and managing this body of knowledge
(see [3] for an overview). Furthermore, the evidence presented by Chen et al. [14]
shows that learning represents one of the major costs of OSS-based development
- as for software maintenance in general. Therefore, companies need to effectively
manage their OSS-related knowledge in order to exploit the potential benefits of
OSS [34].

In general, it can be observed that what we really know about the industrial
practice of OSS component selection is quite limited. Most of the component se-
lection proposals assume an “ideal” situation where the components are suitably
arranged, documented and residing in a common place. However, this is far from
reality [9][49]. Therefore, the practical adoption of academic research on OSS is
hindered by industry: 1) not seeing its own practices identified in the research liter-
ature, and 2) not seeing convincing evidence about the effectiveness of these results
in real software development [31].

9.3 Empirical Study in Selection of OSS Components

In order to increase the understanding of the current industrial OSS selection prac-
tices, we stated RQ1:

• RQ1. How do integrators perform OSS components selection?

RQ1 mostly focuses on understanding 1) the selection processes, and 2) the re-
sources used by practitioners to perform the selection.

As the success of OSS-based software development requires that companies ef-
fectively manage their OSS related knowledge, we aimed to inquiry about this issue
stating RQ2:

• RQ2. How is OSS related knowledge managed in the industrial practice?

RQ2 mostly focuses on understanding the mechanisms used to capitalize on the
knowledge gained around OSS components.

As the nature of our inquiry was clearly exploratory, we used a qualitative re-
search approach based on semi-structured interviews to collect data directly from
industrial practitioners [45]. The interview guide used in the study may be con-
sulted at [5]. The target population was practitioners in charge of performing OSS
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component selection activities. The only requirement for companies to participate
was that they had undergone a finished project that implied OSS component selec-
tion. Organizations’ details are given in Table 1. Some respondents came from the
same organization, but worked on different projects as detailed by the fourth column
of the table.

Nineteen respondents from 17 European organizations from Spain, Norway and
Luxembourg participated in the study. These organizations included: software con-
sultancy companies (SCC) that perform software development tasks for different
clients as their primary business; IT departments (ITD) in public or tertiary orga-
nizations that usually perform or outsource some software development task for
covering the internal demands of the organization; to a software house (SH) that
develops and commercializes specific proprietary solutions; and one organization
that provides expert support for selecting software (ESSS) solutions based on their
clients’ requirements. However, this organization does not perform any software
development tasks.

Each respondent was asked to talk about a single finished project that he/she was
familiar with, and a single component used in that project. Interviews were mainly
performed in the mother tongue of the respondents and face-to-face in their working
place, by one or two researchers of the team. Interviews lasted around 1 hour each
and were recorded on paper and tape for subsequent analysis. The project and the
component(s) were chosen by the respondent without any intervention from us. The
resulting set of projects was diverse, and used a variety of components that ranged
from libraries and APIs to more complex solutions.

Interviews were prepared for analysis by a manual transcription of audio records
to text documents, and were finally translated to English so that the whole research
team could equally assess and discuss the data. We used “content analysis” [30] as a
basis for performing the assessment of the collected data, and generating categories
by grouping sentences of phrases that described the same idea, action or property.

9.4 Results

This section presents the results of the study. They are grouped in two subsections
according to the two research questions introduced above. Results are described in
terms of the categories or codes generated from the data analysis. Interpretation and
discussion of the findings according to the research question are tackled in Section
5.
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Org. BusinessPrj. System Component Effort
A SCC a Web appl. for managing a student

DB
Spring web ser-
vice

480

B SCC b Web appl. for an Internet bank Spring frame-
work

17,520

C SCC c Appl. assisting dyslectic people in
typing

Open Office Libs 29,200

D SCC d Content management(CM) covering
req.

Java Script
comp.

21,900

E SCC e Sys. records work hours and
scheduling

RichPhase 14,600

F ITD f Adding statistics to a sys. GoogleCharts 60
G SCC g Website selling items on the Internet Mambo 640
H SCC h Web tool for personal data manage-

ment
Hibernate 1,920

I ITD i A resource management sys. MySQL 5,840
J ITD j Framework for J2EE-based compo-

nents
J2EE comp. ⇤

K SH k Updating of a record management
sys.

IBM CM 12,000

L SCC l Web appl. for management of inci-
dences

Debian ⇤

M SCC m1 Migration a CM sys. to OSS-based Plone 2,280
M SCC m2 Migration from LotusNotes to OSS-

based
OpenCoreBusiness11,520

N SCC n Web queries for visualizing geo.
info.

J2EE comp. 6,000

O SCC o1 GIS sys. managing tele. services GoogleMaps ⇤
O SCC o2 A content management sys. Java components 1,200
P SCC p A web for people collaboration Java components 33,620
Q ESSS q Sys. for the managing shops at the

airport
⇤ ⇤

⇤ Respondent did not know or asked to keep this information confidential.

Table 9.1: Overview of studied organizations, projects, system, and project effort
(man-hour)

9.4.1 RQ1: How Do Integrators Perform OSS Components
Selection?

9.4.1.1 Identification of Components

Figure 1 summarizes the categories of component identification and the respon-
dents that belong to each category. In the searching phase, no company used any
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Fig. 9.1 Characterization of component identification

established procedure or guidelines to drive component identification. Instead, nine
participants stated that they had used or heard about a sought component before,
and were able to find such a component directly. Six participants said that they were
not familiar with any candidate component, and used Internet searches and Internet
browsing to find a component. Two organizations hired an expert company for doing
the tasks related to identifying OSS components. Two respondents also recognized
that no search tasks were performed in the project as the component was decided in
advance by the client or by the boss. In this last case, the respondents recognized
that these practices depended on the client requirements and/or strategic relationship
with component providers.

Regarding the resources used in this stage, in addition to previous experience and
awareness of the components, the respondents said that they used to consult either
experience networks inside the company or domain-specific portals. The former
were integrators familiar with the actual domain, usually knowing where to search
or ask when looking for matching components. In contrast, when such integrators
did not have previous experience, they usually applied two different practices: a)
using Google for browsing the Internet, or b) hiring an OSS selection expert support
from other consultancy companies in case of critical projects.

9.4.1.2 Evaluation of Components

Fig. 2 shows a summary of the results regarding evaluation processes to evaluate
components and the respondents that fall into each category. Fourteen out 19 re-
spondents mentioned that they did not use, nor knew of any formal procedure or
method to drive the evaluation and decisions regarding components. Instead, they
proceeded informally, often without even documenting the information on the vari-
ous components for their subsequent comparison. Two respondents recognized that
the evaluation relied on personal experience and experience from others, especially
to face time-to-market demands and to capitalize on previous knowledge from the
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Fig. 9.2 Characterization of answers regarding processes to evaluate components

team. Two respondents from the same organization said that they hired external con-
sultants to drive the evaluation process. They recalled that they applied a lightweight
approach of the OSMM method [24] to drive the evaluation of components. In ad-
dition, they highlighted that they were trained on how to apply the method, but they
did not apply it on a daily basis. Instead, they just informally applied a reduced
and ad-hoc set of the evaluation criteria that the given method suggested. Another
respondent emphasized that even when they did not follow established procedures,
they had developed a spreadsheet-like tool to help them assign weights according to
some relevant criteria for ranking candidate components in the Enterprise Resource
Planning (ERP) domain, being the one they usually covered.

Fig. 3 summarizes the findings with respect to resources used to evaluate com-
ponents. Nine respondents said that it boiled down to unit and module testing of
very basic component functionalities. Five respondents stated that they even built a
prototype to check if the component behaved as expected. These prototypes ranged
from straightforward ones to more formal ones that required a significant effort to
set up a suitable testing infrastructure. Respondents said that this was not a rep-
resentative practice for other projects in the company. Rather, it was mainly done
when a candidate component was critical and/or used for the first time. Finally, five
respondents said that the component was mainly evaluated based on comments from
other developers in the company or other external people they trusted, but usually
only when the candidate did not play a critical role in the actual system.

In general, respondents agreed that the criticality of a component in a new system
and previous experience with that component had a direct influence on the evalua-
tion process. Components that did not play a critical role in the actual system tended
to be more informally evaluated. Sometimes the evaluation and decision-making
were just based on the awareness of positive opinions about that component, based
on the experience of internal or external people to the organization. On the contrary,
when the criticality of the component was high, integrators tended to invest more
time and resources for evaluating the candidate components.
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Fig. 9.3 Characterization of answers regarding resources used to evaluate components

9.4.1.3 Choosing Components

The most typical situation regarding to the final decision of components selection
was that the development team or its boss decided which component(s) to select.
Fifteen of the respondents reported this same experience. Another typical situation
was that the customers/clients were usually not aware of the internal implementa-
tion of the resulting system. On the other hand, four respondents recognized that
in their projects (i.e., projects l, n, p, q), it was the customer/client who made final
decision on the component to use. This was especially true for companies whose
business model is based on providing component evaluation surveys, and where the
customer/client always has the final decision.

It is important to highlight that in both cases, respondents recognized that the
decisions were greatly influenced by strategic business issues such as established
relationships with OSS providers, previous knowledge or experience with a can-
didate component, technologies or programming languages that the team already
mastered.

9.4.2 RQ2: How is OSS Related Knowledge Managed in the
Industrial Practice?

Although all integrators recognized the importance of exploiting experience and
knowledge sharing to reduce learning costs and minimize risks, only five projects
(i.e. projects a, b, k, l, q) out of 19 had established (either human or computer sup-
ported) mechanisms inside their company to support the selection of OSS com-
ponents. These mechanisms might use dedicated knowledge management systems
to help store and locate usable knowledge. They also might inform about “gurus”
for providing further information, as well as experience for a coupled to distribu-
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tion lists and “wikis”. In addition, some of these respondents also stated that their
company had recently set up a dedicated department or person for gathering and
monitoring the OSS marketplace.

The other 14 respondents recognized that there were not established mechanisms
inside their company to support the reuse of knowledge and experience. Instead,
they proceeded informally by directly asking information from internal and/or ex-
ternal colleagues.

In both cases, navigating on the Internet was stated as an important mechanism
for knowledge extraction and management, especially because of the existence of
Internet resources such as collaborative communities (e.g., TheServerSide, Experts
Exchange, Java Users group) that offer forums and other collaborative mechanisms
to exchange ideas and solutions to common problems.

9.5 Discussion of Main Findings

The previous section aimed to present a general view of the results. This section
aims at discussing the most important findings and observations from the data.

9.5.1 Use of Informal Procedures for Selecting Components

We found that the component searching phase was informally performed and mainly
influenced by previous experience in all the companies. This result is in line with
the claim that component selection methods proposed in the literature mostly focus
on the component evaluation phase, setting aside the problem of identifying compo-
nents and related information [7]. Regarding component evaluation, it was very in-
teresting to see that in contrast to previous studies that stated that companies neither
used nor knew of any formalized methods to select components [14][32][34][44];
our results suggest that there is an incipient interest or awareness of some compo-
nent selection methods, as some companies intend to apply evaluation methods and
tools for supporting evaluation. This was mainly motivated by the need to succeed
and justify the decision on selecting OSS components over proprietary solutions,
and their aim to extend their business model to offer services around OSS-based
solutions.

Finally, regarding OSS component choices we found that although the research
on requirement negotiations often assumes that a client will be interested in, and be
capable of, discussing component selection issues [19], in practice this is usually
not true. In line with the results obtained by Li et al. [34], we found that it was
mainly the reuser’s own organization (i.e., the software project team) that decides
upon OSS components, whereas customers/clients usually only care about the final
products.



9 Developing Software with Open Source Software Components 183

9.5.2 Risk Reduction Strategies

We observed two significant risk reduction strategies: deciding the use of OSS com-
ponents based on previous experience, and hiring specialized companies to select
components.

On one hand, the crucial role of previous experience is because companies need
to face time-to market restrictions, capitalize on the knowledge gained when mas-
tering a component, as well as to avoid the risk of introducing “virgin” or “poor-
quality” components during software development. This is especially true when
the component to be integrated plays a critical role in the system to be built. We
observed that several companies used own or other’s experience as the first risk
reduction strategy when selecting OSS components. So, they avoided the introduc-
tion of components with insufficient or negative track records. While the value of
experience is important, considering it as the most influential factor for selecting
components is at the same time hampering the full exploitation of the potential ben-
efits of the OSS marketplace. Therefore, we need to establish a set of trustworthy
and cooperative OSS communities (even ecosystems) among the potential system
integrators and component providers. This will provide and enable alternative soft-
ware resources that better reflect the integrators’ needs, and lead integrators to face
the risks of using OSS in other ways and not just based on their own experience.

On the other hand, some of the studied projects stated that they had hired an ex-
pert company for performing the selection tasks. Other respondents agreed that this
was a resource also used by their companies in other projects. In addition, all these
respondents agreed that this was an effective strategy for dealing with the risks of
component selection in critical projects. This finding adds to the list of risk reduc-
tion strategies when using OSS components found by Li et al. in [33]. Furthermore,
we observed that hiring support for selecting components was an activity much in
demand for critical projects in almost all organizations. Thus, there seems to be a
potential market niche for companies aiming to provide support for selecting OSS
components.

9.5.3 Importance and Adoption of Formal and Informal
Experience-Sharing Mechanisms

Even not all organizations had established mechanisms to reuse and promote ex-
perience and knowledge sharing, all respondents agreed on the importance of cap-
italizing on the knowledge inside the company. Our assessment and comparison of
the context of companies that had established knowledge management mechanisms
inside the company and those that do not, led us to suggest some factors that might
have positively influenced the adoption of these mechanisms: the stability of do-
mains approached by the companies that valued the reuse of knowledge; and the
need to ensure the maintainability of the resulting systems. In this context, our re-
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sults show that continuous monitoring of the marketplace is becoming a usual prac-
tice among integrators to keep themselves updated about components, technologies
and trends (even before they have a specific need). Therefore, the search practice
is often becoming a continuous monitoring activity rather than being on a project
demand basis. The latter has research and practical implications. On one hand, it
implies a restructuring of the tasks and responsibilities of the software development
team. On the other hand, it has increased the need of enabling intra-organizational
channels of communication for interacting/informing results.

Furthermore, while most of current research usually assumes that component
providers’ portals [7][47], repositories [52] and search engines [13] are the primary
ways in which integrators identify components and information about them; the re-
sults from our study show that integrators hardly agreed on the use of these resources
in practice. Instead, integrators that do not have established knowledge management
mechanisms inside the organization, deal with this task by using resources that pro-
moted experience and knowledge sharing on the Internet, for instance by domain-
specific websites that offer forums to interchange ideas and solutions to common
problems (e.g., TheServerSide or Experts Exchange). The direct interaction with
colleagues and professional networks (e.g., asking for comments about a component
from a colleague, or attending specialized trade shows, conferences or workshops)
gave valuable results as well.

To the best of our knowledge, the exploitation of this social interaction for sup-
porting the OSS component selection has not received great attention yet. There is
a demanding need to effectively deal with the inherent subjectivity of this kind of
information. Reputation mechanisms as used in other business domains as ebay.com
could be really valuable to deal with the subjectivity of diverse opinions.

9.6 Validity Threats

Like most studies in Software Engineering, our study faces some validity threats.
This section discusses these threats in terms of construct, internal, and external va-
lidity, as suggested by [45][53]. It furthermore emphasizes the corresponding strate-
gies used to deal with these threats.

Regarding construct validity, this study was supported by two main principles:
rigorous planning of the study, and the establishment of protocols for data collection
and data analysis. This was especially important as the research involved several re-
searchers and participants from different countries. In addition, the interview guide
used as an instrument to gather data, was carefully designed and piloted with six aca-
demic and industrial people in order to improve its understandability. For instance,
some vocabulary was defined at the beginning of the interview guide to homogenize
concepts.

Regarding internal validity, we tried hard to envisage and harmonize the data
gathering and the subsequent data analysis strategies. With respect to the data gath-
ering strategy, we took relevant decisions for approaching a further understanding
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of the OSS selection industrial contexts. One of the main relevant decisions was to
focus most of the questions of the interview guide on a single component selection
project and a component from that project. In this way, we could further inquire
and analyze specific contexts that generated a particular decision. This enhanced
the value of our analysis and observations, as it allowed for a shared understanding
of the rationale behind OSS selection decisions and the organizational factors.

With respect to the data analysis strategy, recording all interviews (and later
on transcribing them) contributed to a better understanding and assessment of the
data gathered. The generated categories were analyzed, discussed and reviewed by
all researchers of the team to ensure their accuracy, understanding and agreement.
Furthermore, categories were checked with respect to the data gathered in order to
confirm that none of the stated categories refuted any of the conclusions, and that
the variability factors were well understood by the research team.

Regarding external validity, it is important to highlight that qualitative stud-
ies, such as the one we performed, rarely attempt to make universal generaliza-
tions beyond the studied setting. Instead, they are more concerned with character-
izing, explaining and understanding the phenomena under the contexts of study. To
strengthen the external validity, we addressed several topics in our study. Some of
the most relevant ones are listed. First, the companies in this study were selected by
a strategy combining convenience and maximum variation sampling from three dif-
ferent European countries (Spain, Norway and Luxembourg). We tried to mitigate
any possible bias traditionally related to convenience sampling [45] by combining
a maximum variation sampling, so that the approached organizations covered dif-
ferent characteristics regarding size, application domain, and business area. Second,
another factor strengthening the external validity was that we had no control over the
projects and components chosen by the respondents. Third, the approached projects
and OSS components used were of different size and types, and the respondents
had different backgrounds. Nevertheless, most of the resulting sampling companies
were developing web applications, and the approached projects did not cover do-
mains such as real time or life critical requirements. We are aware that both factors
may have an impact on how components are selected, and so we highlight that our
findings might be considered more relevant for the web information systems and
non critical domains. Furthermore, we emphasize that our findings should not be
taken as assertions but as potential hypotheses that need to be further validated.

9.7 Conclusions

This qualitative study presents results related to the exploration of industrial OSS
component selection practices in 17 European organizations. The main findings of
the study reveal some practices that are becoming part of software development, as
well as potential market niches for software-intensive companies.
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The results of this work may provide a broad understanding of industrial OSS
selection practices and have a positive implication for research and practice, em-
phasizing the following three work roles:

• Researchers, who may envisage their own ideas and solutions being revised, con-
sidering factors that are actually used in industrial practice, and identifying new
research challenges and aspects that have been overlooked by the research liter-
ature.

• Software-intensive organizations, that perform OSS component selection prac-
tices, and where the presented results help to increase their awareness of experi-
ence and previous knowledge in the whole component selection process and to
consider other colleagues’ practices.

• Component providers, who may learn about how components are actually se-
lected, which resources are usually applied, and what it is important for system
integrators. This will help them to better address their own product improvement
and marketing strategies.

Finally, while our findings should be further validated, they represent an initial
step forward in maturing the OSS component marketplace. We hope that our study
might motivate other researchers and practitioners to envisage more effective actions
to improve the state of the practice; and thereby contribute to an optimal manage-
ment of the potential risks and rewards of using OSS components.
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Chapter 10
Open Source Reuse and Strategic Imperatives

Rahul De’ and Ravi A. Rao

Abstract Free and Open Source software (FOSS) allows firms to gain strategic ad-
vantage by enabling business agility that is essential to compete in a hypercompet-
itive environment. Literature on the strategic role of IT indicates that contemporary
firms need to constantly upgrade their IT capabilities and maintain flexible IT sys-
tems to remain competitive. We argue that FOSS lends itself well to an iterative pro-
cess of capability development: providing firms with a strategic advantage through
reuse of FOSS. We conduct a qualitative case study-based research of commercial
firms to assess the strategic imperatives of reusing FOSS. Results indicate that the
primary motivation for reusing FOSS is the ability to innovate through access to
open source components along with their embedded knowledge, supported by inde-
pendence from vendor lock-in. Specific advantages enjoyed by firms through the use
of FOSS include flexibility, interoperability, stability, security and time-to-market.

10.1 Introduction

Software reuse, with its potential for providing economic benefits through enhanced
quality and productivity [20], has been extensively researched in the software engi-
neering domain. But does software reuse also provide firms with strategic benefits?
Most research related to software reuse for business purposes has focused on the
economic value of the reuse [7] and the strategy around how to reuse software [8].
In this chapter, we explore whether software reuse, specifically the reusable assets
of open source, provides firms with strategic benefits.
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Software reuse is fundamental to Free and Open Source software (FOSS). By
opening up the source code, FOSS enables its users to not only view and modify the
code of the native application, but also the ability to reuse pieces of code and graft
them onto new applications that address different requirements. FOSS has emerged
as the most successful form of large-scale software reuse with a range of reusable
assets available for deployment across multiple technology platforms.

Our definition of reuse includes absorbing complete FOSS products that are en-
hanced for specific business requirements, as well as deploying FOSS components
that are reused as building blocks for developing custom applications. In addition,
our definition of reuse includes the reuse of the code, as well as the reuse of knowl-
edge; both technical and domain knowledge that are closely associated with the
code.

The research questions addressed by this chapter can be stated as:

• Do firms reuse FOSS to gain strategic advantage?
• What attributes of FOSS motivate IT managers to reuse FOSS?

10.2 Literature Review

Before we attempt to answer our research questions, we synthesize past research
work done pertaining to a) Role of IT in firms’ strategy, b) Software reuse capability
provided by FOSS, and c) Type of FOSS reuse adopted by firms.

10.2.1 IT as a Strategic Resource

Traditional research exploring the role of IT in obtaining strategic differentiation for
firms has drawn from two streams of strategy literature originating from a) Porter’s
five forces and Porter’s value chain models, and b) the resource-based view of the
firm. The first stream of work is drawn from the theory of industrial organization
(IO) and explores the structure of the industry in terms of five competitive forces
[21, 22] including: bargaining power of buyers and suppliers, threats of new en-
trants, threat of substitute products and intensity of competition. The role of IT is
seen as impacting these forces to provide firms with a competitive edge within the
industry structure [18]. While this stream of research provides an explanation of
how a firm is able to leverage IT for manipulating the competitive forces, it does not
address the question of how the competitive advantage can be sustained - as compe-
tition can imitate these actions and nullify the advantage. The second stream of re-
search, drawn from Chamberlainian economics, explores the role of firms endowed
with heterogeneous resources and their ability to extract superior rents from these
resource endowments [2]. The resource-based view (RBV) of the firm suggests that
firms create organizational capabilities through assembling these resources to work
together. Adopting RBV, IS researchers have explored the role of IT resources such
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as IT infrastructure; technical and managerial IT skills; and IT-enabled intangibles
such as know-how, culture, reputation etc. as a potential source of competitive ad-
vantage [1]. The net prescription of this school of research is to develop strategic
IT applications to sustain competitive advantage over time; and to align IT with
business strategy, structure and processes [12].

While this stream of research provides insights on how IT can be leveraged to
gain competitive advantage, these frameworks are not sufficient to explain the role
of IT differentiation in contemporary business environments [24]. Businesses today
operate in a hypercompetitive environment [5], which is characterized by competi-
tion occurring in the form of a series of market disruptions aimed at nullifying any
supernormal returns enjoyed by the incumbent leader [4]. In such environments, ad-
vantages from specific competitive moves are temporary and superior performance
is derived from continuously recreating competitive advantages through innovative
actions [24]. A firm’s ability to rapidly generate these competitive moves thus be-
comes a key strategic imperative [5]. The strategic requirements for firms in a hy-
percompetitive environment include agility, continuous innovation, time-to-market
and the timing of the competitive moves [24].

In sum, the underlying theory of how and why IT innovations provide a strategic
advantage has changed with the changing landscape of the business environment
[24]. The traditional view of IT differentiation was aimed at overcoming Porter’s
competitive forces [18] and to leverage a firm’s heterogeneous resources. With
business environments becoming hypercompetitive, the logic of IT differentiation
shifted towards enhancing competitive agility [24]. Consequently, the source of IT
differentiation shifts from strategic applications to enterprise IT capability; and from
alignment to embeddedness of IT in business strategy [24]. Sambamurthy et al. [25]
examine the strategic role of IT on firm performance and suggest the influence of
IT capabilities on firm performance through organizational capabilities and strate-
gic processes. They stress the importance of developing capabilities that allow the
firm to dynamically combine IT and business resources; and processes that allow
them to combine knowledge, assets and resources to craft innovations. Thus, to
leverage IT for strategic differentiation, mere access to strategic applications is no
longer sufficient. To achieve sustainable competitive advantage, firms need to have a
combination of entrepreneurial alertness that enables them to sense strategic oppor-
tunities; and IT capabilities that enables them to develop innovative solutions. This
co-evolution of strategic processes needs a constant assembling of IT capability in
iterative loops, as firms evolve their competitive position [25].

Thus, in today’s hypercompetitive environment, firms not only need to possess
superior IT capability, they also need to possess the agility that enables them to
constantly discover and develop new knowledge, assets and resources. We argue
that free and open source software lends itself well to this iterative process of ca-
pability development. The reuse of the open source repository rich in ideas, knowl-
edge, techniques and solutions provides firms the ability to constantly evolve their
IT capabilities in tune with their strategic processes. The reusable nature of OSS is
explored in the following section.
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10.2.2 Software Reuse and Open Source Software

Software reuse is the process of using existing software code or knowledge rather
than building new software systems [14]. Software reuse can be considered as
opportunistic or planned [3], and reused either from internal or external sources.
Systematic reuse in software requires the meticulous building of a reusable arti-
fact repository [14] and needs substantial investment in time and effort to iden-
tify reusable code, and to build the necessary tools and repository [11]. Systematic
software reuse originated as a form of reusing knowledge and code from internal
projects with an aim of deriving economic benefits through enhanced quality and
reduced effort [20]. In order to derive such economic benefits, commercial organi-
zations invested in building repositories of reusable artifacts.

FOSS is considered as an example of large scale software reuse with a wide range
of reusable assets [3]. With the advancement of open source, a rich and extensive
set of external repositories with a wide range of reusable assets is now available, not
just to open source developers, but to commercial organizations as well. Unlike cor-
porate reusable repositories which are specifically built to store reusable artifacts,
FOSS is a collection of independent initiatives representing a variety of technology
innovations and approaches. Considering the substantial investment required for de-
veloping a reusable artifact repository, researchers have studied the phenomena of
such a large scale repository being generated out of FOSS. Studies have found em-
pirical evidence of software reuse in FOSS. Code reuse is a form of knowledge reuse
that is fundamental to innovation [11] and the types of reuse in open source include
the reuse of algorithms and methods; lines of code; and software components that
encapsulate functionality [27].

The quality of the reusable artifact is an important determinant of the extent of
reuse. Developers contributing to open source use popularity as a proxy for quality
rating of the reusable components [11]. The motive for these developers is not just
that of cost reduction but also the reuse of knowledge to foster innovation [3]. How-
ever, research also indicates that open source developers work under severe time
and resource constraints and subject themselves to self-inflicted pressure to release
code early [11]. A potential drawback of this practice is the possibility of the soft-
ware components in FOSS not being sufficiently abstracted for effective search and
reuse.

Thus, the emergence of FOSS as a reusable repository has the impact of provid-
ing an external and large repository of assets for knowledge reuse. This provides the
opportunity for commercial developers to reuse not only software but also best prac-
tices including ideas, knowledge, techniques and solutions [3]. However, searching
FOSS components for reuse may not be easy, given the argument of FOSS com-
ponents not being developed with the objective of reuse. Given the nature of open
source reusable artifacts and the difficulty in searching them, we argue that the mo-
tivation for commercial firms to reuse open source should go beyond mere produc-
tivity benefits and include benefits derived from reusing knowledge embedded in
them.
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Empirical studies on the reuse of open source software components indicate a
pattern of reuse ranging from a few blocks of code to entire products [9]. Further,
there is evidence of commercial firms preferring to use open source components as-
is without any significant modifications [16]. Extending these arguments, we clas-
sify the reuse of FOSS by commercial firms as either direct replacement for com-
mercial off-the-shelf products needing no modifications; as customized open source
products considerably enhanced for individual firm requirements; or as completely
crafted applications built from a plethora of open source and in-house software com-
ponents. The choice of how firms deploy and use FOSS varies depending on their
objectives. Firms may chose to use FOSS for various benefits such as economic
advantages, quality and productivity gains, scalability, performance improvement,
security, flexibility and agility.

As argued in Section 10.2.1, firms seeking IT differentiation, seek to develop
IT capabilities and deploy them to gain agility and flexibility. Reuse of FOSS pro-
vides one such means for firms to constantly upgrade their IT capabilities. We ar-
gue that firms seeking differentiation through FOSS would seek gains beyond mere
economic and productivity benefits and leverage FOSS to gain competitive advan-
tage. Such firms will go beyond deployment of as-is FOSS products and tend to
reuse best-of-breed FOSS components to craft customized IT systems. The extent
to which a firm will modify and integrate diverse set of FOSS components will vary
depending on their view of FOSS reuse as a strategic differentiator.

10.3 Research Methodology

We used a qualitative approach to explore the strategic reuse of FOSS in commercial
firms. We conducted case studies of eighteen commercial firms to understand their
usage of open source software. Sixteen of these firms are from non-IT industry
segments: e-commerce, retail, manufacturing, banking and financial services, and
media; and only two are from the IT segment. We collected data using multiple
methods including face-to-face interviews using an unstructured questionnaire, as
well as through secondary sources such as company annual reports, and articles
available in the public domain.

10.3.1 Data Collection

We followed guidelines provided by Eisenhardt [6] for conducting an inductive case
study. Our choice of cases was based on an initial screening of companies that are
extensive users of open source software. Firms were then shortlisted based on their
availability and willingness to participate in the study. Given the focus on strategy,
the respondents of our interview were either the CIO or a senior level IT manager
of the firm. The data collection for these cases was done in late 2010.
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While our approach was predominantly a grounded study, we were guided by
our literature review and hence started with a base category of variables to structure
our interviews [17]. We designed our study as a semi-structured interview based
on a questionnaire that covered the following dimensions: quality and productivity
gains, scalability and performance, security, flexibility and agility. While the ques-
tionnaire was meant to guide the general direction of the interview, the interviews
themselves were kept open ended and the respondents were encouraged to digress
to any other related topics that s/he found relevant to the subject matter of the study.
Given the exploratory nature of the interview, our strategy was to use multiple inter-
viewers. The interviews were conducted by two or more members from the research
team and lasted around ninety minutes. Detailed interview notes including the tran-
scripts of the interview, and the notes containing the researchersâĂŹ impressions
were recorded. This was followed by a detailed “within-case” analysis [6] to assess
the strategic reuse of FOSS within the firm. Once the relevance of the interview was
established, follow-up interview were conducted, if required, to clarify any open
questions that were raised as a result of the within-case analysis. A within-case
analysis was performed after every interview and findings from these analyses fur-
ther guided our subsequent interviews. Thus, the data collection and analysis phases
overlapped to a great extent [26]. The output of interviews were captured through
interview notes and these were coded using template coding [13] and axial coding
[26]. The analysis was conducted within each case separately and then compared
across cases to identify cross-case patterns [26].

The initial data analysis followed procedures suggested by King (1998) for tem-
plate analysis. Instead of adopting an open coding approach, we started with an ini-
tial set of codes as guided by our literature review and then added / modified them
as part of the ongoing data analysis. Detailed case studies were prepared for each
of the firms for which data was collected. As part of the case development, excerpts
from the interview as well as secondary data were coded using the base category
that we started with. New categories were introduced based on the findings from
the interviews. We interviewed IT leaders from eighteen organizations representing
diverse business objectives and found a vast variation in the extent of FOSS usage
among these companies. While we provide our findings related to the strategic reuse
of FOSS across all these organizations, we include below brief case studies on two
of the organizations that considered the usage of FOSS as an essential component
of their overall strategy.

A limitation of the approach to use a base category of the variables to guide
the interviews is the possibility of not covering any new dimensions that may be
of interest. In order to ensure that the interviews cover all possible dimensions,
the researchers made specific attempts to probe the managers on other dimensions
that might have influenced their choice of FOSS from a strategic perspective. The
inclusion of cost as a strategic advantage (beyond mere economic benefits) was a
result of several interviewers citing the strategic benefits derived out of lower cost
as further elaborated in Section 10.4.
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10.3.2 Case Study: Local Search Engine

JustDial operates in the local search engine market in India and is one of the leading
players providing services across multiple channels, including print directory (yel-
low pages), phone/voice search, web search and mobile search. Local search has
evolved from word-of-mouth to print directories to phone-based information ser-
vices, and on-line web directories. The pre-requisite for an effective local search
engine includes the comprehensiveness and the currency of the search index, the
relevance of the search result in the context of local information and the ease and
speed of accessing information.

The business model for JustDial is based on providing end-customers with
people-assisted search data giving information on local Small and Medium Enter-
prises (SMEs). Customers for JustDial are the end-users who act as the audience
and the SMEs who act as the content providers. The revenue stream is through list-
ing fees for sponsored listing; advertisement fees for banners and page impressions;
click-based revenue fees; and revenue through database sharing and partnerships.

Local search in India is a fast growing market that is characterized by low capital
cost, low switching costs, a large number of competitors, operating in a two-sided
market comprising of end users and advertisers and is subject to network effects.
Using Porter’s five-forces framework, we identify the following strategic impera-
tives:

• The industry has a relatively low entry barrier for new entrants, considering the
low capital cost requirement and negligible customer switching costs. As a result,
JustDial had to invest in developing a very comprehensive local SME database.
Ensuring current and relevant information of this database became a strategic
necessity.

• With the increasing proliferation of the internet, more and more consumers are
opting for web searches instead of using phone-based services. Global search
engines such as Google and Yahoo act as default sites and are often used for
local information search as well. Competitive needs arising out of this threat in-
clude the need for technology-led solutions that can compete against the superior
technological powers of the global search engines; and the need to include the
smallest of SMEs in the listing which the generic search engines may not be able
to include.

• Owing to a nascent market with a high potential for growth, the competition in
the field is intense and the basis of competition is not price but providing value
addition. Hence, organizations have to constantly offer new and differentiated
services addressed through superior technology implementation.

The state-of-the-market observed in this field fits the definition of a hypercom-
petitive environment with the incumbent players constantly innovating and trying to
introduce new and differentiated services. Given such an environment and the con-
stantly changing basis of competition, JustDial adopted a strategy of having their
solution offering evolve over time based on market and competitive needs. This im-
posed the constraint of a very short turnaround time from concept to market. Just-
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Dial’s choice to compete based on technology meant that the IT systems had to be
cutting edge, nimble and flexible. The technical considerations include:

• Need for high reliability and accurate information: constant data collection and
integration that needs to be performed with minimal down-time.

• Fast response time (internal target of 95% of the calls to be addressed in less
than sixty seconds). This requires that the Information Retrieval Officers (IROs)
comprehend the customer query, identify relevant information, and retrieve and
communicate information back to the customer in less than sixty seconds.

• Guaranteed and almost instantaneous SMS (short messaging service) response
to user queries requiring superior gateway integration with telecommunication
service providers.

• Manage large amount of data: information maintained for four million customers
and constantly growing.

• Instantaneous data extraction needing superior search engine capabilities.
• Integration of multiple channels such as phone, web, sms and WAP.

10.3.3 Case Study: Travel Portal

Cleartrip (www.cleartrip.com) is a leading Online Travel Agency (OTA) in India.
The range of products offered by Cleartrip include search and booking reservation
for domestic and international flights, hotels, holiday packages, mobile travel ser-
vices, global destination guides along with 24x7 customer services.

The OTA industry in India is a high growth industry with an increasing number
of travelers preferring to use the Internet for planning and booking their business
and leisure travel. While the market is concentrated, with the top three (which in-
cludes Cleartrip) occupying a bulk of the market share; it is also subject to intense
competition and attracts new firms, including large international players. In addi-
tion, competition is also provided by airline carriers who operate their own online
ticketing websites. The customers of the OTAs comprise the section of society with
access to internet and credit cards, and willing to shop online. Given the low switch-
ing costs, intense competition and availability of alternative channels, providing a
favorable customer experience is of the highest priority for OTAs.

Cleartrip’s strategy of providing a superior customer service is captured in their
objective of “making travel simple”. Their approach to implementing this is through
“simple, comprehensive, reliable and responsible” services. Information technology
is core to the functioning of an OTA, and plays a strategic role in achieving its objec-
tives. Simplicity is provided through an easy and efficient search mechanism cou-
pled with simple and efficient booking procedures. Cleartrip are market leaders in
launching innovative solutions aimed at making online reservations simple, such as
the single page view for both onward and return travel; a simple “search, book, go”
look-and-feel approach as against a more traditional OTA look adopted by its com-
petitors; and single string search through the “smallworld” application. The Clear-
trip platform is integrated with several supplier systems including airlines, hotels,
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railways and other travel portals. The smallworld service is offered in conjunction
with Yahoo!, Flickr and Lonely Planet. Reliability and responsiveness also requires
a high uptime, tight integration with supplier systems, provision of accurate infor-
mation and reliable payment gateways.

10.4 Data Analysis

In this section, we summarize our findings on the strategic impact of reuse of open
source software. The two case studies we presented illustrate the strategic imper-
atives of IT for these organizations. Here, we outline the advantage derived from
FOSS by these two organizations as well as those reported by respondents of other
organizations.

10.4.1 Flexibility

Freedom from vendor lock-in and the ability to rapidly customize to changing busi-
ness needs were identified as the main advantages obtained by open source software
in terms of flexibility. The respondents believed that vendor independence was a sig-
nificant advantage and in more ways than one. Independence from vendor lock-in
allowed the firms to upgrade package versions at their own convenience since there
was no threat of a version becoming obsolete.

In the case of JustDial, itâĂŹs strategy of having an evolving system based on
dynamic response to market needs meant the need to be free of any sort of vendor
lock-in and the ability to rapidly change the IT system. The access to source code
rich with contributions from a vast community of developers provided JustDial a
constant source of new ideas and an impetus to constantly innovate.

Cleartrip’s strategy of using a non-traditional user interface meant that standard
applications did not fit their requirement and warranted custom development. The
high demand on search efficiency required them to use best-of-breed algorithms
and open source provided them a rich repository to identify these. Developing the
“smallworld” application required the advanced use of an analytics-based solution
and open source provided an adequate repository for identifying and crafting such a
solution.

Apart from contractual freedom, vendor independence also meant the freedom to
openly innovate and customize the product to their needs, as can be seen from the
following quotes:

Impact of vendor lock-in is beyond just contractual or cost implications, it hinders innova-
tion, customization and impedes time-to-market.

The self-service nature of OSS installation packages and independence from vendor per-
sonnel for installation speeds up the product installation time significantly
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Ability to mix and match various components and the availability of superior
building blocks allowed firms to innovate. In addition, visibility to quality source
code rich in diverse algorithms and logic also provided firms a stiumulus for gen-
erating new ideas. Firms were able to deploy more efficient applications that were
marked by superior performance, better load balancing abilities and high scalabil-
ity. Ability to rapidly adapt to evolving customer needs, specifically in web-fronting
applications was also a significant source of advantage.

Open Source provides [...] advantage for engineers in that there are readily available designs
that engineers don’t have to redo. For example, open source frameworks like Symphony,
Code Igniter, and Cake PHP give the inherent advantage of quick software development
[âĂę] but also enforced pattern programming.

Better functionality, use of FOSS as a starting product base, evolved building
blocks and minimized vendor dependency were identified as the prominent factors
influencing a shorter development cycle time and a faster time-to-market. Product
selection was expedited as there was no need to go through a formal RFP, vendor
evaluation and contracting process. Better release management and ease of product
installation also provided advantages particularly for IT systems that were subject
to frequent changes, such as e-commerce applications.

System development time is reduced by an order of magnitude because of availability of a
superior code base that is rich in functionality.

10.4.2 Interoperability

Respondents stated that adoption of FOSS provided them significant advantages
with over 90% of the respondents claiming benefits due to the interoperability of
FOSS. The study indicates that FOSS adheres to open standards much more than
most proprietary options, with FOSS frameworks adopting open architectures. The
high interoperability of FOSS products allowed businesses to have hybrid IT instal-
lations within their organizations. Additionally, ease of integration of open source
products with other applications, including proprietary products, was an important
consideration towards adoption of open source.

... its [FOSS] easy installation, simple APIs and good documentation made integration
across heterogeneous platforms and frameworks easier.

All proprietary mobile operating systems make it difficult to integrate with their applica-
tions. Compare this with GoogleâĂŹs open source Android platform which leverages the
Web - it opens it up for all other development. The Web has a lot to do with FOSS being
successful as well.

Additionally, interoperability allowed businesses to successfully evaluate multi-
ple frameworks in parallel to meet their performance and scalability requirements,
encouraging a mix and match of components for a best fit. At JustDial, the business
required a tight integration with the SMS gateway to ensure fail-proof delivery of
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SMS. JustDial had to ensure that the system was built by carefully evaluating and
selecting software components based on specific business and technological needs.
Interoperability is also found to reduce vendor dependency and increase the ability
to customize and innovate using available tools and frameworks. Interoperability of
FOSS components makes it easier to build on top of other components leading to
better reuse. As an example, the ability to customize Ubuntu and integrate it with
the Mozilla browser to enhance the data extraction performance on the Information
Retrieval Officer’s workstation was a major factor for its selection in JustDial.

10.4.3 Performance and Scalability

Respondents unanimously agreed that FOSS provided better performance parame-
ters, primarily due to the ability to tweak and fine-tune performance to meet spe-
cific requirements. JustDial had stringent performance requirements on their search
engine and data extraction algorithms. Open source provided JustDial the ability
to choose the hardware platform and develop the software through mixing-and-
matching of various open source components that delivered superior performance.
One example was the use of Sphinx, a full text search engine that integrates well
with the SQL database and provides the ability to achieve fast, relevant and full text
search. In addition, the choice of these open source components provided JustDial
the ability to scale up and support their aggressive growth targets.

The availability of more than one tried and tested, highly scalable, light-weight, open source
framework allows wider choice and makes fine-tuning for performance easier... [In addi-
tion] availability of source code gives a sense of ownership vital for sustainable product
development.

Scalability concerns are one of the major drivers for FOSS adoption among busi-
nesses. FOSS adoption allows businesses to explore multiple options, experiment,
customize and innovate without any upfront investments. When finally deployed,
it helps scale up rapidly while sustaining the cost advantage. Respondents felt that
scalability of FOSS makes it an attractive choice for governments and large busi-
nesses as well. With the expectation of high growth, scalability was a key strategic
imperative for Cleartrip. Given the need for scalability and load balancing require-
ments, they chose to deploy a stateless environment. The ability to tune their Apache
Tomcat web server enabled them to meet this requirement.

10.4.4 Stability

A majority of the respondents (71% ) indicated that FOSS has been instrumental
in creating more stable systems, whereas a small percentage (5%) felt that FOSS
systems are not yet as stable as proprietary software, and the rest indicated no sig-
nificant differences. FOSS adopters who considered FOSS as stable, observed that
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the source code obtained from the OS community is of higher quality and provides
a superior platform. These proponents of FOSS were of the opinion that the fo-
cus of FOSS has been on intrinsic qualities such as stability and efficiency, and not
necessarily just on product features.

This [development] focus is not diluted by any sales pressure. Owing to community in-
volvement, the quality of the product is superior. In addition, the large tester base further
ensures low occurrences of bugs and higher stability.

Further, respondents felt that FOSS provided better reliability, as efficiency gains
translated to reduced resource requirements, leading to lesser points of failure. The
access to source code further aided effective troubleshooting.

Open source helps in troubleshooting and to predict failures, because we have access to
source code.

10.4.5 Security

Our study indicates that FOSS provides means to improve security features with
77% of the respondents claiming security advantages through the reuse of FOSS.
Respondents felt that their Linux systems have been significantly more secure than
proprietary operating systems. Due to the much larger number of eye balls on the
open source code, any security loopholes are spotted quickly and fixed by the com-
munity, thus ensuring that FOSS frameworks provide secure components.

Inherent transparency of FOSS wards off unnecessary intrusion... There is no motivation to
‘hack’ open code... Often, users find it is easy to debug available source and hence find it
more trustworthy leading to inherent security.

10.4.6 Cost Savings

Most firms were of the opinion that while cost savings helped them to justify adop-
tion of open source software, the benefits they accrued from adopting FOSS was
much greater than mere cost savings. Firms adopting open source primarily for desk-
top applications such as Open Office, Thunderbird and anti-virus software that were
typically deployed over a large number of desktops reported “cost savings” as their
sole driver for adopting open source. Firms adopting open source as their infrastruc-
ture layer reported benefits both in terms of cost and superior performance. Further
cost savings were reported due to reduced requirement on hardware resources owing
to the better performance efficiencies of the open source products. Firms adopting
open source for their application layer cited other strategic advantages as the main
driver for adopting open source and cost as being an incidental benefit.

Technology-led start-up firms, having a large part of their budgetary expenditure
on technology, found the better return on investment (ROI) provided by FOSS as a
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strategic lever in attaining early profitability. Cleartrip, being a startup firm, had to
build scale rapidly in order to achieve profitability. Technology is a core element in
the OTA industry and was a big contributor to the cost structure of the firm. Thus,
apart from achieving scale, cost cutting was an important lever to achieve prof-
itability. Achieving high ROI from their technology investment was thus essential.
Use of open source software helped them achieve this, resulting in their technology
expenses being significantly lower compared to competition. In the case of Just-
Dial, the cost advantage of open source provided JustDial with the ability to do vast
in-house development and build a superior technology platform to support the nu-
merous business demands without the worry of astronomical IT development costs.

10.4.7 Types of reuse

A common type of reuse was mixing and matching of different open source compo-
nents to achieve flexibility and superior performance. This ability to mix and match
coupled with the superior building blocks allowed firms to innovate. Crafting appli-
cations by stitching together a diverse set of best-of-breed open source components
was a common strategy adopted by most of the respondents.

The ability to modify the FOSS components, not just in the periphery, but also
core components that allow the fine tuning of the system functionality for specific
performance requirements is another instance of strategic reuse. As an example,
JustDial required a performance-intensive search and browser requirement. They
achieved this by customizing the Ubuntu operating system to tightly integrate with
the Mozilla browser and thus obtain superior performance: an ability not easily ob-
tained when developing with proprietary software.

A third kind of reuse was that of knowledge embedded in the open source code.
Visibility to the source code, rich in diverse algorithms and logic was reported as a
significant advantage from reusing FOSS. Not only were firms able to reuse pieces
of quality code from this repository, they were also able to reuse knowledge embed-
ded in this code. Specific algorithms and their logic enabled firms to build on them
and develop new and innovative ideas.

10.5 Conclusion

We start by answering our first research question on whether firms reuse FOSS to
gain strategic advantage. The findings of our survey indicates an affirmative answer.
The previous section provides evidence of firms reusing FOSS to gain strategic ad-
vantage. For achieving a sustained competitive advantage, firms need to develop
superior IT capabilities: specifically, a rent-generating resource that is not easily
imitated or substituted [1]. It can be seen that these capabilities consist of not just
IT resources but includes a combination of complimentary human and business re-
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sources that provide embedded advantages leading to sustained competitive advan-
tage [23]. In this chapter, we have argued that FOSS can enable firms operating in a
hypercompetitive environment with such capabilities providing them with strategic
benefits that are essential for sustaining competitive advantages.

Following suggestions by Sambamurthy [24] that the strategic requirements for
firms in a hypercompetitive environment includes agility, continuous innovation and
time-to-market considerations, our respondents rated the flexibility to change and
the ability to adapt to changing business needs as a prime motivation for reusing
open source software. Flexibility derived through independence from vendor lock-
in and the subsequent freedom to innovate were identified as important factors pro-
viding firms with the agility to respond to market needs. This is consistent with liter-
ature which suggests that in hypercompetitive environments, superior performance
is derived from continuously recreating competitive advantage through innovative
actions [24].

In addition, better functionality, use of FOSS as a starting product base, evolved
building blocks and minimized vendor dependency were identified as the prominent
factors influencing a shorter development cycle time and a faster time-to-market.
Firms that excelled in the hypercompetitive environment were found to constantly
develop their IT capability in iterative loops [25]. The high interoperability of FOSS,
the ability to mix and match components and use it in conjunction with existing
proprietary software, and the ability to evaluate and adopt FOSS frameworks in
gradual phases enabled firms to constantly develop their IT capabilities in tune with
business requirements.

The robustness provided by FOSS in terms of stability, security and quality al-
lows these firms to ensure a higher operational efficiency through lesser points of
failure, reduced downtime and reduced security breaches. The scalability provided
by FOSS allow firms to ensure that they are protected from the need to constantly
upgrade their IT systems as they scale up their business. The advantages derived
out of lower IT development and operation costs by reusing FOSS were also identi-
fied as a strategic benefit, particularly by start-ups with limited resources seeking to
maximize the value derived out of their IT investments.

As an answer to the second research question on what attributes of FOSS moti-
vate IT managers to reuse FOSS for strategic benefits, we provide a summary of the
attributes and corresponding strategic benefits in Table 15.4.1.

While we have demonstrated how FOSS can endow firms with these IT capa-
bilities, we would like to stress the possibility of several other strategic advantages
that firms can benefit from with the use of FOSS. We attempt to provide two such
examples that could perhaps be included as part of future research.

• Sambamurthy et al. [25] posit that IT investments and capabilities influence firm
performance through three significant organizational capabilities (agility, dig-
ital options, and entrepreneurial alertness) and strategic processes (capability-
building, entrepreneurial action, and co-evolutionary adaptation). It is quite intu-
itive to assume that for firms to develop IT capability in iterative loops requires
certain amount of entrepreneurial alertness to constantly search for new FOSS
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Capability Attributes Strategic benefits

Flexibility Ability to mix and match diverse set of
software components

Agility

Freedom from Vendor lock-in Faster time-to-
market

Availability of superior code building
blocks

Continuous innova-
tion

Source code as a source of innovation and
ideas

Design efficient sys-
tems

InteroperabilityHigh interoperability from adherence to
open standards and open architecture

Agility

Enables deploying hybrid installations of
diverse components

Faster time-to-
market

Reduces vendor dependency Design efficient sys-
tems

Allows integrating multi-platform systems

Performance Performance optimization by integrating
best of breed components

Agility

Scalability Open source database found to be highly
scalable

Faster time-to-
market

Ability to do modification at the OS level:
better integration and higher performance

Design efficient sys-
tems

Stability Better quality providing more stability Design efficient sys-
tems

Lesser points of failure as a result of re-
duced resource requirements

Security Reduced security threats leading to higher
uptime

Design efficient sys-
tems

Cost Savings Enables higher return-on-investment from
technology spend

Design efficient sys-
tems

Table 10.1: Summary : FOSS Reuse for Strategic Advantage

components that can provide them with new innovations. Studying this link be-
tween entrepreneurial alertness and FOSS reuse could be a topic for future re-
search.

• Recent research trends on strategic reuse of IS have focused on the co-creation of
IT value across inter-organizational systems [10]. They argue that the increasing
specialization and the faster time-to-market makes it difficult for single firms to
assemble the required capabilities to operate in a hypercompetitive environment,
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and firms are increasingly collaborating with other firms to co-create IT enabled
products and services. It can be assumed that FOSS with its high-interoperability
can lend itself well to the co-creation of value across business units and organi-
zations. Studying the role of FOSS in co-creating value could be another area of
future research.

As a limitation, we cannot claim the generalizability of our study. Our study pro-
vides strong indications of firms gaining strategic advantages through the reuse of
FOSS. However, our study does not include firms that have leveraged proprietary
software for strategic benefits, nor have we eliminated the possibility of firms hav-
ing suffered strategic disadvantages through the use of FOSS. The only claim that
we would like to put forward is that firms operating in a hypercompetitive environ-
ment can potentially gain strategic advantage through the reuse of FOSS. Also, as
mentioned earlier, our approach to use a base category of the variables to guide the
interviews could possibly lead to some dimensions being missed. While we have
made specific attempts to be open-ended and probed for all possible dimensions, we
do acknowledge the possibility of missing additional attributes of FOSS that could
provide firms with strategic advantage.

It should also be noted that the extent of reuse of FOSS is moderated by the type
of license under which the open source software is released. Permissive licenses
such as the BSD license allow reuse of code for any purpose whereas restrictive
licenses such as the GPL allow reuse only for projects that will be further released
under a GPL license [15]. In this chapter, we do not delve on the licensing issues
of FOSS, but do want to caution the readers on the implications of the type of open
source license on software reuse.
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Chapter 11
Applying Program Analysis to Code Retrieval

Joel Ossher and Cristina Lopes

Abstract Early code retrieval systems were primarily adaptations of standard text
retrieval approaches, and so treated source code as either plain or structured text.
While fairly successful, these approaches ignored much of the information that can
be extracted from the source code. Recently, researchers have demonstrated a num-
ber of ways in which static program analysis can be used to augment text-based re-
trieval approaches. By taking advantage of the structural and semantic information
embedded in source code, advanced code retrieval systems can provide a superior
experience.

This chapter begins describing how basic text-based code retrieval systems func-
tion. It then introduces a basic form of static program analysis which allows source
code to be treated as structured text. Finally, it describes link analysis, an advanced
program analysis technique. Link analysis aids code retrieval systems in numerous
ways, for example enabling better estimates of result quality and the sharing of de-
scriptive terms. The chapter concludes by describing in great detail a single static
program analysis technique called dependency slicing. Dependency slicing is used
in code retrieval systems to package up search results as a compilable unit, which
supports the reuse of the retrieved results.

11.1 Introduction

The increasing availability of high quality source code, as provided by the open
source software movement, has made code reuse a much more attractive prospect.
Rather than developing systems from scratch, developers have the opportunity to
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p u b l i c byte [ ] r eadToByteAr ray ( I n p u t S t r e a m i s ) {
B y t e A r r a yO u t p u t S t r e a m bos = new B y te A r r a yO u t p u tS t r e a m ( ) ;
t r y {

byte [ ] b u f f = new byte [ 1 0 2 4 ] ;
i n t r e a d = 0 ;
whi le ( ( r e a d = i s . r e a d ( b u f f ) > 0 ) {

bos . w r i t e ( bu f f , 0 , r e a d ) ;
}
re turn bos . t o B y t e A r r a y ( ) ;

} catch ( IOExcep t ion e ) {
re turn n u l l ;

} f i n a l l y {
c l o s e ( i s ) ;

}
}

Fig. 11.1 Example Snippet

reuse or draw inspiration from existing implementations of similar systems. Yet the
mere existence of reusable source code is not sufficient; developers need a way to
locate it.

Code retrieval systems provide this functionality, giving developers the ability to
search for relevant units of source code within a large corpus of source code. Simple
code retrieval systems use standard text retrieval approaches, in which keyword-
based searches are used to match relevant lines of source code. These approaches
treat the source code as plain text, disregarding all the deeper semantic information
found in source code.

Source code, due to its formal nature, is a much richer source of information
than plain text. Software engineering researchers recognized this, and developed
advanced retrieval techniques that better utilize the semantic information embedded
in source code. Static program analysis provides the backbone of these systems, as
it provides a mechanism for extracting relevant information from the source code.

For the remainder of this chapter, we will use the snippet of source code in Fig-
ure 11.1 to illustrate techniques for code retrieval. We will begin by introducing
a few basic text retrieval approaches used for code search. We will then describe
how treating source code as structured text, requiring a basic form of static program
analysis, can improve retrieval results. Finally, we will cover link analysis, an ad-
vanced program analysis technique. We will show how links can be extracted from
source code and how they can be used to improve code retrieval. We will also in-
troduce dependency slicing, a link-analysis-based technique for improving search
result presentation.
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11.2 Full Text Search

Imagine that a developer is interested in Java’s ByteArrayOutputStream, and
wants to see an example of it being used. Full text search provides an easy way to
find such examples: it can through a corpus of source code for all occurrences of the
word ByteArrayOutputStream.

Most computer users are familiar with full text search functionality through its
text processor form of ctrl+f, though it can be done from the command-line us-
ing the Linux tool grep [6]. Full text search can include regular expression-based
searching in addition to simple string matching. This gives the user the ability to
specify a more complex range of matches at the expense of speed. Most devel-
opment environments support either plain text or limited regular expression-based
searching, and grep can handle both from the command-line.

The primary advantage of full text search is that it is easy to understand and use,
and does not require any preprocessing in order to function (though preprocessing
can make it faster). Yet while full text searching is effective at finding all occurrences
of the search term, it is not ideal for code retrieval. Results are returned unranked
and usually in order of occurrence, which often causes the user to be inundated
with matches, with irrelevant results mixed in with the relevant ones. In some cases,
refinement of the initial query can eliminate many irrelevant results, but this is not
guaranteed and can be quite difficult.

For example, say the developer from earlier only wanted to see examples where
the toByteArray() method was used. How would one refine the search to only
return cases where that specific method was called? One could not simply add
toByteArray after the ByteArrayOutputStream, as this would require that
the two occur next to each-other in the text. Using regular expressions would allow
the words to be separated, but one would have to be careful that they didn’t occur
too far apart. Also, there is the risk that an unrelated toByteArray method might
be referenced, and not the one associated with ByteArrayOutputStream. Ul-
timately, while full text search has its place, other methods provide a much better
experience for code retrieval.

11.3 Term-based Search

Code retrieval systems have borrowed a number of term-based statistical approaches
for text retrieval from the field of information retrieval (IR). These approaches for
text retrieval help ameliorate the issues with full text search. Rather than treating a
document as an ordered collected of characters, as is done in full text search, term-
based approaches instead divide documents into terms, or words. For plain text, this
division is usually done on whitespace. For source code, characters like ( and { must
also be considered. Camel case words, such at ByteArrayOutputStream, are
also often split apart.
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Unlike full text search, which returns all possible matches in an arbitrary order,
the term-based methods inherently rank matches in order of descending relevance.
When the relevance judgments are accurate, this can dramatically reduce the time it
takes to find a meaningful result. For a full treatment of general information retrieval
methods, we recommend Manning and Raghavan’s Introduction to Information Re-
trieval [10].

One term-based approach is TF-IDF, which stands for term frequency - inverse
document frequency. In TF-IDF, each document is broken into a collection of terms,
and each of the terms is associated with the number of times it occurs in that docu-
ment. Terms are then weighted according to how common they are across the cor-
pus, the intuition being that rare terms are more central to the meaning of a docu-
ment than terms that occur regularly. To search the corpus, the user provides a list
of terms, which are matched against the collection of terms. Documents are ranked
according to how many of the searched terms they contain, and how common those
terms are. While TF-IDF is not the only statistical method for ranking documents,
it sees widespread use due to its perceived quality. Apache Lucene, an open-source
text indexing platform, uses TF-IDF as one of its primary ranking methods.

Statistical approaches for topic modeling are also be used to improve term-based
searching. Topic modeling groups together terms according to identified topics,
which allows the terms to be used somewhat interchangeably. So if a developer
searches for print, the search system can also return results relating to output.
Latent semantic indexing (LSI) and latent Dirichlet allocation (LDA) are two ap-
proaches for topic modeling, and we direct interested readers to Berry and Kogan’s
Text Mining: Applications and Theory [4].

Term-based search methods have a number of advantages over full text search.
They can provide results ordered by relevance. This dramatically increases the us-
ability of the search systems, especially if searches could potentially return thou-
sands of results. Through topic modeling, term-based searches can also handle the
use of synonyms, which can cause significant problems if the vocabulary for a given
search isn’t entirely clear.

These advantages come at a cost. Term-based methods generally require an index
to be created in advance of any searching, which can be time consuming, especially
for large input. This does make individual searches faster than their full text equiv-
alents, however. Another issue is that if the ranking is poor, ranked results become
significantly less useful than unranked results. If users mistakenly trust a poor rele-
vance ordering, they will fail to notice meaningful results.

Returning to our running example, let’s look again at the developer searching for
instances where the toByteArraymethod is called for ByteArrayOutputStream.
Term-based searching simplifies the query dramatically, as now the developer can
simply enter those two terms and the system will return examples where both terms
are present ranked at the top. Due to this approach being purely text-based, the risk
remains that an unrelated toByteArray method might be referenced, and not the
one associated with ByteArrayOutputStream.
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11.4 Structured Text Search

Every term in a document is not equally central to that document’s meaning. This
is the central insight behind TF-IDF, which uses different measures of frequency to
determine a term’s importance. Yet frequency is not the only method for determin-
ing importance; structure is another. The name of a class, for example, is likely more
important a term than one randomly selected from the body of a method. Looking
at our example snippet, the method name, readToByteArray, much better cap-
tures the function of the method than keyword null or the parameter name is. If
a developer searches for is null, this method is likely a poor match, despite con-
taining both terms, especially compared to a method named isNull. To achieve
this, the retrieval system must give priority to matches where the terms appear in
method name.

The syntax of the programming language determines the exact set of relevant
structural elements, and so code retrieval systems must either be language-specific
or use a model that captures common elements across multiple languages. Structural
elements can include features like the file names, method names, the contents of
comments, and the bodies of methods.

In order to take structure into account, every instance of every term is annotated
with the structural element from which it came. The ranking system can then weight
a term according to its origin. Thus a term found in a method name can be weighted
differently than a term found in a method body. This weighting is often a simple
linear combination, but more complicated functions can also be used. There is no
simple method for deciding on the relative weights to use in the ranking system.
Often, the weights assigned are determined by a mixture of intuition (what structural
elements should be more important) and experimentation (what actually works).
Automated training approaches can also be used, where the weights are trained on
a set of predetermined queries whose ideal results are manually specified.

Apache Lucene, the open-source platform mentioned in the previous section,
uses a document model that is fundamentally built around this idea of structured
text [1]. Each document in Lucene is a collection of fields, each of which contains
a collection of terms. Each structural element can be directly mapped to a Lucene
field, and so using Lucene each structural element can be associated with the terms
that originate there. Lucene then supports numerous ways of weighting the fields
when performing the ranking.

11.4.1 Term Extraction

A basic form of static analysis is required for associating terms with structural el-
ements. Such a term extraction system system must be aware of the programming
language syntax, and bears many similarities to the front-end of a compiler; it must
take plain text that conforms to the language specification and convert it to an inter-
mediate form. In a compiler, this intermediate form is then optimized and lowered



214 Joel Ossher and Cristina Lopes

to the output language. In term extraction, this intermediate form is traversed and
terms output with their associated elements.

There are two primary components to any compiler front-end. First, there is the
tokenizer, which breaks the original text into tokens. The tokenizer typically splits
the original text on white space plus some special characters, like braces and paren-
thesis. The tokenizer is sufficient preprocessing for any system that treats the source
code as plain text, as was described in the previous section. In order to extract the
structural elements, however, the tokens need to be fed in to the parser, the second
component. The parser, based on the syntax of the language, builds a tree-based
representation of the text, called an abstract syntax tree (AST). Parsers can either
be written by hand, or automatically generated based on a formal specification of
the language syntax. Given the complexity of the language syntax for many popular
languages, it is generally much easier to reuse an existing parser than develop one
from scratch. For a more complete picture of how compiler front-ends function, we
recommend Aho et al.’s Compilers: Principles, Techniques, and Tools [2].

11.5 Link-based Retrieval

In addition to being highly structured, source code also contains a large amount
of semantic information. Given that source code is designed to be understood by
computers, source code retrieval systems can leverage this semantic information
much more easily than general text retrieval systems. In this section, we will discuss
how links, a specific form of semantic information present in source code, can be
used to improve source code retrieval.

The concept of link analysis first came to prominence with the internet, where
Google showed that it could be used to great advantage with its PageRank algorithm.
In the case of web pages, links are the unidirectional hyperlinks where a webpage
directs its readers to another webpage. The insight behind PageRank was that the
number of incoming links to a webpage could (iteratively) be used as proxy measure
of that webpage’s quality.

In the domain of software, links are slightly different. Rather than being an ex-
plicit hyperlink, a link instead manifests as a name, which is reference to some type
or method defined elsewhere in the code. For example, if a method creates a local
variable with type ByteArrayOutputStream, then there is a semantic link be-
tween that local variable and the declaration of ByteArrayOutputStream. One
common form of link is the method call. When method calls are connected together,
one gets a call-graph, a commonly used link structure in programming language
analysis.

Link information can be used in a number of different ways to improve source
code retrieval. One popular approach is to adapt PageRank to source code retrieval.
This can be found in systems such as Sourcerer [9], Portfolio [11] and Spars-J [16].
Another approach is to use link information to improve the presentation of results or
give users more detailed information on retrieved code. CodeGenie [11] and Code
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Conjurer [7], for example, both use link information to extract executable snippets
of code for reuse, a technique which will be discussed in the next section. SpotWeb
[14], by contrast, counts links in order to give developers an idea of how popular
individual methods in a library are.

Another technique that uses link information is Structural Semantic Indexing
(SSI) [3]. SSI uses link information to address the paucity of descriptive words
present in source code. The key idea is the following: code entities that share com-
mon usage of APIs are functionally similar, and can share the terms used to define
each other. Simply put, if both A and B use a common set of APIs in a similar man-
ner, then A and B are semantically related even if their names are different. As such,
a query for A should retrieve B and vice-versa.

11.5.1 Link Extraction

The first step in performing any sort of link analysis is to build the appropriate form
of link graph. In the context of source code retrieval, a link graph contains a set of
nodes, representing structural elements, and a set of edges, representing links. For
example, to represent a call graph, the nodes would represent methods and the edges
would represent method calls.

Link extraction proceeds in a similar manner to the structured term extraction
described in Section 11.4.1. In term extraction, the intermediate form generated by
the compiler front-end is traversed and the terms output along with their associated
structural elements. In link extraction, further analysis is performed on the interme-
diate form in order to identify the desired links. For example, to build a call-graph,
one must process the intermediate form to identify the method being called at every
method call site. The result is called an attributed abstract syntax tree, as the abstract
syntax tree has been attributed with type and reference information.

The main difficulty in building an attributed abstract syntax tree, and hence in
identify links in source code, is that the links are often ambiguous, their exact refer-
ent determinable only when the program is executed.

There are two main forms of ambiguity. First, there is the ambiguity inherent
to static analysis. For example, due to virtual method binding, it is uncomputable
what methods actually get called from a given call site. The standard solution to this
issue is to use conservative approximations. Instead of including only those methods
that actually get called, all methods that might get called are included. In addition
to virtual binding issues, static analysis is unable to consistently handle the use of
reflection. If the name of the method to be called is not available until runtime, then
it cannot be discovered statistically. This form of ambiguity is present in all static
analysis.

The second form of ambiguity comes from nature of the data used in source code
retrieval systems. For static analysis to function properly, it requires a declaratively
complete program, where every name in the program has a corresponding known
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declaration. If one attempts to perform static analysis with missing declarations,
most systems simply fail on reaching an unknown name.

Unfortunately, it is not acceptable to limit one’s corpus of source code to only
declaratively complete programs, as empirical research has shown that approxi-
mately two-thirds of open source programs are not declaratively complete [13].

One solution to this dilemma is to alter the static analysis to accept non-
declaratively complete programs. Partial program analysis, for example, guesses
the fully qualified names of any missing types using a number of contextual clues
[5, 7]. This allows the static analysis to function in the presence of missing types,
but can degrade its performance because of missing information. With regards to
link analysis, the result is that many links will refer to unknown types or methods.

The difficulty of partial program analysis lies in the ambiguity of most language’s
import mechanisms. Take Java as an example. Unresolved single type imports are
the best case, as they contain a fully qualified name, and so can be matched to
unresolved simple names. On-demand imports, those with a * operator, do not fully
specify which types they import, instead including all types within a given package
or type. This causes it to be unclear which package an unknown name belongs to.
It could be located in the same top-level package or any package for which an on-
demand import exists.

A different solution for accommodating declaratively incomplete programs is au-
tomated dependency resolution [13]. Automated dependency resolution attempts to
automatically locate artifacts that contain the missing declarations, restoring a pro-
gram to declarative completeness. Its primary benefit with regards to link analysis
is that previously unknown referents can now be resolved, improving the fidelity of
the link graph.

The first step is to identify the names of the missing types, which is done in
much the same manner as partial program analysis. Once the names are identified,
they are then matched against a collection of candidate artifacts that might contain
the missing declarations. The goal is to identify a set of artifacts that provide all
of the missing types while including a minimal number of extra unnecessary types.
When this approach was applied to a large test set of open source programs, it was
found to double the number of declaratively complete programs.

11.6 Dependency Slicing

So far, this chapter has provided an overview of how code retrieval systems function,
and how static analysis can be used to improve them. The remainder of this chapter
will describe in detail a single application of static analysis to code retrieval. This
should provide insight into the complexities involved with integrating static analysis
into code retrieval.

The application we will focus on is dependency slicing. Dependency slicing is
designed to identify the minimal set of declarations required for a set of seed dec-
larations to compile and execute properly, and is similar to approaches used for
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reducing the size of jar files [15]. The purpose of dependency slicing is to package
up the result of a search so that it can be imported into a project and immediately
reused. CodeGenie, a tool for test-driven code reuse, uses Sourcerer’s dependency
slicing service to integrate search results with test cases, in order to identify results
that satisfy the test cases.

The algorithm for dependency slicing behaves in much the same way as a human
might when presented with the same task. Consider a developer who is interested
in reusing the readToByteArray method, but nothing else from the project that
contains that method. The developer might begin by copying the method to a new
project. Once isolated, he would have to identify any missing dependencies and
copy them in turn into the project. For example, he would have to find the decla-
ration of the close method, and copy that as well. This process would have to be
repeated until no missing dependencies remained. This manual approach is quite
effective, but can be time consuming. Dependency slicing allows this approach to
be efficiently automated.

The dependency slicing algorithm is specifically designed for use with Java.
While the general algorithm applies to any object-oriented language, some of the
details are tied to the specifics of the Java language. A dependency slice can be
seeded with a package or any declared entity, such as a class or method. Some of
these slices are more useful than others, as a dependency slice seeded with a field is
of little use compared to one seeded with a method.

11.6.1 Basic Algorithm

The dependency slicing algorithm is divided into two stages. The first stage iden-
tifies the declarations that must be included in the slice in order for the slice to
function independently. The second stage reconstructs the source code for the slice
itself.

The dependency slicing algorithm works off of a link graph, as described in the
previous section. In the link graph used by dependency slicing, nodes represent
declarations, such as packages, classes, methods or fields. Edges represent any form
of relation between declarations, such as method calls, field access or type reference.
The goal of the dependency slicing link graph is to capture every case where one
declaration requires another declaration in order to function.

The first stage of the dependency slicing algorithm is described in pseudocode in
Algorithm 3. It uses the work-list approach common in data-flow analysis [12]. The
algorithm begins by initializing a queue to the set of seed declarations to be sliced
out of the program. The initial set of seed seed declarations is iteratively expanded
to include all of the declarations they contain. For example, if the seed declaration is
a package, all classes within that package are included, as are all the methods within
those classes.

Once the queue is initialized with the seed declarations, the loop on line 2 is
iterated until the queue is empty. A single declaration is examined during each iter-
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Require: Queue todo contains the seed declarations
Ensure: todo is empty and slice contains the complete dependency slice

1: slice ( new Slice()

2: while todo not empty do
3: next ( todo.dequeue()
4: if next has not been considered yet then
5: Add next to slice
6: Add next.getContainingDeclaration() to todo
7: for all method such that next calls method do
8: Add method to todo
9: end for

10: for all f ield such that next accesses f ield do
11: Add f ield to todo
12: end for
13: for all type such that next references type do
14: Add type to todo
15: end for
16: end if
17: end while
18: return slice

Algorithm 3: Basic slice

ation of the loop. To illustrate what happens during each loop iteration, consider the
readToByteArray method from Figure 11.1. First, in line 4, the algorithm checks
that readToByteArray has not been previously considered. This check is necessary
because declarations can be reached by multiple different paths in the link graph.

Once the algorithm has determined that readToByteArray has never been ex-
amined, the next step is to add its parent class to the queue, as seen in line 6. This is
done because in Java, at least, it is not possible to have a method without a contain-
ing class.

Next, the loop on line 7 adds every method called by readToByteArray to the
queue. This includes the close method mentioned earlier, as well as the write

method and the constructor for ByteArrayOutputStream, among others. Each of
methods is clearly requires for readToByteArray to function.

The loop in line 10 adds every field accessed by the declaration to the queue. As
no fields are accessed in our example, this loop would not add anything.

The loops on lines 7 and 10 in Figure 3 do not apply to all declaration types, as
not all declaration types call methods or access fields. Only those declarations that
directly contain executable statements can do so. For example, these loops apply to
method and initializer declarations, but not to class or interface declarations.

The loop on line 13 adds every referenced type to the queue. In our example, this
includes the types InputStream, ByteArrayOutputStream and IOException. A
type reference is simply any mention of a type’s simple or fully qualified name.
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The algorithm concludes once every declaration identified as required has been
examined once. The result is that the slice contains the seed declarations and all of
their transitive dependencies.

The second step of the algorithm is the reconstruction of the source code for the
slice. For every top-level (package-level) type declaration, a file is created with the
appropriate package declaration placed at the top. The import statements from the
original file are examined, and are included if their corresponding declarations are
in the slice and are referenced within the file. On demand imports (those ending
in .*) are included if they contain any declarations that meet the previous criteria.
The top-level type declaration is then synthesized, with the access modifiers, simple
name and type variables preserved from the original.

Within each type declaration, only those sub-declarations that also appear in the
slice are included. Fields are synthesized, and their initialization code is copied from
the original source file. They cannot be copied directly, because multiple field dec-
larations of a single type can occur together while only one is included in the slice.
Both enum constants and initializers are copied directly from the original source. It
is important to preserve the relative ordering of fields and initializers, as Java does
not permit forward references in initialization code. Constructors, methods and an-
notation elements are also copied directly from the original source. They are treated
as atomic and included in their entirety; no individual statements are removed. As a
result, if one of those declarations is included in the slice, any declarations it con-
tains must also be included (such as local types). Inner type declarations are syn-
thesized in the same manner as top-level declarations, with their sub-declarations
included in as just described. Finally, these files are placed into a directory structure
matching their package declarations, and packaged in a zip file.

11.6.2 Slicing the Type Hierarchy

The basic dependency slicing algorithm ignores one important aspect of object-
oriented languages: the type hierarchy. By not properly accounting for the rela-
tionships between the user-defined types, the algorithm generates overly large or
incomplete slices.

First, there is the issue of how much of the type hierarchy must be preserved.
A single class often contains multiple pieces of functionality, not all of which may
be relevant to the current slice. This can manifest itself as a type extending or im-
plementing types that would otherwise not be included in the slice. For example, a
utility method for converting numbers into roman numerals might be located in a
class extending java.lang.Thread. Including this type relationship in the slice is
totally unnecessary if the user only cares about how to convert to a roman numeral.

To handle this issue, we augmented the dependency slicing algorithm with a
heuristic to determine when to include a type’s supertype. This heuristic is ex-
tremely liberal when deciding on which type relationships to retain, as we prefer
a non-minimal slice to an incomplete or incorrect one. The heuristic is as follows: if
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a type and its supertype are both in the slice, their type relationship is retained; and,
if the supertype is an indirect supertype, then every intermediate supertype must also
be included in the slice. For example, consider the ByteArrayOutputStream type.
Its direct supertype is OutputStream, as OutputStream is explicitly mentioned
in its extends clause. Its indirect supertypes include Object and Closeable, as
OutputStream extends Object and implements the Closeable interface. There-
fore, if our slice only contained the ByteArrayOutputStream type, then its ex-
tends relation to OutputStream would not be preserved. However, if the slice in-
cluded any of its direct or indirect supertypes, then the extends relation would be
preserved.

It should be noted that this example is entirely hypothetical. In the actual imple-
mentation of the system, dependency slicing is not performed on anything from the
Java standard library (which is where ByteArrayOutputStream is defined). Ex-
tracting declarations from the standard library is unnecessary, as its declarations are
always present when running a Java application.

This heuristic is based on the reasoning that if a type and some supertype of that
type both exist in the slice, it’s possible that at some point in the program the type
is upcast to its supertype. It is therefore necessary for the connection between that
type and its supertype to be preserved. In order to do this, we must fill in all the
types between the type and its supertype, unless we want to attempt to splice out
types from the original inheritance chain.

In order to add this heuristic, it is necessary to alter the basic algorithm slightly.
A type must not be considered to reference its supertypes simply by virtue of men-
tioning them in the extends or implements clauses. Otherwise every supertype
would always be included.

The implementation of this heuristic is divided across two parts of the algorithm.
First, each type must have its type hierarchy examined to determine if any of its
supertypes need to be added to the slice. Second, when the slice’s source code is
reconstructed, only direct supertypes that are also in the slice should be included in
the extends or implements clauses.

Require: Queue todo, slice and type to check

1: included ( false
2: for all super such that super is a direct supertype of type do
3: if super 2 slice then
4: included ( true
5: else if CHECKHIERARCHY(super) returns true then
6: Add super to todo
7: included ( true
8: end if
9: end for

10: return included
Algorithm 4: Pseudocode for CheckHierarchy
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Algorithm 4 contains the pseudocode for this first change. This method is invoked
on every type declaration contained in the slice after the work-list of the basic al-
gorithm is empty. It checks every direct supertype of the type declaration. If that
supertype is not currently in the slice, all of its supertypes are examined recursively.
If one of those supertypes is contained in the slice, then the original supertype is
added to the slice. If this method adds any new entities to the work-list, the algo-
rithm is repeated from the start.

There are two special cases where this heuristic fails to include necessary super-
types. The first is classes that either directly or indirectly implement java.lang.Throwable.
If a class is ever thrown, it must implement Throwable. Yet Throwable might never
be explicitly mentioned in the code, as the requirement is implicit in the throws

statement. The second case is classes that implement java.lang.Iterable. En-
hanced for loops can implicitly require classes implementing Iterable To solve
both of these cases, Throwable and Iterable must be explicitly added to the slice.
This results in the heuristic always retaining the type relationship.

A second difficulty introduced by the type hierarchy is due to abstract types
and implementation inheritance. Interfaces and abstract classes can both define
abstract methods which every non-abstract subtype is forced to implement. For
example, the interface java.lang.Iterable mentioned previously requires the
method iterator() to be implemented in every subtype. So if a class such as
ByteArrayOutputStream implements Closeable it must contain a method named
close with the proper signature in order to compile. Thus for a slice to compile, it
must include all the methods required by abstract declarations, whether or not they
are explicitly referenced within the slice.

Methods overriding non-required methods within the slice must also be added
in order to preserve correct functionality. So if ByteArrayOutputStream extends
OutputStream and both have a method named write if OutputStream’s write

method is in the slice then ByteArrayOutputStream’s write method must also be
included, whether it is explicitly referenced on not. Given the dynamic binding of
method calls in Java, it is not always clear statically if these methods are called. But
if a supertype’s method is referenced, then it is possible that it is in fact a subtype’s
overriding method that is actually being executed.

Once each type’s type hierarchy has been examined, with the appropriate super-
types added to the slice, the next step is to ensure that all of the required methods are
present for that type. Our heuristic states that a method is required if it overrides a
supertype’s method that is also in the slice. This ensures that all the requirements for
abstract supertypes are met, plus that all overriding methods are present that could
potentially be called while the type is upcast to a supertype.

Constructors and fields are not handled in this manner, as they cannot be required
by abstract types and are not dynamically bound.
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11.6.3 Information Hiding

The separation between abstract types and their implementations in Java impacts
the selection of a seed declaration. If a seed declaration is chosen such that only
the abstract types are ever referenced, the slice does not include their implementa-
tions. This may not be the desired behavior if the developer is actually interested in
these implementations. The algorithm can be augmented to pull in an abstract type’s
implementation under certain circumstances, but this risks including unrelated im-
plementations if it happened to be a common abstract type. We believe that instead
of modifying the algorithm, a user should be provided feedback to guide the selec-
tion of additional seed entities. Then the slice can be recomputed to include those
additional entities.

11.6.4 Constructors

In the basic algorithm, constructors are only included if they are explicitly refer-
enced somewhere in the slice. There are a few circumstances under which this is
not sufficient to ensure that a slice can be compiled. Ultimately, a constructor must
be included under the following circumstances: (a) the constructor is directly refer-
enced, (b) the constructor’s class contains a final field, (c) it is a default constructor,
and (d) the constructor’s class’ superclass does not contain a default constructor.
Case (a) matches what is done in the basic algorithm.

Case (b) occurs because Java requires that every final field be given a value during
the initialization of its class. If this value assignment is done in the constructor, and
the slice includes no constructors, then the resulting class does not compile. To
resolve this, we include all the constructors for any sliced class containing a final
field.

Case (c) arises from the interaction between constructors and the type hierar-
chy. For a class, every constructor must invoke a constructor of its superclass. If no
invocation is explicitly specified on the first line of the constructor body, the com-
piler implicitly invokes the superclass’ default constructor (a default constructor is
a 0-argument constructor). For example, ByteArrayOutputStream.<init>(int)
does not explicitly specify a superconstructor call, and so implicitly calls OutputStream.<init>().
This invocation is present in the bytecode, but is cumbersome to infer from the
source. The slice may therefore lack the necessary superconstructor if it was only
called implicitly. To ensure this does not occur, all default constructors are included,
whether referenced or not.

The problem extends further than that, however, leading to case (d). If a class
has no explicitly defined constructors, the Java compiler creates a synthetic de-
fault constructor. If ByteArrayOutputStream actually had no constructor, the com-
piler would create ByteArrayOutputStream.<init>(). This synthetic constructor
would invoke ByteArrayOutputStream’s default superconstructor, OutputStream.<init>().
If ByteArrayOutputStream originally contained constructors explicitly calling
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non-default superconstructors and none of ByteArrayOutputStream’s constructors
are included in the slice, then the compiler attempts to synthesize ByteArrayOutputStream.<init>().
If ByteArrayOutputStream’s superclass has a non-default constructor and doesn’t
have a default constructor, which is quite likely if ByteArrayOutputStream never
referenced one, then the compiler is unable to synthesize ByteArrayOutputStream.<init>()
because OutputStream.<init>() does not exist, resulting in a compilation error.
To handle this, we must include ByteArrayOutputStream’s original constructors
to stop the compiler from attempting to synthesize ByteArrayOutputStream.<init>()

In the end, including all of a class’s original constructors may be a good practice,
as it eliminates a possible source of confusion. While the current approach guaran-
tees correct behavior, it makes no distinction between a class whose constructor was
not included because it was never referenced and a class that simply has no explicit
constructors. If a developer was looking to reuse the code, he might mistakenly call
a synthesized constructor that would not have existed if the original constructors has
been included.

11.6.5 Initializers

Initializers are blocks of statements contained within a class body rather than within
a method or constructor body. Static initializers are executed when a class is first
loaded by the Java Virtual Machine, while instance initializers are executed on ob-
ject creation.

An initializer can never be referenced, as it is simply a nameless block of state-
ments. Therefore, initializers won’t be included in a slice. This is clearly not the
desired behavior, as they can be necessary for the proper functioning of a class. It
is not realistic to determine exactly when an initializer must be included, so they
are always included. This increases the size of the slice, as the initializer might ref-
erence entities that would not otherwise have been included. But it preserves the
original behavior.

11.6.6 @Override Annotations

The Java Language Specification states that if a method declaration is annotated
with @Override, but the method does not in fact override any method declared in a
superclass, a compile-time error occurs. This has a potentially problematic interac-
tion with our slicing of the type hierarchy. It is quite possible for a slice to contain a
method but not to contain the method that it overrides, if it was statically clear that
only the overriding method was referenced. If @Override was used in these cases,
either the overridden method must be added to the slice or the annotation must be
removed. We decided to go with the latter approach, to help reduce the size of the
slice.
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11.6.7 External dependencies

The dependency slicing algorithm described so far works well so long as source
code is available for all the sliced declarations. It’s only with access to this source
code that we are able to reconstruct partial type declarations to match the entities in
the slice.

Dependencies on external projects are usually realized through the inclusion
of jar files, which often do not contain source code. Even if the source code is
available for these external dependencies, extending the slice into them may not
necessarily be advantageous, as it would create incompatibilities with the pack-
aged versions of those projects. This would be especially problematic with the
Java Standard Library, as creating sliced versions of java.lang.Object or
java.io.PrintStream could be exceedingly confusing.

All slicing behavior is therefore limited to the project containing the seed decla-
rations, with all external references fully preserved, allowing the original jar files to
be included. In order to support this logic, a few changes needed to be made to the
algorithms previously described.

In the basic algorithm, it is no longer necessary to perform a slicing analysis for
external references. Any declaration that is added to the work-list but is external to
the project just gets included in its entirety. This has cascading effects on the slicing
of the type hierarchy. Any type included in the slice but external to the project must
include all of its supertypes. Similarly, all methods required by an external abstract
supertype must be included, not just those referenced in the slice.

This alteration introduces a potential source of error with respect to the type
hierarchy. Consider the following class declarations:
c l a s s A ex tends A r r a y L i s t {

p u b l i c vo id s o r t ( ) {
C o l l e c t i o n s . s o r t ( t h i s ) ;

}
}

This class extends java.util.ArrayList, but never references it outside of the
extends clause. Yet the call to java.util.Collections.sort(List<T>) re-
quires that A extend ArrayList (because ArrayList implements List). If Col-
lection’s sort method is not analyzed, then java.util.List does not get added to
the slice, and the necessary type relationship is not preserved. In order to handle
this, we must examine external method and constructor calls and add their formal
parameter types to the slice. This ensures that if an external method expects a certain
type, that type is included in the slice.

11.6.8 Complete Algorithm

The full algorithm is shown in Figure 5. The method CheckHierarchy on line 20
was described in Algorithm 4. CheckDefaultConstructors on line 26 adds any de-
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fault constructors, and determines if other constructors must be added to stop the
compiler from synthesizing a default constructor.

Require: Queue todo contains the seed declarations
Ensure: todo is empty and slice contains the complete dependency slice

1: slice ( new Slice()

2: while todo not empty do
3: while todo not empty do
4: next ( todo.dequeue()
5: if next has not been considered yet then
6: Add next to slice
7: Add next.getContainingDeclaration() to todo
8: for all method such that next calls method do
9: Add method to todo

10: end for
11: for all f ield such that next accesses f ield do
12: Add f ield to todo
13: end for
14: for all type such that next references type do
15: Add type to todo
16: end for
17: end if
18: end while
19: for all type such that type is a declared type in the slice do
20: CHECKHIERARHCY(type)
21: for all method such type contains method do
22: if method overrides a method in a supertype of type in the slice

then
23: Add method to todo
24: end if
25: end for
26: CHECKDEFAULTCONSTRUCTORS(type)
27: end for
28: end while
29: return slice

Algorithm 5: Full dependency slicing algorithm
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11.6.9 Complexity

In order to evaluate the complexity of the dependency slicing algorithm, consider
the underlying link graph. Each node is examined at most once, and during its ex-
amination each edge is followed at most once. The result is that the running time of
the slicing algorithm is O(|N|⇤ |E|). The theoretical maximum number of edges in
the link graph is O(|N|2), which gives the algorithm a running time of O(|N|3). This
is the running time for graphs containing a single project and its dependencies.

If, instead, we have a graph containing a large number of projects, the relation-
ship between the number of nodes and the number of edges changes. The number of
edges in a project is independent of the number of nodes from other projects that it
does not reference. Practically, this gives us a linear instead of quadratic relationship
between |E| and |N|, making the running time of the algorithm O(|N|2) for graphs
containing a large number of unrelated projects.

11.6.10 Known limitations

As is generally true with static analysis techniques, there are a number of limitations
to dependency slicing.

One circumstance in which the dependency slicing algorithm cannot guarantee
correctness is in the presence of missing references. If a file fails to compile due
to unresolved external references, then some of the relations are either missing or
reference dummy UNKNOWN entities. Without being able to follow external dependen-
cies, the slice may fail to include entities from the original program that are actually
required. It can, however, identify the missing entities and report them to the user.
Although the resulting slice does not compile, the dependency slicing algorithm
fares no worse than a human would when presented with the same information.

Even with complete information and a slice that compiles, there is still no guar-
antee that the slice behaves with respect to the seed entities exactly as it did in the
initial program. There are a few known situations in which the slicer fails to include
entities that are actually necessary for proper functioning.

One class of situations is due to the limited analysis of external dependencies. We
believe the solution previously discussed for these external dependencies is sound
with respect to compilation, but misses a certain type of dependency due to the lack
of full analysis of external method calls.

Marker interfaces provide an excellent example of how this can occur. The Java
Standard Library contains an example of this in java.io.Serializable, an inter-
face that contains no methods. Its sole purpose is to indicate that the implementing
class can be serialized. Because of its role, java.io.Serializable is rarely men-
tioned outside of the implements clause. In order for the slicer to realize its impor-
tance, a call to java.io.ObjectOutputStream’s writeObject(java.lang.Object)
would have to be followed to realize that a reference to java.io.Serializable

is finally made in writeObject0(java.lang.Object,boolean). Without seeing
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this reference, the slicer would not include the interface in the slice, believing it not
to be used.

Full analysis of external method calls can solve this issue. Barring that, every
external supertype would have to be included in the slice, regardless of whether
or not it was referenced. If the use of a marker interface is expected, the slicing
algorithm can easily be altered to include all external supertypes.

Another class of problematic situations occurs because of the existence of re-
flection in Java. The ability of a program to explore and modify its own runtime
behavior makes statically determining what pieces of each declaration are needed
impossible in general.

To continue with the java.io.Serializable example from before, the two
methods commonly associated with the proper handling of serialization, writeReplace()
and readResolve(), would not be properly sliced. They are not mentioned in the
java.io.Serializable interface. Instead, developers must be aware of their as-
sociation extralinguistically. Due to their not being tied to an abstract type, their
invocation is always done reflectively. Therefore it is difficult to determine statically
that they need to exist.

11.6.11 Summary of Dependency Slicing

This section has provided a detailed explanation of how dependency slicing uses
a link graph, as described in Section 11.5, to extract a compilable subset of a pro-
gram. Dependency slicing was developed to simplify the reuse of search results by
automating the dependency resolution process. As should now be clear, even with
a complete link graph, there are a number of subtle cases that must be accounted
for. Furthermore, these cases are often language specific. Therefore applying ad-
vanced program analysis techniques to a general code retrieval system can be quite
challenging.

11.7 Conclusion

This chapter has covered how program analysis can be applied to code retrieval. We
began by introducing basic full text search, which is the de facto standard found
in text editors and development environments. We then showed how term-based
search, a standard in information retrieval, can improve code retrieval by allowing
for ranking. Next, we described the benefit of treating source code as structured
text, which uses a basic form of program analysis. More advanced program analysis
techniques enable link-based retrieval schemes, which were initially made popular
in the domain of the internet. We concluded this chapter by describing, in great
detail, how dependency slicing, a program analysis technique based on link analysis,
can be used to improve the reuse of search results.
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Chapter 12
Test-Driven Reuse: Key to Improving Precision
of Search Engines for Software Reuse

Oliver Hummel and Werner Janjic

Abstract The applicability of software reuse approaches in practice has long suf-
fered from a lack of reusable material, but this situation has changed virtually over
night: the rise of the open source movement has made millions of software arti-
facts available on the Internet. Suddenly, the existing (largely text-based) software
search solutions did not suffer from a lack of reusable material anymore, but rather
from a lack of precision as a query now might return thousands of potential results.
In a reuse context, however, precisely matching results are the key for integrating
reusable material into a given environment with as little effort as possible. Therefore
a better way for formulating and executing queries is a core requirement for a broad
application of software search and reuse. Inspired by the recent trend towards test-
first software development approaches, we found test cases being a practical vehicle
for reuse-driven software retrieval and developed a test-driven code search system
utilizing simple unit tests as semantic descriptions of desired artifacts. In this chap-
ter we describe our approach and present an evaluation that underlines its superior
precision when it comes to retrieving reusable artifacts.

12.1 Introduction

Building high-quality software faster, cheaper, and more predictable with the help of
reusable software building blocks is not a new idea. The earliest publication usually
referenced in this context is Douglas McIlroy’s seminal paper on component reuse
[28] presented at the famous NATO conference in Garmisch in 1968 where amongst
other ideas the term “software engineering” was coined. The idea of “remixing"
existing software parts in order to compose new systems [27] as one cornerstone of
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a more engineering like software development approach [30] certainly fitted well
into the spirit of the whole event.

Software engineering research in general has come a long way since then and
has successfully identified a lot of reuse potential amongst various software en-
gineering artifacts [11]. The systematic reuse of well-defined third-party software
building blocks (such as components [7] or services [8]) according to a well-defined
specification (as e.g. envisaged in [1]) is one of the most challenging approaches
since it requires a precise matching of potential reuse candidates to a given spec-
ification. However, most existing software search solutions are still text-based and
do neither reflect nor support the need to match reuse candidates with the syntactic
and semantic characteristics of a specification. Nevertheless, the programmatic syn-
tax and semantics make software search and retrieval significantly different from
plain text retrieval so that the techniques that have been successfully applied within
the information retrieval community are likely not to be sufficient in the context
of (reuse-driven) software retrieval. Software retrieval research has identified some
core challenges for implementing a sustainable reuse repository that requires to –

• create and maintain a large enough software collection that makes searches
promising (the so-called repository problem [40]),

• index and represent its content in a way that makes it easily accessible (the rep-
resentation problem [10])

• allow characterizing a desired artifact with reasonable effort and precision (the
usability problem [12])

• execute queries with high precision in order to retrieve the desired content (the
retrieval problem [36]).

While the open source movement, higher bandwidths and always increasing hard-
ware power seem to have mitigated the repository problem recently (cf. section 5.2.2
as well), the other three challenges center around finding an optimal representation
of software artifacts that allows storing, retrieving and searching them in a precise
manner with little effort.

In the remainder of this chapter we present a practical solution to tackle all three
of these challenges. We especially describe how we increased the precision of soft-
ware searches from a reuse perspective based on ordinary unit tests as usually cre-
ated during every software development project anyway [4]. We have found that
well formulated test cases reveal enough syntactical information and semantics of
a desired component that they can be used as a query for software searches effec-
tively. Therefore, the current status of our test-driven reuse approach, first presented
in 2004 [17], is described in detail in section 12.3. Moreover, we show how we inte-
grated this vision in a state of the art software search engine and into the developer’s
work environment through a plug-in for the popular Eclipse IDE. In section 12.4 fol-
lowing thereafter, we explain how we evaluated our system in order to demonstrate
the feasibility of the test-driven reuse approach and compare it with a similar sys-
tem recently presented in the literature. Section 12.5 describes this and other related
work in more detail before we share our view of the most important open challenges
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in the context of reuse-oriented retrieval and conclude our chapter in sections 12.6
and 12.7, respectively.

12.2 Foundations

Around the turn of the millennium, the state of the art in reuse-oriented software
retrieval could be characterized from two widely contrary viewpoints. While one
opinion was that most challenges related with reuse libraries have been solved al-
ready since repositories were supposed to be mere catalogs containing only a small
number of about 50 to perhaps 250 carefully selected components [35], the other
opinion claimed the exact opposite. Mili et al. realized in their well-known survey
on software retrieval approaches [29] that there is indeed a large variety of proto-
typical component library systems, but none of them would be able to overcome
the retrieval and usability problem mentioned in the introduction, as soon as the
amount of available components would increase considerably. The reason for this
pessimistic appraisal is simple: since the matching criterion (such as e.g. the appear-
ance of a keyword anywhere – i.e. even in comments – within a candidate) is rather
weak in most approaches, it is very likely that they return many irrelevant results as
soon as a critical mass of indexed material has been exceeded. In other words, ten
years ago, it was still unclear how to build internet-scale software search systems
(with potentially millions of entries) that would be able to deliver only those com-
ponents precisely matching an existing “gap" in an application under development.

Separating the useful from the useless results in growing collections is one of the
major challenges for all information retrieval approaches [3] and is usually referred
to as the precision of a search engine. More formally, precision is defined as the
fraction of relevant results amongst all results returned for a query. Obviously, it be-
comes tedious to determine the actual relevance of more than perhaps a few dozen
results so that evaluations of common search engines often limit themselves on in-
vestigating the precision of the first 20 results (the so-called top 20 precision [26]).
A similar challenge exists for the second central metric used in information retrieval
to evaluate search engines, the so-called recall, defined as the fraction of all relevant
elements that are returned for a given query out of all relevant elements contained
in a collection for that query. As a collection may actually contain thousands of rel-
evant results, it is often not possible to determine all of them and therefore the recall
cannot be determined as well.

The results of a systematic survey in which Mili et al. [29] analyzed existing
software retrieval solutions for their performance are presented and discussed in the
following. The authors were able to distinguish six seminal classes of software re-
trieval approaches that we will briefly explain after their enumeration. However, due
to a lack of access to most prototypes and the non-existence of standardized eval-
uation scenarios, Mili et al. were only able to estimate the potential performance
(i.e. recall and precision) of these approaches on larger collections so that inter-
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ested readers are referred to their publication for further details. The estimates they
published are as follows:

1. Information retrieval methods (Recall: high / Precision: medium)
2. Descriptive methods (Recall: high / Precision: high)
3. Denotational semantics methods (Recall: high / Precision: very high)
4. Operational semantics methods (Recall: high / Precision: very high)
5. Structural methods (Recall: very high / Precision: very high)
6. Topological methods (Recall: unknown1 / Precision: unknown)

Software retrieval is a specialization of information retrieval and hence it makes
sense to reuse methods from the latter area to perform a simple, purely text-based
retrieval of software assets. Descriptive methods go a small step further and rely on
external textual descriptions (i.e. metadata) for an asset. Hence, Mili et al. denote
such descriptive methods as a subset of the information retrieval methods, but due
to the high use of this approach in practice and literature they created an additional
category. Denotational semantics methods use signatures (see e.g. [49]) or formal
specifications [50] of the indexed assets for retrieval. While signature matching is
widely seen as a practical tool in this context, as it uses the parameters and re-
turn values exhibited in the interface of an artifact for matching, software retrieval
based upon the matching of formal specifications suffers from a variety of disadvan-
tages (such as difficulties in creating and evaluating them). Operational semantics
approaches that rely on the execution of the indexed software with sample input val-
ues are certainly expensive to execute, however, they seem to be easily automatable.
Nevertheless, also appealing in theory, this approach definitively also comes with
some practical challenges: side effects, non-termination, the structure of used data
types, dependencies, etc. can cause serious problems. Hence, in this context, it is
no surprise that the most well-known implementation so far, called Behavior Sam-
pling [34], was merely applied to simple mathematical functions of the C standard
library. Structural methods finally do not deal with the code of the assets directly,
but rather with internal program patterns or designs. Since it is largely unclear how
to formulate queries for such an approach, it does not surprise that it has only rarely
been experimented with.

Overlap between the discussed classifications can appear at various places, e.g.
between (3) and (4) and (5) as the “sampling” of components typically needs a
specific signature or structure to work with. As visible in the list, Mili et al. still
defined topological methods as an independent class of approaches, however, since
their common denominator is the distance between the query and the candidates, we
would prefer to describe it as an approach for ranking search results that can (exclu-
sively) be used together with at least one concrete instance of the other approaches.

1 For topological methods it is difficult to define or estimate recall and precision. See [29] for more.
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12.2.1 State of the Art

As previously indicated, the premises for software search and retrieval have changed
considerably since the Internet and its users have made millions of open source com-
ponents [18] available for software developers and researchers alike in recent years.
Around the turn of the millennium, Seacord realized this potential and attempted to
fill a software repository with Java applets collected on the Web by an automated
crawler [41]. Also at that time, Ye was one of the first researchers recognizing that
software searches are not only hindered by technical weaknesses of search engines,
but by usability issues as well. He found that developers are often not even aware of
the chance that a reuse candidate might be stored in a repository (which was under-
standable though due to their relatively small size at that time) and hence proposed
and implemented a prototypical software search system (called CodeBroker) that
continuously monitors the work of a developer and proactively presents potentially
reusable candidates based on textual information from the comments athe developer
has been writing [48].

Also around that time, the World Wide Web witnessed the rise of large-scale
search engines helping to make its growing amount of data accessible. Inspired by
the success of Google’s PageRank algorithm [33], it was the ComponentRank ap-
proach of Inoue et al. [24] that breathed new life into the software retrieval commu-
nity with an automated search engine (known as Spars-J). While their basic retrieval
approach was still text-based and hence simple, it was their set of about 150,000
open source files that was far larger than every other collection before, together
with the clever ranking approach that created a new standard. Inoue et al. proposed
to rank those components higher in the result list of a search that are more often
used than others amongst the indexed files. Nevertheless, the overall precision of
the searches remains still too low from a specification-based reuse perspective as
long as merely keyword matching is applied. Almost simultaneously, Hummel and
Atkinson [18] demonstrated that general web search engines (such as Google) could
be used for software searches by enriching queries with special keywords (such as:
filetype:java AND "class stack") that – though not working absolutely perfectly –
still delivers relevant source code with a high hit ratio.

However, although all seminal search approaches described before were avail-
able at that time, little work is known that would have tried to integrate them with
the upcoming large-scale software search engines described in the next subsection.
Consequently, a pure text-based retrieval still remained state of the art at that time.
The only visible progress was the idea of parsing source codes in order to extract the
names of objects and their methods to allow more focused searches for them (as e.g.
introduced by Koders.com). Hummel et al. have coined the term name-based re-
trieval for that technique [19]. Retrieval approaches such as signature matching [49]
or interface-based retrieval – the combination of signature and name-based retrieval
(also described in [19]) – did not find their way into any of this new generation of
software search engines. Numerous of them have been developed during the last ten
years and a good number is still available on the World Wide Web. As demonstrated
by the various software search engines that have been launched as well as shut down



236 Oliver Hummel and Werner Janjic

in recent years, operating such an engine is not per se a fast-selling item, it rather
seems to be related with a considerable risk to receive a lack of interest when con-
tent and usability are not appealing enough to potential users. The prime example
in this context is certainly the failed high-profile attempt of IBM, Microsoft and
SAP to establish the so-called UDDI Business Registry (UBR) as a marketplace for
(web) services that was finally closed down in early 2006 containing barely a few
hundred entries of dubious quality [18]. However, even operating a popular search
engine does not guarantee its long-time survival as is underlined by the recent an-
nouncement of Google to shut down its code search engine in January 2012 [15].

In spite of that, various code search engines (academic as well as commercial)
have demonstrated that the advances in database and text search technology (such
as the Lucene framework [16]) have made the creation of “internet-scale" software
repositories a viable undertaking wherefore the repository problem can be regarded
as solved. In order to conclude this subsection, the following table summarizes im-
portant characteristics of some of these second generation software search engines.

Table 12.1: Overview of code search engines and directories.

Name Year No. of
artifacts

Retrieval
Algorithms

Remarks

UDDI Bus. Reg. 2000 < 500
services

Keyword match-
ing on metadata Shutdown in 2006

Spars-J 2004 > 105 Keyword match-
ing

Implements Com-
ponentRank

Koders.com 2004 > 3 ·109

LOC
Keyword & name
matching

Commercial by
Black Duck SW.

Google Codesearch 2006 > 107
Keyword match-
ing / regular
expressions

Shutdown
January, 15 2012.

Sourcerer 2007 > 106 Keyword & name
matching

Eclipse integration
via CodeGenie
plug-in.

A more comprehensive overview that demonstrates even more forcefully that top
notch software search engines today are easily able to index millions of artifacts can
be found in [21] and in another chapter of this book [6].

12.2.2 Remaining Challenges

From the four problems identified for reuse-driven software retrieval in section 12.1,
state of the art software search engines thus have basically solved the repository
problem and the representation problem by creating internet-scale collections of
software assets that can be managed with common databases or state of the art
search frameworks such as the freely available Lucene [16]. However, the usability
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and the retrieval problem dealing with how to efficiently retrieve the artifacts that
are useful in a given context are still in the focus of interest in the research commu-
nity. Garcia et al. [12] have recently underlined this with their list of requirements
for a component search engine: amongst other challenges they see a simple query
formulation and a good retrieval quality at the heart of a successful and scalable
component search engine. Unfortunately, as has been shown recently [19], simple
keyword- or signature-driven searches may lead to tens of thousands of results from
which – in principle – each one matches the given query criterion. However, only
because a – in these two cases – relatively simple technical matching criterion is
fulfilled, a search result does not necessarily become relevant for the user (see e.g.
[29]). Consider, for example, that a search for a reusable “spreadsheet” component
merely delivers a test case for a spreadsheet because it naturally has to use a spread-
sheet and thus contains the term. A user presented with such a result would certainly
be disappointed and after inspecting perhaps five or ten similar results not consider
using the search engine again, as in a reuse context, it is important to get results
precisely matching a given specification [1].

Interestingly, most existing software search engines still rely on a simple key-
word matching so that they suffer from exactly this problem. Although it seems
possible to narrow down the search results considerably through adding more key-
words to a certain degree, beyond that there still existed no intuitive approach for
formulating interface-based or even specification-based queries in second genera-
tion software search engines as described in another chapter of this book [6]. Only
Google’s code search engine allowed the use of (rather complex) regular expressions
in order to describe the desired interface of a component.

12.3 Test-Driven Reuse

According to the classification of Mili et al. presented in section 12.2, the test-driven
reuse approach Hummel and Atkinson have first introduced in 2004 [17], is a tech-
nique based on operational semantics and hence inspired by the ideas of Behavior
Sampling by Podgurski and Pierce [34]. Due to their random nature, Behavior Sam-
pling requires a relatively large number of samples even for simple functions and,
to our knowledge, was never used in practice.

What is extensively used in practice, on the contrary, is (or at least should be)
systematic software testing with targeted “samples” of a software’s functionality
derived with the help of some systematic approach such as equivalence class parti-
tioning. In case of so-called test-driven development [4], which is especially popular
in agile development communities, test cases are even created before any production
code is written and are used to monitor the production code’s degree of complete-
ness and correctness during development iterations. From this starting point it is
just a small step to imagine the usefulness of test cases in determining the fitness
for purpose of reuse candidate. Assume as an example that we need a component
offering the functionality of a typical spreadsheet application (such as Excel), i.e.,
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it should be able to organize cells and reference them in alphanumerical form (rows
as numbers, columns as alphabetic characters), hold values in these cells, use them
within formulas and hence allow calculations based on other cells’ values. A simple
JUnit 3 [4] test for such a functionality might look as the one depicted in Listing
12.1. It describes two things, namely first, the (rather brief) required interface of
the Spreadsheet component as shown by the UML class in Figure 12.1 and second
a concrete description of the required functionality, against which potential reuse
candidates can be tested. Although the interface of this component is simple, it ob-
viously requires quite some code to manage the cells of a spreadsheet and to parse
and evaluate their contents.

Based on the above test case and the interface of the required component “hid-
den" within it, a search can be issued to an arbitrary software search engine. As soon
as results are delivered from there, it should be possible to compile and test them
against the JUnit test case. Whenever the test case can be compiled and executed
successfully against a reuse candidate, it can be assumed that a working implemen-
tation for the specified functionality has been found. Figure 12.2 summarizes this
“test-driven reuse cycle" as initially introduced in [17].

As depicted in Figure 12.2, it is also possible to fully automate this cycle: a
developer merely needs to specify the tests (step a) and then waits until the system
delivers successfully tested reuse candidates (step f). The steps b to e in between

Listing 12.1 JUnit test case testing (and hence describing) a simple spreadsheet component.
p u b l i c c l a s s S p r e a d s h e e t T e s t ex tends T e s t C a s e {

p r i v a t e S p r e a d s h e e t s h e e t ;
p u b l i c vo id se tUp ( ) {

s h e e t = new S p r e a d s h e e t ( ) ;
s h e e t . p u t ("A1" , "5" ) ;

}
p u b l i c vo id t e s t C e l l R e f e r e n c e ( ) {

s h e e t . p u t ("A2" , "=A1" ) ;
a s s e r t E q u a l s ("5" , s h e e t . g e t ("A2" ) ) ;

}
p u b l i c vo id t e s t C e l l C h a n g e P r o p a g a t e s ( ) {

s h e e t . p u t ("A2" , "=A1" ) ;
s h e e t . p u t ("A1" , "10" ) ;
a s s e r t E q u a l s ("10" , s h e e t . g e t ("A2" ) ) ;

}
p u b l i c vo id t e s t F o r m u l a C a l c u l a t i o n ( ) {

s h e e t . p u t ("A2" , "3" ) ;
s h e e t . p u t ("B1" , "=A1*(A1-A2)+A2/3" ) ;
a s s e r t E q u a l s ("11" , s h e e t . g e t ("B1" ) ) ;

}
}
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Spreadsheet

+ put(cell:String,value:String):void
+ get(cell:String):String

Fig. 12.1 The interface of a simple spreadsheet component as defined by the test case in Listing
12.1.

can be automatically executed by an appropriate reuse system (we will explain a
concrete implementation in the next subsection). In step b the required interface of
the desired reuse candidate is extracted from the test case what leads to step c where
a query is derived to drive an arbitrary code search engine (we use our Merobase
search engine that is explained in more detail in section 12.3.1). While in principle
it would also be feasible (if not easier) to search and test binary files, our current
implementation still focuses on source code files (because historically there used to
be little support for searching binary files in software search engines) that need to
get compiled against the test case in step d and in case this procedure was successful
are tested in step e.

Fig. 12.2 The test-driven reuse “cycle".

Figure 12.2 furthermore shows that the desired interface from the test case is not
always fully matched by a potential reuse candidate when it comes to compilation
in step d. As a matter of fact, it is not exactly matched in most of the cases so that
the test case will not compile out of the box with most results, which is of course
unsatisfying. As a way out of this dilemma, we have been developing a test-based
adapter [13] generator that is able to automatically “wrap" the reuse candidate with
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the appropriate interface in order to make it compilable and executable. In principle,
it simply creates all syntactically possible adapter “wirings” and selects the one that
successfully passes the specified test case, implementation details and a proof of
concept implementation can be found in another publication [23].

Feeding the example test from Listing 12.1 to Merobase, eventually yields four
successfully tested reuse candidates. One of them is particularly interesting as it
nicely demonstrates how a “real component”2 consisting of various classes (as illus-
trated in the UML diagram from Figure 12.3) can be discovered with our approach
through merely describing and testing its facade [13].

Sheet

+put(whichCell:String,value:String):void
+getLiteral(whichCell:String):String
...

FormulaEvaluator

Tokenizer

CircularReferenceException

FormulaParsingException

Fig. 12.3 Simplified structure of retrieved spreadsheet component as UML class diagram.

The class ensemble discovered here consists of three main classes, enclosing two
inner exception classes, and comprises in total slightly more than 300 lines of code.
Obviously, the interface of the facade class does not match the interface specified by
the test case from Listing 12.1 and thus would not compile. Hence, our tool created
the adapter presented in Listing 12.2 that provides exactly the interface required by
the test case and forwards requests to the retrieved component.

12.3.1 Implementation

Garcia et al. [12] depict the necessity of integrating source code search into the
IDE of the developer, as this prevents a loss of concentration and a media-break for
switching to another tool (like e.g. a web browser). Of course, reuse-oriented IDE
plug-ins usually cannot work as standalone tools, but must connect to a software
repository server via the Internet. In this section, we explain how our group at the
University of Mannheim has tackled this challenge and describe our software search
engine Merobase and its associated Eclipse plug-in Code Conjurer [22]. While Mer-
obase distinguishes itself from other software search engines through its broad sup-

2 result source (visited Dec, 14th 2011): http://www.purpletech.com/xp/wake/src/
Sheet.java
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Listing 12.2 Automatically generated adapter for the Sheet result.
p u b l i c c l a s s S p r e a d s h e e t {

p r i v a t e a d a p t e e . S h e e t a d a p t e e ;

p u b l i c S p r e a d s h e e t ( ) {
a d a p t e e = new a d a p t e e . S h e e t ( ) ;

}

p u b l i c S t r i n g g e t ( S t r i n g w h i c h C e l l ) {
t r y {

re turn a d a p t e e . g e t ( w h i c h C e l l ) ;
} catch ( Run t imeExcep t ion e ) {

i f ( e i n s t a n c e o f Run t imeExcep t ion ) {
throw e ;

}
re turn n u l l ;

}
}

p u b l i c vo id p u t ( S t r i n g whichCel l , S t r i n g v a l u e ) {
t r y {

a d a p t e e . p u t ( whichCel l , v a l u e ) ;
} catch ( Run t imeExcep t ion e ) {

i f ( e i n s t a n c e o f Run t imeExcep t ion ) {
throw e ;

}
}

}
}

port of retrieval techniques, Code Conjurer is able to deliver proactive reuse recom-
mendations by silently monitoring a user’s work (i.e. the code a developer writes
in Eclipse) and triggering searches automatically whenever this seems reasonable.
We will explain this process in more detail in section 12.3.1.2 Potentially reusable
results are shown in Code Conjurer’s recommendations view (cf. section 12.3.1.2)
where we explain our tool in more detail. Figure 12.4 describes the overall process
in our reuse recommendation system, including our Merobase search engine, the
Code Conjurer plug-in and the virtual machines used for secure testing of retrieved
candidates.

12.3.1.1 Merobase – A Search Engine supporting Test-Driven Reuse

The index creation for our Merobase repository is driven by automated crawlers
that can harvest source and binary files from three different sources, namely CVS



242 Oliver Hummel and Werner Janjic

and SVN repositories as well as from websites (via HTTP). While the repository
crawling requires a list of projects to download the files from the respective (open
source) repository, web crawling works with an extended version of Lucene’s Nutch
crawler [16] starting from some seed URLs. The index itself is also based on the
Lucene framework [16] and currently contains about 10 million files from well-
known open source hosting sites and the open Web (roughly 8 percent), out of which
roughly 40 percent are binary files (primarily Java archives, but some .NET binaries
as well). Special parsers for each supported programming language allow to extract
syntactical information, store it in the index and search for it later. In addition to
class and method names, we store operation signatures (i.e. parameter and return
types) and complete operation headers (i.e., operation signatures plus names) as
concatenated terms optimized for Lucene in the index. Details on their structure can
be found in another chapter of this book [6]. Currently, Merobase is able to work
with Java, C++ and C# sources, WSDL files, binary Java classes from Java archives
(JARs) and .NET binaries.

Whenever a user sends a request to the Merobase server (either through the web-
interface available at merobase.com or a client program like Code Conjurer access-
ing its web service based API), the above parsers and a special JUnit parser (able to
extract the interface of the class under test from test cases) are invoked and try to ex-
tract as much syntactic information from the query as possible. If none of the parsers
recognizes parsable code, however, a simple keyword search is executed. Based on
parsed syntactic information, Merobase supports retrieval by class and operation
names, signature matching and by matching the full interface of classes as described
before. Although preliminary results indicate that the latter indeed leads to a higher
precision with common “toy examples" [19] collected from the literature, the risk
of “over-specifying" desired components is certainly also real, as e.g. the previous
spreadsheet example has demonstrated: no candidate completely matched the rel-
atively simple interface we have specified. Nevertheless, the retrieved components
that were finally working successfully, were found amongst roughly 22,000 results
of a “relaxed" query that merely searched for the desired signatures (i.e. ignored
class and operation names in the interface). As searches for more complex inter-
faces often tend to deliver few results (as e.g. predicted by [7]), we have integrated
a number of strategies into Merobase for relaxing queries as well. Further details on
the index structure of Merobase, its content, and the applied matching strategies are
explained in another chapter of this book [6].

In case of a test-driven search, which is triggered when a JUnit test case (such as
the one in Listing 12.1) is submitted, Merobase automatically tries to compile, adapt
and test the highest ranked candidates. If a candidate is relying on additional classes,
the algorithm uses dependency information to locate them as well (as seen in the
spreadsheet example). As visible in Figure 12.4, the actual compilation and testing
are not carried out on the search server itself, but on dedicated virtual machines
within sandboxes. These ensure that the executed code does not have the possibility
to do anything harmful to the user’s system or bring the whole testing-environment
down; in our publicly available system we have also deactivated network transfer
to prevent abuse. Another system continuously monitors the virtual machines (by
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Code Conjurer Merobase TestEngine AdaptationEngine

search(testCase)

parse(testCase)

interface

search(interface)

candidate set

test(testCase,candidates[i])

adapt(testCase,candidates[i])

adapter

optopt [if adapter necessary]

test()

test result

test result

Test LoopTest Loop for all i candidates

result set

Fig. 12.4 Architecture for a Test-Driven Software Reuse Environment

polling a special monitoring service provided by the sandboxes) and as soon as it
recognizes that one is not working properly, it simply replaces it with a new instance,
which takes about 30 seconds for replacing and restarting.

12.3.1.2 Code Conjurer – Test-Driven Reuse in Eclipse

Although the Merobase search engine is certainly a useful tool, its regular web in-
terface forces a developer to leave his development environment when he wants to
search for reusable artifacts. Even worse this requires the cognitive decision that
reuse is desired in a particular situation [48], which clearly disturbs the creative
thought process of software development. Thus, we have created the open source
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tool Code Conjurer3 as a plug-in for the Eclipse IDE, installable through the Eclipse
Marketplace. It integrates Merobase’s interface-driven searches as well as the test-
driven search technology into a widely used development environment.

After Code Conjurer is installed, it presents itself with a small magic hat icon and
a reuse menu in the Eclipse toolbar. The default position of the reuse view as visible
in Figure 12.5 is at the bottom of the workbench where it presents all necessary
information about reusable assets and performed searches. Code Conjurer neither
requires the user to learn any dedicated query language nor to consciously write any
queries at all. When activated, it simply extracts the queries from the current source
window a developer is working with. Since Code Conjurer focuses on Java, Java
classes and JUnit 3 test cases4 are supported as queries in this context.

For interface-base searches, Code Conjurer assists the developer with a non-
intrusive background agent, that searches for reusable artifacts. The algorithm judg-
ing when a search should be triggered is developed continuously and actually relies
most on changes of the interface description of the class under development. Hence,
Code Conjurer triggers background searches whenever a method is added to the
class, deleted or its signature is changed. Search results are presented in a tree view,
while next to them a code preview is offered for the selected item.

If the user decides to enable the test-driven search feature of Code Conjurer, the
background agent monitors changes to the interface of the so-called class under test
(CUT), which is – in contrast to the provided interface of the class in interface-
base search – the required interface of the JUnit test case written by the developer.
This approach is very close to the one propagated by Extreme Programming, which
encourages the developers to iteratively write tests that fail, then implement the de-
sired functionality and then add more tests that fail again. In our case, the developers
would not implement functionality, but reuse existing software assets.

When executing test-driven searches, Code Conjurer sends the JUnit test to Mer-
obase where the interface of the desired class is extracted from the code and used to
search for results. Retrieved candidates are distributed to special virtual machines
used for compilation and testing. After the execution of the tests against the candi-
dates, the test results are shown in Code Conjurer’s result view from where they can
be directly added to the working project via drag and drop. The example shown in
Figure 12.5, shows the results of a test-driven search. They all required an adapter
to work with the provided test case (which is shown by a bar in yellow ochre. When
a result is chosen for reuse, the adapter is automatically integrated into the working
project along with the reusable class. In other words, the retrieved code is directly
usable and the test initially defined by the user can then be executed locally on the
retrieved code, in order to ensure that it has been integrated correctly.

3 which is hosted on sourceforge.net and available at www.code-conjurer.org
4 the only requirement is that the tests should be written according to best SE practices (e.g. the
name of the test should reflect the class under test’s name).
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Fig. 12.5 Code Conjurer’s “window to the world”: the reuse view with a generated adapter.

12.4 Evaluation

As the information retrieval community has experienced in its early years, objec-
tively evaluating retrieval tools is difficult [3]: as mentioned before, information
retrieval science envisages the usage of recall and precision to judge the usefulness
of an information retrieval tool. However, it is well accepted that the exact recall
of large-scale search engines cannot be determined easily, since it is usually not
possible to identify all relevant candidates from a corpus with millions of entries.
Text retrieval reference collections that have been built with lots of effort hence nor-
mally are using manually inspected retrieval results collected from various tools to
establish a baseline for the recall, unfortunately, those collections do not (yet) exist
for software retrieval [22]. Another issue with test-driven search is that its preci-
sion is by definition equal to 100 percent (assuming the test cases are expressive
enough) since retrieved candidates can be directly integrated into the project under
development. Hence, we believe a first reasonable evaluation of test-driven reuse
approaches is to demonstrate its feasibility by applying it to a variety of search chal-
lenges found in literature. Since recently another implementation of the approach
has become available [38] and presented a similar evaluation we also compared its
results with our system in order to further underline the technical feasibility of the
overall approach.

12.4.1 Assessing Reuse Challenges

For the evaluation of our approach we have collected a number of previously pub-
lished retrieval challenges from related literature and as far as necessary created
simple JUnit test cases (documented in their entirety elsewhere [20] due to their
size). We have used our stable initial test-driven reuse prototype and the Merobase
search engine to search for Java source codes and to execute the test cases. Since this
prototype is still testing all candidates sequentially and identifies feasible adapters
based on a brute-force approach [23] the times shown in the following table can
be seen as absolute worst cases for testing all potential candidates with a matching
signature. The comparison following in the next subsection already demonstrates
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that more user-friendly search times of under 3 minutes can be achieved by paral-
lelization and optimization of adapter creation and of course by incremental result
delivery.

The results are summarized in Table 12.2 that contains the interface specified in
the respective test case its first column. Columns two and three compare interface-
based retrieval where candidates have to match this interface exactly (including class
and operation names) with a signature-based retrieval where it is sufficient when a
counterpart with the matching parameters and return types can be found for each
specified method. We also show the number of components that passed the test vs.
the total number of candidates found by Merobase in each cell, e.g. for the interface-
based retrieval of a Stack, 150 components out of 692 candidates were able to pass
the test. The numbers below indicates how much time the prototype required to try
out all candidates retrieved by Merobase. Finally, the last column lists “synony-
mous" class names we have found amongst the successfully tested candidates using
(more relaxed) signature-based retrieval.

Table 12.2: Overview of successfully solved reuse challenges.

Query Interface-
Based

Signature-
Based

Exemplary
Result Classes

for
Signature-Based

Harvesting

Stack (
push(Object):void
pop():Object

)

150 / 692

26 min 45 s

611 / 35,634

18 h 23 min

Stack,
MyStack,
ObjectStack,
Keller,
LIFO, Pila,
ObjectPool,
LifoSet

Calculator (
sub(int,int):int
add(int,int):int
mult(int,int):int
div(int,int):int

)

1 / 4

19 s

22 / 23,759

20 h 24 min

Calculator,
CalculatorImpl,
Molecule,
Arithmetic,
SimpleMath,
Operators

Matrix (
Matrix(int,int)
get(int.int):double
set(int,int,

double):void
multiply(Matrix):Matrix

)

2 / 10

26 s

26 / 137

5 min 25 s
Matrix

ShoppingCart (
getItemCount():int
getBalance():double
addItem(Product):void
empty():void
removeIt(Product):void

)

4 / 4

26 s

4 / 12

47 s
ShoppingCart
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Query Interface Signature Exemplary
Results

Spreadsheet (
put(String,String):void
get(String):String

)

0 / 0

3 s

4 / 22,705

15 h 13 min

Sheet,
Compiler,
Util

ComplexNumber (
ComplexNumber(double,

double)
add(ComplexNumber):

ComplexNumber
getRealPart():double
getImagineryPart():

double
)

0 / 1

3 s

32 / 89

1 min 19 s
ComplexNumber

MortgageCalculator (
setRate(double):void
setPrincipal(double):

void
setYears(int):void
getMonthlyPayment():

double
)

0 / 0

4s

15 / 4,265

3 h 19 min

Loan,
LoanCalculator,
Mortgage

On the one hand, the results presented in the table demonstrate the capability
of the test-driven reuse approach as we were able to identify a number of artifacts
in our collection that are able to deliver quite complex functionalities (such as a
Spreadsheet or a Matrix) as specified in the test cases. On the other hand it also
demonstrates its largest two dilemmas, namely the problem of “over-specifying"
the desired artifact and the execution time. The more complex an interface becomes,
the harder it gets to find a perfectly matching implementation. Although, relaxing
the search criteria indeed increases the probability of success, it increases the time
required for testing so that it is still difficult to apply test-driven reuse in practice
where developers demand results within just a few seconds. In principle, however,
distributing the testing to a large number of virtual machines should decreases this
time significantly as is shown in the subsection following hereafter.

12.4.2 Comparison

Recently, the idea of test-driven software search has been adapted by Steven Reiss
[38] from Brown University with his tool S6 and by Lemos et al. at UC Irvine with
their Eclipse plugin CodeGenie [46]. We will give some more details on their ap-
proaches in the following section on related work, but first we want to demonstrate
that our implementation is able to reproduce results similar to those reported by
Reiss. Unfortunately, at the time of writing, CodeGenie required triggering the test-
ing of each candidate manually within Eclipse so that we were unable to include it
into the comparison for reasons of security and effort.
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Table 12.3 presents the results of our comparison in five columns starting with a
reference to the used example. Columns two and three illustrate how many success-
fully tested results have been discovered by Merobase within the first 500 candidates
(using its “relaxed" search approach described before) without respectively with au-
tomatic adaptation of mismatching signatures. The JUnit test cases we used were
created according to the test samples provided by Reiss in his paper [38], his re-
sults are reproduced in the fourth column for a direct comparison, while the fifth
column is reserved for special remarks where necessary. Due to the limited num-
ber of candidates and optimizations in terms of parallelization and adaptation, this
time Merobase required less than 3 minutes per example, which certainly seems a
reasonable number for practical use. This time we have executed the testing in a par-
allelized environment (running on an AMD Opteron based server with a 2.6 GHz
dual-core processor and eight virtual machines) that yielded results comparable with
Reiss’s system that required between 15 and 169 seconds in a testing environment
utilizing also eight threads.

Table 12.3: Comparison of Test-Driven Search implementations.

Example

M
er

ob
as

e
un

ad
ap

te
d

M
er

ob
as

e
ad

ap
te

d

S6
[3

8]

Remarks

SimpleTokenizer 0 2 14 / 138

QuoteTokenizer 0 0 6 / 4

Robots - - 1 / 124 not repeatable5

Log2 0 1 1 / 100

FromRoman 0 2 3 / 38

ToRoman 2 4 6 / 56

Prime 0 4 14 / 228

PerfectNumbers 0 1 5 / 28

DayOfWeek 0 0 0 / 89 3 / 5,000

Easter 0 0 1 / 6 not repeatable6

MultiMap 0 0 2 / 165 3 / 10,000

UnionFind 0 2 1 / 149

TextDelta 0 7 1 / 249

5 Reiss’ tests required resources from the Web that are not available anymore.
6 We were not able to find results with Reiss’ tool either.
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The remarks for DayOfWeek and MultiMap in Table 12.3 were Merobase could
not find results within the first 500 candidates mean that it was able to discover
three working version in a larger set of candidates (5,000 resp. 10,000). However,
the expressiveness of this comparison is unfortunately still somewhat limited since
Reiss has used different search engines with different retrieval algorithms that finally
delivered different candidates. It nevertheless demonstrates that Merobase achieves
a similar performance as another contemporary tool and is also able to deal with
completely unbiased reuse challenges independently specified by someone else so
that the technical feasibility of test-driven reuse has been illustrated one more time.

12.5 Related Work

After some years of relative silence around the turn of the millennium, a new mo-
mentum has become visible in the software retrieval community in recent years and
other approaches implementing a test-driven reuse approach have been presented by
other researchers. To our knowledge, two research groups have been developing and
experimenting with appropriate tools. As already mentioned, Reiss has developed
S6 [38], a web-based search tool where a user can list search keywords, specify
the declaration of one or more method headers and add test samples that describe
the semantics of the desired operation. According to Reiss’s publication, S6 is also
able to “adapt" retrieved candidates by carrying out various internal program trans-
formations based on the abstract syntax tree of the potential result and to retrieve
numerous operations within one Java class. S6 is able to use its own search en-
gine called Labrador or a number of other code search engines such as Koders or
Sourcerer.

Sourcerer itself, which was developed by Bajracharya et al. [44] at the University
of California in Irvine implements a ranking approach similar to ComponentRank
[24] and is the foundation for another test-driven reuse tool called CodeGenie [46].
In contrast to S6, and similar to Code Conjurer, CodeGenie is fully integrated into
the Eclipse IDE and able to directly use JUnit test cases to drive a search for a miss-
ing Java method. In order to do so, CodeGenie analyses Eclipse’s compiler errors
and tries to find missing classes respectively their methods via the Sourcerer search
engine. The user can inspect the candidates delivered by Sourcerer and can request
from CodeGenie to “weave” them into his project where they can be tested as usual
with the help of JUnit. One of the main contributions of Sourcerer and CodeGenie is
probably their ability to work even with declaratively incomplete program files (so-
called slices) that can also be woven into the project under development. In contrast
to Code Conjurer that always integrates complete files and tries to resolve missing
dependencies also on a per file basis, CodeGenie thus seems to be more flexible,
as far as this can be determined without a direct comparison on the same data set.
Clearly, it would be interesting to see such a comparison (of course also including
the capabilities of S6) to better understand the advantages and disadvantages of all
three tools, however, this is yet to be done.
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Other recent approaches for increasing the precision of software searches in
large-scale repositories include the work of Grechanik et al. [14] who have built
a search engine that analyses the documentation of API calls (e.g. Javadocs) with
common information retrieval approaches in order to retrieve complete applications
that implement a desired high-level functionality (such as “record midi file"). It thus
avoids the need for exactly matching components and adaptation in the first place.
In terms of size of their search target, a number of innovative tools such as XSnippet
[39] or ParseWeb [45] reside at the other end of the spectrum as they mainly sup-
port developers in Eclipse through finding examples for object instantiations and
API calls. However, we are currently not aware of any other recent approaches that
also aim on retrieving reusable software building blocks according to a concrete
specification as test-driven reuse does.

12.6 Future Work

Although test-driven reuse marks another milestone for specification-based software
search and retrieval, there still exist many aspects with potential for improvement
as already illustrated by the three currently available approaches ([21, 38, 46]) with
their individual strengths and limitations. Since they only support the reuse and inte-
gration of Java source code so far, it is certainly interesting transfer the approach to
other programming languages, although we do not see any reason why this would
cause major problems. In order to make test-driven reuse applicable for the daily
work of a developer, however, it is necessary to further decrease the time until result
are delivered. This can of course be done by a further parallelization of test exe-
cution (with corresponding costs, of course), or by improving the adaptation gen-
eration and of course by optimizing the underlying search engine so that it simply
ranks potentially working results higher. Moreover, many advanced techniques from
information retrieval such as stemming, synonyms or hypernyms [3] have occasion-
ally been tried out for software search, but not yet systematically investigated so far
so that their effects are not yet clear. However, this problem has been plaguing gen-
eral information retrieval systems for years: for example, naively adding synonyms
as search terms, quickly leads to an explosion in the number of results and in turn
most likely to decreasing precision. Thus, one goal for the near future should be
the discovery of an optimal mix of heuristics that delivers an acceptable amount of
tested results within a reasonable amount of time. In other words, we still need to
find out which software retrieval algorithm works best for which usage scenario, as
there is still a lack of systematic evaluations as recently criticized [22].

Another challenging but not less important question is, whether and how com-
plex class ensembles or, in more general terms, complex components can be best
retrieved in a widely object-oriented world. There, today’s mainstream applications
are mostly composed of very fine-grained building blocks (i.e. the classes) and thus
composing an object-oriented program with the test-driven reuse approach would in
principle require a detailed specification for each desired object. On the one hand,
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creating each class individually is what needs to be done in object-oriented software
development anyway, however, on the other hand it clearly contradicts the idea of
composing preferably large components and hence defeats most of the benefits of
component-based development [47] that hides implementation details behind inter-
faces. “Carving" components from a bunch of objects currently only works auto-
matically as long as a hull (better known as a facade [13]), such as the Sheet class
from Figure and Listing 1, is coincidentally available and all its dependencies can
be resolved. To our knowledge, automated orchestration mechanisms as they are
intensively investigated in the web service community (e.g. in [31]) are not yet sup-
ported by any of the current software (or service) search engines and prototypes.
A prerequisite for overcoming this challenge is of course being able to find all de-
pendencies a reuse candidate relies upon. While we have already discussed some
simple heuristics for this task, a systematic analysis of this area is also still open.

12.7 Conclusion

The contributions we have described in this chapter are manifold, we have presented
a novel approach hat uses ordinary (unit) test cases for search and retrieval of well
defined software building blocks in a reuse context. We have described the current
state of development of our proactive reuse recommendation tool and a search en-
gine that can be used to implement test-driven reuse in practice. Furthermore, we
have applied our tool to a number of realistic reuse challenges demonstrating that
the approach is technically feasible, which is also supported by two similar imple-
mentations published recently. Moreover, we have identified some interesting ideas
for improvement and once more realized that it is about time to carry out a system-
atic comparison of (not only test-driven) software search tools, based on a unified
reference collection.

Since testing still is (and will certainly remain for some time to come) the only
means by which software components can be judged as “fit for purpose”, we believe
that, together with a test-driven reuse approach, it can become the central driver
for component and service markets in the mid-term future. Thus, our basic idea
is to integrate the ability of testing components and services into future versions
of software brokers (such as the former UDDI Business Registry). In addition to
delivering components that syntactically match usersâĂŹ queries, search engines
enhanced in this way will also be able to execute tests in order to filter out those
reuse candidates that are not fit for the desired purpose.

In contrast with current testing approaches, however, a new form of “blind test-
ing” is required to protect the interests of component providers and users in such a
commercial brokerage scenario. Thus, we propose a novel form of testing in which a
search engine only provides the user with an indication of whether a test was passed
or failed, but not with the actual results delivered by the component under test.
Moreover, it is important that the expected result of a test submitted by a user is also
not disclosed to the component since it could otherwise be used to return spoofed re-
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sults that might influence a purchase decision [2]. Thus, search engines in our future
concept need to act act as a trusted broker between component providers and poten-
tial users (i.e. buyers). This vision certainly has the potential to bring the practice
of software reuse closer to McIlroy’s long-felt desire of viable software component
marketplaces.
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Part IV
Remix: Snippets and Answers



Source code from the web can also be used as solutions to problems and answers
to questions. This style of reuse resembles the remix practices that have coalesced
around digital media. For example, music remixes involve taking bits from one or
more songs and recombining them into a new one. In this Part, there are three chap-
ters that examine this kind of source code retrieval.

In Chapter 14 “Software Problems that Motivate Web Searches,” Gallardo-
Valencia and Sim report on a field study of code retrieval in the wild. They were
interested in how software developers searched for code on the web to solve prob-
lems that they encountered in their work.

Tantikul et al. write about lessons learned in Chapter 15 on “Novel and Applied
Algorithms in a Search Engine for Java Code Snippets.” Their prototype was pop-
ulated with pages from tutorial web sites, rather than open source components, and
the search engine returned snippets accompanied by short descriptions.

Software developers often use the question-and-answer site, StackOverflow.com,
when problem solving. They either find answers to their questions or post their
questions for others to answer. In Chapter 16, Barzilay, Treude, and Zagalsky, report
on an empirical study of the kinds of questions that are asked and answered on Stack
Overflow, and they describe a tool that supports the remixing of examples from the
site.



Chapter 13
Software Problems that Motivate Web Searches

Rosalva E. Gallardo-Valencia and Susan Elliott Sim

Abstract Developers use the Web as a tool to find information to help them solve
their software development problems. However, little was known about what kinds
of problems motivate developers to do searches on the Web. We observed twenty-
four developers at three software companies. In our analysis, we found that there are
four main kinds of problems. When “Remembering," developers knew exactly what
they are looking for and only wanted to remember syntax details or find facts. When
they needed “Clarification,” developers had a high-level understanding of what they
want to implement, but did not know precisely how to do it. During “Learning,”
developers wanted to acquire new concepts. Finally, the last kind of problem was a
need for a tool or open source project/component. The first three kinds of search can
be characterized as using an opportunistic process, whereas the fourth kind uses a
non-opportunistic process. Our findings complement prior research on search targets
during and have implications for tool support.

13.1 Introduction

Developers are mainly using Web searches to opportunistically solve software de-
velopment problems (82% of Web searches). Opportunistic searches are ad hoc and
are done to remember syntax details, clarify implementation details or fix bugs, and
learn new concepts. On the other hand, non-opportunistic searches (only 18% of
Web searches) are done following a systematic process and are performed to find
open source projects.

Rosalva E. Gallardo-Valencia
Intel Corporation, Santa Clara, CA, USA, e-mail: gallardo.re@gmail.com

Susan Elliott Sim
Many Roads Studios, Toronto, Ontario, Canada e-mail: ses@manyroadsstudios.com
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Analyzing Web searches from the perspective of opportunistic problem solving
helps us understand that developers’ searches on the Web are motivated by the soft-
ware problems that they want to solve. These problems define the search targets that
developers are looking for. Using this perspective also helps us see that searches for
snippets of code and searches for open source systems are two different types of
searches.

In this chapter, we explain the characteristics of opportunistic searches as well
as the characteristics of non-opportunistic searches. We also discuss the insights
that come from understanding Web searches from an opportunistic problem solving
perspective. Finally, we provide a summary of the chapter.

13.2 Background

13.2.1 Opportunistic Problem Solving and Searches

Robillard [? ] argued that developers use a mixture of systematic and opportunistic
problem solving to complete their tasks. Developers use a systematic approach when
they have the knowledge for completing a task and can follow a well-structured
plan. In contrast, developers use an opportunistic approach when they need to find
missing information for completing software development tasks. For that activity,
they incrementally collect knowledge when the opportunity arises. Opportunistic
approaches do not follow structured plans but instead happen on an ad hoc basis.

Opportunistic problem solving was originally used to explain software engineer-
ing activities in general [? ]. In our work, we applied it to Web search as an aspect
of software development, where developers want to solve problems.

We argue that developers mainly use Web searches for opportunistic problem
solving. In the next subsection, we show our results for each of the characteristics of
opportunistic problem solving: Web search was used to explore further; knowledge
was partially and incrementally gathered; and Web search did not follow a well-
planned process.

13.2.2 Empirical Studies of Code Search on the Web

In our literature review, we found that some empirical studies [5? , 30, 32] report
on the motivation and also the search target developers expect to find, but others [?
13] only report on the search target. None of these studies report on observations of
developers in industry. Based on this analysis, we came up with seven reasons why
developers are looking for information on the Web:

R1. To reuse source code as-is.
R2. To find examples of usage for GUI widgets or API/libraries.
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R3. To remember syntactic details or frequently used functionality.
R4. To find examples to clarify how to implement functionality in a specific

language or how to implement an algorithm or data structure.
R5. To learn unfamiliar concepts.
R6. To fix a bug.
R7. To get ideas to implement a new system.
These studies form the starting point for our study.

13.3 Methods

We conducted a field study of 24 developers in three software development compa-
nies. We observed them as they worked with particular attention to how and when
they searched for source code on the Web. We augmented these observations with
fine-grained data collected using a Web browser extension.

13.3.1 Field Sites

We had three field sites, one in Peru (Novatronic) and two in Southern California
(Health Connection and AppFolio).

Novatronic is a consulting company with 64 employees that develops transac-
tional software. Its clients are banks, telecommunication companies, the govern-
ment, and other firms located throughout the Americas. The company has achieved
CMMI level 3 and its processes are certified as ISO 9001-compliant. We contacted
the owners of Novatronic who agreed to participate in the study. One of the owners
and the company’s product managers identified 25 developers who were coding at
the time of the study. Among these 25 developers, we randomly selected 12 develop-
ers to observe. Developers did not receive any compensation for their participation.

Health Connection is an open source health information technology company; its
system is used to securely exchange health information between health-care organi-
zations such as hospital, clinics, and laboratories. The company had approximately
45 employees working on various products. We are using a pseudonym for this com-
pany to protect its confidentiality. We contacted a Senior Software Engineer from
the company who agreed to participate in the study. He selected seven developers,
and four others volunteered to be observed. Developers did not receive any compen-
sation for their participation.

Finally, we also conducted one observation at AppFolio, which develops a web-
based application to manage rental properties, such as apartment complexes. The
company had around 120 employees. We contacted the Director of Software En-
gineering who agreed to participate in the study. He identified one developer to be
observed, who did not receive any compensation for his participation.
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13.3.2 Procedure

We shadowed each developer for one day of work. We took notes about the activ-
ities they were performing and time stamped switches between activities. We paid
particular attention to Web searches. After they performed a search, we asked some
questions about the goal of the search, expectations for the search, how the candi-
dates were evaluated, and the use of the information.

At the end of the day of observations, the researcher conducted a short debriefing
interview. The participant was asked to reflect on the activities performed and the
patterns of searches on the Web.

Because the searches were conducted so quickly, we developed an extension
for the Chrome Web browser to collect data. The extension automatically recorded
searches as well as the results developers visited after each search. Data collected
included the search engine used, terms in the query, and time. For visited results,
the extension recorded: the number of result page, the rank of the visited result, the
time of visit, the title, and the URL. A subset of participants in the US (10) installed
and used the Chrome extension the day they were observed.

We analyzed the data inductively and iteratively [? ]. We used open coding to
identify categories, sometimes revisiting data to apply new categories. We used ax-
ial coding to relate different categories to each other to create descriptions. The
names of participants that we use in this document are pseudonyms to protect their
confidentiality.

13.3.3 Participants

Table 13.1 shows a summary of our participants and companies. We observed 12
developers at Novatronic, 11 men and 1 female. Eleven participants completed the
background questionnaire. They were between 23 and 38 years old and had 1–15
years of programming experience. They used the following programming languages
at work: Java, C/C++, SQL, Visual Basic, and JavaScript. They used these IDEs:
Netbeans, Eclipse, Visual Studio, and Notepad++ (for C). Five participants indicated
that they looked for source code on the Web a couple of times per week, four almost
every day, one several times per day, and one less than once per month.

We observed 11 software developers, all men, from Health Connection. Devel-
opers were between 23 and 36 years old with 2.5–13 years of programming expe-
rience. They used the following programming languages at work: Java, SQL, JSP,
and JavaScript. The IDEs that they used were Netbeans, Intellij IDEA, and Eclipse.
Five participants indicated that they look for source code on the Web almost every
day, three a couple of times per week, and three several times per day.

One participant was from AppFolio. He had 2.5 years of work experience, and
uses TextMate to code in Ruby. He indicated that he looked for source code on the
Web several times per day.
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Type of Software

# of Employees

# of Developers 
Observed

Years of 
Programming 
Experience of 
Participants

64

12

1-15

Programming 
Languages Used 
by Participants

Java, C/C++, SQL, Visual 
Basic, Java Script

AppFolioHealth ConnectionNovatronic

Transactional software
Open source software to 

exchange health information
Property management 

software

45 120

111

2.5-13 2.5

Java, SQL, JSP, 
JavaScript

Ruby

Country Peru USA USA

Table 13.1: Summary of Participants and Companies in Field Studies

13.4 Results

13.4.1 Web Search was Used to Explore Further and Find Missing
Information to Complete Software Development Tasks

Developers often did not have all the information they need to complete their soft-
ware development tasks, and this is why they searched the Web. They were looking
for information that will help them solve their software development problems.

In our field studies, we identified four types of problems using the classification
proposed by Brandt [5]. First, developers needed to remember syntax details or find
a fact. Second, they needed to clarify how to implement functionality given that
they had a high level understanding of how to implement it. Third, they needed to
learn some concepts. Finally, developers needed to look for tools or open source
projects. This last category was not reported in Brandt’s study. Figure 13.1 shows
the frequency of each type of problem. We identified that the first three types of
problems fit into opportunistic problem solving, but not the last one. Searches done
to find an open source project to reuse does not meet all the three characteristics
of opportunistic problem solving. For that reason, searches for open source projects
will be discussed in the next section.

The length of the Web search session varied depending on the type of problem
developers wanted to solve. We obtained this result by looking at the distribution
of the duration of each kind of search. A Search Session represents a period of
continuous Web usage to fill a single information need performed in the same day.1

1 Some definitions of sessions used by other researches indicate that Web usage must be continuous
with no breaks longer than 5 minutes [? ], 6 minutes [5], or 25.5 minutes [? ]. However, we decided
not to include a cutoff in the longest time a break could take in the same day. Our decision was
based on the fact that we observed that developers had interruptions longer than 25.5 minutes
while using the Web and when they came back they continued reviewing information on the Web



264 Rosalva E. Gallardo-Valencia and Susan Elliott Sim

Fig. 13.1 Problems that Motivate Web Searches

Figure 13.2 shows a box and whisker plot for the length of the searches by the
type of search performed. Each box in the graph shows the range of 50% of the data
and the black dot shows the median. The whiskers show the 25% of searches that
took longer or the shorter. Triangles show the outliers. (Three additional outliers
have been omitted.)

Here, we include a description for each type of software problem identified for
opportunistic searches. Descriptions are accompanied by quotations from develop-
ers that exemplify the searches our participants performed in field studies or talked
about in focus groups. We use pseudonyms to identify our participants in field stud-
ies.

Remembering/Fact Finding Developers knew exactly what they are looking for
when they perform Web searches to remember syntax details or find facts. In
these cases, developers recognized the answer as soon as they see it.
Developers performed searches to remember syntax details of commands or pa-
rameters of a method. As Bob, a developer in our field studies, said mentioned
“I always forget how to do this,” when he performed a search to remember the
syntax of a SQL command. In other words, developers were using the Web as
memory aid [5].
Developers also knew exactly what they are looking for when they were trying
to find facts. For example, the goal of one developer was “to find what was the
last version of HtmlUnit.”

or refining queries to fill the same information need. For that reason, the only time constraint we
consider is that Web usage should happen the same day. Instead, we put more emphasis to the
intention of the search. If Web usage was done to meet the same information need, we consider
all those intervals as part of the same Search Session. The three longest breaks that we observed
in our field sites were of 3 hours 25 minutes 46 seconds, 1 hour 34 minutes 19 seconds, and 1
hour 16 minutes and 18 seconds. In these cases, developers interrupted their search to chat with
co-workers, answer calls from customers, code, write documentation, and have personal breaks.
When they used the Web again, they read the information they found before and in some cases
they also copied and pasted lines of source code and used them even though more than 3 hours
passed since their first query.
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Fig. 13.2 Length of Web Searches by Type of Software Problems

Twenty five percent of the searches we observed are to remember or to find facts
as shown in Figure 13.1. These searches had the lowest median time and the
tightest distribution as seen in Figure 13.2. Query refinements were uncommon
in these cases. Developers tended to visit few results and in some cases they
found the answer just by looking at the list of results.

Clarifying Often developers had a high level understanding of what they wanted
to implement, but they did not know precisely how to do it. They were looking
for examples of how to use APIs or solutions to bugs or exceptions. One instance
of this type of search was when Michael needed to log messages from his php
application. When asked about his goal for the search, he said that he wanted
to “find an example of how to have a php application send JMS messages to a
queue so they will be logged.” Another instance was when Gregory was “trying
to find out any issue or forum post about the exception org.eclipse.jetty.util.log
EOF.”
Developers had a rough idea of what they want, but are not sure what would
be a good answer. In such cases, it is hard for developers to create effective
queries. They need to evaluate more results and they reformulate queries as they
learn from the search results that they evaluate. These searches had a median
time longer than the one for remembering but smaller than the one to learn new
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concepts as seen in Figure 13.2. Forty three percent of the searches we observed
fall in this category.

Learning Developers needed to learn concepts that were new to them. Once,
Joaquin was asked to implement an application for an unfamiliar operating sys-
tem, he did a search for “0S4690 v6.0”. For searches in support of learning,
developers mainly looked at explanations and examples or tutorials. Fourteen
percent of the searches observed fall into this category. Developers spent more
time reading the documentation than evaluating the relevance of results. They
did many query reformulations and visited many results. These searches had the
largest median time as seen in Figure 13.2.

13.4.1.1 Knowledge was Gathered Partially and Incrementally

Developers used the search process to learn more about the problem they want to
solve and how to formulate effective queries. As they learned, they refined their
searches based on the partial knowledge they collect from previous queries in a
Web search session. Search results sometimes provided solutions and at other times
they helped developers identify more appropriate keywords.

In our field studies, developers used query reformulation in 50% of the searches
to learn new concepts and in 35% of the searches when they were trying to clarify
implementation details or fix bugs. Table 13.2 shows the number of query reformu-
lations for each type of problem. The first column shows the number of searches
with 0 refinements. That means, developers only entered 1 query for those searches.
The second column shows the number of query reformulation between one and
seven. In this case, developers performed between 2–8 queries. In the third column,
we show the searches that did not include query reformulation because developers
visited bookmarks or links directly. In the last column, we show the searches for
which we did not have information about query reformulation.

One instance of a search that involved query refinement was when Manfred was
looking for a solution to solve an exception he was having when he was using Htm-
lUnit. He entered the following sequence of queries:
Query 1: htmlunit “The data necessary to complete this operation is not yet avail-
able”
Query 2: htmlunit doScroll
Query 3: htmlunit “The data necessary to complete this operation is not yet avail-
able” doscroll

In the first query, Manfred entered the name of the library and the error message
he received. After examining some results, he learned that this problem could be
related to the “doScroll” method, so he replaced the error message with the name
of the method in the second query. Then, he examined the results and did not find
the answer the was looking for, so he tried to include both the error message and the
name of the method. This example shows that developers collect partial knowledge
from the search result evaluation they perform during a Web search session.
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Remembering/
Fact Finding

Clarifying

Learning

Looking for Open 
Source Projects or 

Software Tools 

0 1-7

13 5

15 14

6 6

14 2

SUBTOTAL 14 (88%) 2 (13%)

4 0

3 5

0 0

0 0

0 (0%) 0 (0%)

Query 
Reformulation

Bookmark No info

SUBTOTAL 34 (48%) 25 (35%) 7 (10%) 5 (7%)

TOTAL 48 (55%) 27 (31%) 7 (8%) 5 (6%)

Opportunistic
Searches

Non-Opportunistic
Searches

Table 13.2: Query Reformulation by Type of Software Problems

13.4.1.2 Searches on the Web did not Follow a Well-Planned Process

Web searches happened in an ad hoc manner and they happen often. Typically, de-
velopers did not start their day by planning the Web searches they are going to
perform during the day. In fact, they did not know if they will even be searching for
code or how many searches they will need.

Also, if Web searches were a planned process, people would be more aware of
the searches they perform. However, we found a mismatch between what people
reported doing and what people actually did.

Based on our observations of developers in field sites, 83% of them perform many
searches on the Web during a day of work to help them solve software development
problems. However, when asked in all our surveys, only 45% of developers reported
that they perform searches almost everyday or several times per day [? ].

Twenty developers we observed performed searches on the Web to help them
solve software development problems. Only four developers out of the twenty four
that we observed did not perform any searches related to software development
(three in Peru and one in the US). One developer who was an expert in JavaScript
did not perform any searches when he spent the day coding. He did not need to
consult implementation details and when he had exceptions he knew how to solve
them. The other three developers had different situations and coding was not the
main activity during the day. One developer was running around trying to solve a
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problem with a system in production, another was writing documentation, and the
last one was working his last day at the company.

Among those who did search the Web, they performed on average 3.6 searches
per day (s = 3.4), with a low of one search and a high of 15. Web searches were
an important and integral part of their day. One developer at Health Connect, Brian,
said: “I could not code without Google.” He performed 7 searches the day he was
observed.

13.4.2 Non-Opportunistic Searches

Not all Web searches that we observed fulfilled the three characteristics of oppor-
tunistic searches. When developers looked for open source projects, Web searches
were mainly to find software to reuse as is, not to find code snippets or explanations.
Also, Web searches are not ad hoc but instead they followed a methodical process.

13.4.2.1 Web Search was Used to Find Open Source Projects to Reuse As-Is

Web searches are non-opportunistic when developers were trying to find a complete
system, component, or tool to reuse. They did not intend to make any changes to the
code that they found.

Developers looked for open source projects that they can reuse and integrate into
their current projects. For example, Oscar was looking for an open source project
to do data mining of logs and to manage alerts. In other cases, they needed to find
some tools to support their programming tasks. For instance, Malcom was trying to
find a tool to do performance testing of Java programs. In this type of search, devel-
opers look at many alternatives and evaluate each of them very carefully according
to criteria such as functionality, cost, popularity, and support. Unlike opportunistic
searches, this type of search often requires multiple search sessions, each requiring
evaluating different options.

Searches for open source projects and software tools have the second highest
median search time, the most skewed distribution, and the longest tail, as seen in
Figure 13.2. In other words, these kinds of search sessions typically took the same
amount of time as search sessions in support of learning, but many could take a very
long time. Also, developers often required more than one search session to find a
suitable open source project to reuse. One participant spent an entire day looking
for an open source project, and still did not finish the task.
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13.4.2.2 Knowledge was Gathered for Criteria to Evaluate Open Source
Candidates

When developers evaluated open source projects, they performed Web searches to
find information related to each of the evaluation criteria that they use to compare
them.

When we observed Oscar, he did Web searches using the name of the system
that he was evaluating. He made few query reformulations, as seen in Table 13.2.
For each candidate, he read information related to the architecture of the system,
requirements for installation, cost, and support, which were the evaluation criteria
he was using. He looked for the same information for all the systems he evaluated.

13.4.2.3 Searches Commonly Followed a Planned Process

Oscar, alerady mentioned above, knew at the beginning of the day that he would be
doing many Web searches to find a project or component. At the beginning of the
day, he found an article that provided a list of this type of open source systems. Over
the course of the day, he methodically followed that list to search for information
related to each open source system. For each candidate in the list, he did a Web
search using the name of the system for the query and he did not need to reformulate
his queries.

13.5 Discussion

Using an opportunistic problem solving approach helped us to have a clear under-
standing of what motivates Web searches, to identify common search targets for
different motivations, to differentiate searches for code snippets and open source
projects as two different problems, and to classify tools for opportunistic and non-
opportunistic searches.

13.5.1 Software Development Problems and Search Targets

Software problems that developers want to solve define the search targets. We found
that developers look for examples, code snippets, syntax, or API documentation
when they want to remember or find a fact. When developers want to clarify im-
plementation details or find solution to a bug, they look for API documentation,
examples, code snippets, and error related information. If developers need to learn
new concepts, they usually look for tutorials or API documentation. When develop-
ers look for open source projects, they try to find information related to the projects,
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specifically with respect to the installation requirements, architecture, and reputa-
tion.

Remembering/
Fact Finding

Clarifying

Learning

Looking for Open 
Source Projects or 

Software Tools 

API Documentation/
Tutorial

Example/Code 
Snippet/Syntax

Open Source Project/
Software Tool

Error Related 
Information

Others

7

18

8

11

10

3

16

1

7 2

3

1

Opportunistic
Searches

Non-Opportunistic
Searches

Search Target

Table 13.3: Search Targets by Type of Software Problems

Table 13.3 uses circles to show how often developers look for each search target
when they are trying to solve each type of software problem. The bigger the circle,
the more frequent a search target is used to solve a development problem. For exam-
ple, we can see in this table that for 18 searches (out of 87) developers were looking
for API documentation or tutorials to clarify implementation details. We identified
the following search targets:

API Documentation/Tutorial Developers are looking for documentation of APIs
or tutorials, mainly when they want to clarify some implementation details. Less
frequently, developers look for these search targets when they want to learn new
concepts or remember syntax details.

Example/Code Snippet/Syntax We grouped examples (14), syntax (7), and code
snippets (3) together because when developers are looking for these search tar-
gets, most of the time they are trying to find few lines of code to be used as a
reference or to be reused. Developers look for this set of search targets when
they are trying to remember, find a fact, or clarify implementation details.

Open Source Project/Software Tool When developers are evaluating open source
project candidates or they are looking for a tool to help them with programming,
they look for information related to each candidate. This information includes
requirements to install the project, description of the architecture, and what other
people think about a project.

Error Related Information When developers get exceptions after they compile,
run, or test their code, they look to the Web to find error related information
that could be helpful to understand the error and fix it. Developers are interested
in finding the cause of the error, how to solve it, and experiences other developers
have with the same issue.

Others In this category we grouped search targets that did not fall in any of the
previous categories. We found that developers are also trying to find again a Web
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page recently visited that was useful but they do not have a link to it (2), and
trying to find the meaning of a word (1). In one case, a developer did not know
exactly what he was looking for and in other two cases developers describe their
search targets in terms of the problems that they were trying to solve.

13.5.2 Looking for Code Snippets and Looking for Open Source
Projects are Different Problems

Analyzing the motivation of Web searches from an opportunistic problem solving
perspective, makes evident the differences between searches for code snippets and
searches for open source projects.

When developers search for code snippets or explanations to remember syntax
details, clarify implementation concepts or fix bugs, and learn new concepts, they
are performing opportunistic searches. These searches do not follow a planned pro-
cess, instead, they are ad hoc. Developers perform opportunistic searches to find
missing information and incrementally gather information.

On the other hand, Web searches to look for open source projects are done fol-
lowing a methodical or planned process. Developers methodically evaluate each
open source candidate by looking into the Web for further information about a set
of criteria. These criteria includes cost, installation requirements, functionality, ar-
chitecture, and reputation.

Finding these differences between searches for code snippets and searches for
open source projects makes it clear that developers need different tool support for
these two types of searches.

13.6 Implications for Tools

Our empirical studies show that developers perform Web searches differently to
look for code snippets (opportunistic searches) and to look for open source projects
(non-opportunistic searches). In this section, we provide implications for tools for
these two types of searches separately.

13.6.1 Implications for Tools for Opportunistic Searches

From our empirical studies, we have learned that developers are highly successful
when they do Web searches to find code snippets to remember syntax details or
to find facts. In this case, developers know exactly what they are looking for and
recognize it easily. However, developers are not highly successful when they search
on the Web for code snippets to clarify implementation details or fix errors, which is
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the most common motivation for searching on the Web. We believe that improving
tools to help developers be more successful in this type of searches can make a
positive impact on the effectiveness of solving software problems. Based on our
findings, we give the following recommendations to tool designers.
Make Examples and Source Code Snippets more Visible

Developers are mainly looking for examples or code snippets on the Web. Even
when developers look for API Documentation or tutorials, they also want to see ex-
amples of how to use certain functionality. However, Web browsers do not facilitate
the identification of examples or code snippets in the search results.

Due to the fact that we observed that developers often look for search results that
contain examples or code snippets, we believe that it would be helpful if developers
could know which search results contain examples or code snippets. One possibility
is to augment the search results gathered from a search engine such as Google and
analyze which ones have source code. Mica [30] and Assieme [13] are two tools that
recently have shown that augmenting Web search results to make developers aware
of which results contains source code examples of API can make Web searches
more effective. Also, after identifying that a result has source code, we believe that
it would be useful to show technical and social information related to a piece of
source code. Recently, a prototype that augments Web search results with reputation
information has been developed [? ].

Another possibility to make examples or code snippets more visible is to create
a crawler to gather source code snippets from tutorials, forums, API documentation
on the Web and create a repository of them. This repository could associate code
snippets with text surrounding them in Web pages so that code snippets would have
actual text associated with them to facilitate the matching between code snippets
and keywords in queries [? ].
Show Error Related Information when an Exception Occurs

Nineteen percent of searches to clarify information were to fix errors. When de-
velopers compile, run, or test their source code, they copy and paste the exception in
a Web search engine and they try to find what causes an error, how it can be solved,
and what are the experiences of other people with that same issue.

Due to the fact that we observed that developers look for error related information
when their program shows an error, we believe that it would be helpful for develop-
ers if the IDE that throws an exception will also run a query on the Web with that
exception. In that way, the IDE can show the developers not only the line where the
exception was detected and the stacktrace, but also information found on the Web
related to this error including potential causes, potential solutions, and what other
people did when they encounter the same error.
Present Results from Web Searches in the Development Environment

We observed that sometimes after developers found a solution on the Web, they
put side by side a window with the source code found and a window with their
source code in an IDE. For this reason, we believe that it would be useful if de-
velopers could have both, their source code and results from the Web in the same
environment. Recent tools such as CodeGenie [20] and Blueprint [6] have explored
this integration between the IDE and the Web.
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We expect that in the future developers will have online IDEs and the integration
of search results from the Web and their own code stored in the cloud would be
easier and more natural.

Fig. 13.3 Compare Projects Feature by Ohloh
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13.6.2 Implications for Tools for Non-Opportunistic Searches

In our empirical studies, we observed that developers look for the same type of in-
formation to compare open source projects. Based on this observation, we believe
that it would be helpful if developers would have a tool that gathers this information
and shows it in a comparative way. There are not many applications that have this
functionality. One of the few is Ohloh, which allows developers to enter the name
of three open source projects and shows the same information for all the three sys-
tems in a table to facilitate comparison. We used Ohloh to compare three systems
searched by one of our participants, Oscar and Figure 13.3 shows the results of this
comparison.

For each of the projects, Ohloh shows general information including how re-
cently the repository was updated, the home page, and license. It also includes
repository activity for the project, code analysis, and reputation of the project given
by Ohloh users.

We believe that tools that allow comparison of systems will be useful for de-
velopers. These tools should be flexible enough to support comparisons of more
than three open source projects. Currently, Ohloh supports only comparison of three
open source projects, as previously mentioned. However, we observed that a devel-
oper compared 10 open source systems and he was planning on evaluating more
before selecting one. Tools that help comparing projects should also include other
criteria in addition to repository activity. This recommendation is based on the fact
that we observed that developers evaluate open source projects having into account
not only characteristics of their repository but also other characteristics such as the
installation requirements and the architecture of the open source project.

13.7 Conclusion

In summary, we analyzed Web searches using an opportunistic problem solving ap-
proach to find out what motivates developers to look for information on the Web. We
found that developers mainly perform searches to opportunistically solve software
development problems (82% of Web searches). Opportunistic searches are ad hoc
and are done to remember syntax details, clarify implementation details or fix bugs,
and learn new concepts. On the other hand, non-opportunistic searches (only 18%
of Web searches) are done following a systematic process and are performed to find
open source projects. Using opportunistic problem solving lenses we changed the
level of granularity to understand the motivation behind Web searches from search
targets to software development problems. This change on focus allow us to clearly
understand that what motivates Web searches are software development problems
and they define the search targets developers are looking for. Using the opportunis-
tic approach also help us understand that searches for code snippets and searches
for open source projects are two different problems that should be investigated sep-
arately.
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Chapter 14
Novel and Applied Algorithms in a Search
Engine for Java Code Snippets

Phitchayaphong Tantikul, C. Albert Thompson, Rosalva E. Gallardo-Valencia, and
Susan Elliott Sim

Abstract Programmers often look for a “snippet,” that is, a small piece of example
code, to remind themselves of how to solve a problem or to quickly learn about a
new resource. However, existing tools such as general-purpose search engines and
code-specific search engines do not deal well with searches for snippets. In this
chapter, we present a prototype search engine designed to work with code snippets.
Our approach is based on using the non-code text on a web page as metadata for the
snippet to improve indexing and retrieval. We discuss some implementation issues
that we encountered, which lead to lessons learned for others who follow. These
issues include: extracting snippets from web pages, selecting and indexing meta-
data, matching query terms with multiple metadata indexes, and identifying a text
summary to be used in the presentations of results.

14.1 Introduction

Searching for source code on the web has become an integral part of software de-
velopment. We find evidence of this in the creation of search engines specifically
designed to search for source code, such as Strathcona [9], Mica [30], Krugle1,
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Koders2, Google Code Search3, and Sourcerer [22]. All of these tools take the ap-
proach of gathering together as much source code as possible from open source
hosting sites and making the repository searchable. Unfortunately, these repositories
omit the large number of code snippets that are embedded in web pages through-
out the Internet. Snippets usually consist of a handful of lines of code and do not
necessarily compile. Since snippets differ from components in a number of ways, it
stands to reason that they require a different kind of repository and search engine.

In this chapter, we describe “Juicy,” a search engine for snippets of Java code
and the lessons learned from its implementation. In the design of Juicy, we treated
code snippets as first class objects. When the search engine returns a page of results,
the items consist of an excerpt of the code snippet, a link the originating web page,
and a brief text description. In implementing Juicy, we used many existing tools and
algorithms. Our contribution is in the novel application of these resources and the
resulting assemblage.

We used the Rotation Forest machine learning algorithm, as implemented by
Weka 3 to help us label sections of web pages from Java tutorial sites as either text or
source code. The open source project, Lucene, was used as the repository for Juicy.
We used the Porter Stemming algorithm to normalize words. The Eclipse AST
parser was used to parse the code snippet. Finally, Latent Dirichelet Allocation
was used to find the most relevant paragraph of text to be used as a short summary
of the snippet.

In addition to leveraging these existing algorithms, we performed some small
empirical investigations to inform our design decisions. We identified appropriate
features to be used in classifying segments of tutorial pages. We found that it was
necessary to filter out many duplicate pages and pages that did not contain code
from our initial crawl of Java language tutorial sites. We found that the best text to
use as metadata for a snippet is the text segment that appears above the snippet. We
found that the best results for a general search were obtained by using only three
indexes: web page title, code snippet, and text segment.

In the remainder of this chapter, we will describe how we used these existing
algorithms and the design decisions that we made in doing so.

14.2 Approach

Our approach was based on the following key insights:

1. Programming language tutorial pages contain an distinctive combination of
source code snippets and natural language.

2. The natural language on the pages can be used as metadata for the code snippets.
3. Effective searches for snippets need to make use of both the source code and the

natural language text.

2 http://www.koders.com
3 http://www.google.com/codesearch
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The architecture of Juicy is divided into two parts, a back end that works offline
and a interactive front end. These parts are depicted in Figure 14.1 below.

Fig. 14.1 Architecture of Juicy, a Java code snippet search engine

The back end consists of a repository built on top of Apache Lucene, a text search
engine library written in Java [? ]. Our contributions consist of the techniques for
populating the repository with code snippets, and for creating metadata and indexes.
The front end provides a user interface to the repository through a web interface.

14.3 Populating the Repository

We populated the repository by using a web crawler to collect web pages from the
Internet. In populating the repository for a snippet search engine there are basically
three issues that need to be considered: 1) what sites to crawl; 2) how to exclude
pages that do not contain Java code; and 3) extracting code snippets from the web
page. We will discuss each of these in this section.

14.3.1 Starting Points for the Crawler

The web crawler is a program to collect web-pages from the Internet. It takes an
intial web page, or “seed URL” as input and places it in a queue. The program
retrieves the page from the first URL in the queue and stores it locally. The contents
of this page is further parsed for hyperlinks, which are added to the queue of web
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sites. The program then iterates through the remaining URLs in the queue. The
crawler in this project was built upon HTML Parser4.

To construct our prototype repository, we used a set of 33 seed URLs. These
were chosen, because they were identified as rich sources of information, and used
a variety of page formats. The full list can be found in the appendix for this chapter.

14.3.2 Extracting Snippets

We used a three-step process to separate the source code snippets from the surround-
ing text on the web page. We used the HTML tags to divide the page into spans, or
grouped content segments. Within the segment, features from a natural language
(English) and a programming language (Java) were counted. These counts were in-
put into a machine learning algorithm to classify either as natural language text or
Java source code. The results are exported in an XML file to be read by downstream
tools. We will discuss each of these steps further in this section.

14.3.2.1 Division into Grouped Content Segments

Every HTML document consists of a series of spans demarcated by matched pairs
of begin/end tags. For instance, the pair of tags <p></p>indicates a paragraph. The
texts in between these tags are called content segments. In other words, content
segments are the leaves in the tree representing the document object model.

Unfortunately, content segments can be difficult to classify, because they are
short, containing only one or two words, which makes it difficult to label the seg-
ment as source code or text. For example, “public” is both an English language word
and a Java keyword. For this reason, we took a tactic from lyrics classification and
formed grouped content segments from content segments according to their nesting
within <pre>and <code>tags. In other words, the content segments in the sub-tree
rooted by a <pre>or <code>tag are aggregated.

14.3.2.2 Scoring of Natural Language Features

We used the following three features based on characteristics of natural language:
number of words, ratio of non-dictionary words, and ratio of stop words. These
choices were motivated by previous work on content retrieval. Also, we experi-
mented with other features, such as length of the segment and counts of dictionary
words, but these were less fruitful.

Number of Words This feature is simply the count of the number of words in a
content segment. Numerals, i.e. digits, are not included. As well, white space of

4 http://htmlparser.sourceforge.net
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any kind does not affect this feature. Typically, text has a larger number of words
per content segment than source code.

Ratio of Non-Dictionary Words Another feature is the number of words in the
content segment that does not appear in the Merriam-WebsterÕs 9th Collegiate
dictionary [18]. Again, we excluded numerals. Usually, source code has a larger
proportion of non-dictionary words than natural language, because identifier
names are invented to suit the context and are not limited to dictionary entries.

Ratio of Stop Words In natural language processing, there is the concept of “stop
words.” These are words that are filtered out prior to processing, because they
appear so frequently that they add little information to the input stream. Stop
words typically include articles, pronouns, prepositions, and common verbs, such
as “to be” [? ]. In our work, we do not filter out stop words, but instead use a stop
word ratio. We used a published list of English stop words [? ], but removed Java
programming language keywords. Normally, text would have a higher stop word
ratio than source code.

14.3.2.3 Scoring of Programming Language Features

We use the following set of five features derived from programming languages: ratio
of keywords, ratio of indentation, number of comments, ratio of separators, and ratio
of operators. For each of these, we will discuss how they apply to programming
languages in general, and then specifically for Java.

Ratio of Keywords In source code, the words that appear most frequently are pro-
gramming language keywords. By counting these keywords we can get a good
idea if something is source code. Since the number of distinct keywords in a
programming language is relatively small, it would not be difficult to adapt this
feature to a particular language, such as Java.

Ratio of Indentation In general, indentation is used only to improve readability.
Some programming languages, e.g. Fortran and Python, prescribes indentation or
assigns a role to a line position. In either case, extensive use of tabs or whitespace
is an indicator that a content segment is source code.

Number of Comments Every programming language has syntax for comments.
The syntax for comments can vary from language to language, but their presence
indicates that a content segment is source code. In some languages, comments are
easy to identify. For example, a letter ‘C’ or hash mark or single quotation mark in
the first position on a line indicates a comment. Java comments are more complex
and can take one of two forms. A comment that spans only one line is prefixed by
a pair of backslashes ‘\\’. A comment that spans one or more lines begins with ‘/*’
and ends with ‘*/’. Care must be taken when working with single-line comments
to ensure that double backslashes in URLs do not produce false positives.

Ratio of Separators and Ratio of Operators Programming languages have special
punctuation that is used to separate or delimit identifiers or operands. The dis-
tinction between separators/delimiters and operators is arbitrary and language
specific. We calculate ratios for these two features disjointly.
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We relied on the Java Language Specification [? ] to define these two classes of
special punctuation. For the separators, we included parentheses, curly braces,
square brackets, and the semicolon, but did not include the comma and full stop,
because the latter two appear frequently in text. For the operators, we used the
full Java set, but excluded the hyphen.

14.3.2.4 Classification of the Segments

We used the Rotation Forest algorithm as implemented in Weka 35, an open source
framework written in Java, that implements more than 60 different machine learning
algorithms.

Rotation Forest [? ] is a classifier ensemble method. Its main heuristic is the
application of feature classification to subsets of M features using principal com-
ponent analysis (PCA) separately on each subset and reconstructing a full feature
set for each of the L classifiers in the ensemble. Using Weka, we ran the algorithm
for subsets of three features (M = 3), ten classifiers in the ensemble (L = 10), and
using a J48 decision tree . The algorithm is named Rotation Forest, because it uses
a simple rotation of the coordinate axes from the PCA and the base classifier model
is a decision tree.

The scores for the features are input to a Rotation Forest classifier. The output is
two values: the likelihood that the grouped content segment is text and the likelihood
that it is source code. We take the higher of the two values and apply the appropriate
label to the segment.

14.3.2.5 Evaluating the Algorithm

We created a corpus of web pages that contained Java source code examples. We
compared the output generated by each algorithm for each web page against a hand-
built gold standard. Metrics such as accuracy, recall, precision, and F1 were calcu-
lated based on the comparison.

We created a corpus of web pages to evaluate our algorithms by using results
returned by Google search. We issued 16 queries each containing the term “java”
and one of the following keywords from the Java programming language: abstract,
class, double, final, for, if, import, int, interface, long, private, protected, public,
static, void, and while. We downloaded and archived the first 50 results from each
of the searches from Google. We removed 52 duplicate pages from the repository
and 41 pages, because the pages did not contain HTML, e.g. PDF and word pro-
cessor documents. Our final corpus contained 707 diverse web pages, both with and
without Java source code examples. In these pages, there were 471,536 content seg-
ments and 9,796 grouped content segments. For each of these pages, we created by
hand a “gold standard,” or oracle for correct classifications.

5 http://www.cs.waikato.ac.nz/ml/weka/
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The F1 statistic is the weighted harmonic mean of precision and recall. In our
evaluation, we calculated it separately for both text and source code, but here we
show the generic formula we used to calculate both:

F1 = 2⇥ precision⇥ recall
precision+ recall

(14.1)

Classification accuracy indicates the percentage of segments that the algorithm
correctly classifies contents in text and source code.

Accuracy =
number o f correctly classi f ied segments

total number o f segments
(14.2)

We found that F1 Text = 0.968, F1 Code = 0.767, and Accuracy = 0.959. It took
14.19 seconds to train the algorithm and 0.147 seconds to classify a typical page.

14.3.3 Summary

After completion of this processing, we have a repository of web pages where each
web page has been factored into code snippets and text that can be used as metadata.
The number of pages available after each step is summarized in Table 14.1.

Total pages downloaded 34,054
Pages with no Java code 21,162
Pages with Java code and text 12,892

Table 14.1: Number of Pages After Filtering

14.4 Indexing the Repository

Indexing is the process of identifying a set of keys for looking up a document in a
repository. With text documents, it is common to index all of the terms, excluding
stop words. Choosing what to index and how is an important design decision, be-
cause these keys determine how effectively a document is retrieved from the repos-
itory. Often, adding metadata to the index, such as the URL, tags, or author of the
page, can improve the performance of a search. Simply treating source code snippets
as text documents is not sufficient for a number of reasons. Some terms in source
code are structurally significant, such as identifiers. Also, source code typically con-
tains few keywords that tell you about what the code does. Consequently, additional
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processing is needed to ensure that the index contains the appropriate information,
so that the most relevant code snippets are returned in response to a user’s query.

Our index contains metadata from three different sources: web page, code snip-
pet, and text as shown in Table 14.2. For web pages, we included two metadata
fields: url and page title. For code snippets, we included 11 metadata fields: ten for
different identifier types and one for a summary of keywords found in a specific code
snippet. For text, we included one metadata field that has the summary of keywords
found in the text segment associated with a code snippet.

Web page Code Snippet Text
url keywords from code snippet keywords from text
page title package

import
class declaration
class used
extending and implementing class
return type
method declaration
method invocation
variable declaration
comments

Table 14.2: List of Indexable Metadata

Information for all the metadata fields were indexed and stored in seperate
columns in Lucene. We indexed words from 43,306 snippets, which were com-
pressed into indexes in Lucene with a total size around 71 MB.

14.4.1 Indexing Text Segments

Our approach centers on the idea of using the text surrounding code snippets as
metadata, because source code tends to have few words that describe its functional-
ity or what it does. As a result, we need to find the chunk of text that contains the
terms that best describes a snippet.

To answer this question, we sampled 200 pages from our repository and manu-
ally identified the most relevant text. We obtained this sample by taking the top 50
pages returned by a search using the following four keywords: binary tree, database,
hashmap, and socket.

Out of 200 pages, 81 pages were identified to be related to the keywords. Figure
14.2 shows the number of relevant pages for each keyword. Looking more closely,
we found that some keywords are too common, such as database, hashmap, and



14 Novel and Applied Algorithms in a Search Engine for Java Code Snippets 287

socket. Therefore, the words could appear in web pages that have a topic that is
irrelevant to the search query.

Fig. 14.2 Number of Relevant Results in Each Query

We focused on the remaining 81 relevant pages in our study to find the location
of a text segment that is most relevant to a specific code snippet. We manually in-
spected the code snippets and nearby text segments. We found that for 78% of code
snippets, the best text description appeared above them. For 2.25% of the snippets,
the most descriptive text appeared below of them. The best text description appears
both above and below 13.75% of the snippets. Finally, we could not find any rel-
evant text description in the same page for 6.25% of code snippets. Figure 14.3
summarizes these findings.

Fig. 14.3 Location of Relevant Text Around Code Snippets



288 Tantikul, Thompson, Gallardo-Valencia, and Sim

Based on these findings, we decided to pair the code snippet with the text segment
that appears above it on the page in the repository. The words in the text segment
can help describe a code snippet. We have a total of 43,306 pairs of text and code
snippets in our repository.

Each text segment that we collected was parsed using simple word delimitors
(e.g. white space, new line) in order to extract all words from the text segment. Due
to the fact that many extracted words are very common and not very helpful for
searching, (e.g. ‘a’, ‘an’, ‘the’), these words should be removed from the collection
of extracted words. We use a list of stop words 6 to filter them out. The remaining
words are changed to lower case and stemmed using the Porter Stemming Algo-
rithm[? ]. By ignoring capitalization and reducing each word to its simplest form,
we increase the chances of words being matched with the terms in a user’s query.

14.4.2 Indexing Code Snippet Segments

Within an integrated development environment (IDE), programmers often search
for variables, functions, classes, and other programming constructs by name [? ].
Code-specific search engines, such as Krugle, Sourcerer, Google Code Search, and
Koders, also provide this functionality. It stands to reason that a snippet search en-
gine should provide this functionality as well. Snippets tend not to be complete
syntatically correct, nor can they be compiled and linked. Parsing out programming
language constructs is only the beginning. Identifiers usually are not plain English
words, but rather are improvised compounds. In addition, comments can be a useful
source of metadata and deserve further analysis.

Instead of using fuzzy parsers, such as those used in syntax highlighters, but
we tried an approach that has not been used extensively, an incremental compiler.
To parse out identifiers and comments from the code snippets, we use the Eclipse
abstract syntax tree parser7. We chose to use this API in Juicy, because it is a robust
incremental compiler. Within the Eclipse workbench, the AST parser is capable of
parsing code as it is typed and compiling classes as they are saved. For Juicy, it
provides two features that are particularly helpful: input type selection and error
handling. Input type selection allows the AST parser to be called with a flag that
specifies whether the input code is complete source code, a block, or a line of code.
This allows the parser to produce more accurate output. If the flag is set incorrectly
for an input snippet, the parser will produce errors and we can try again with a
different flag.

We collected ten types of structural information from code snippets which are
shown in 14.3. The first nine types are mainly identifier declarations and invoca-
tions, which can be generalized into terms of package, class, variable, and method
information.

6 http://www.ranks.nl/resources/stopwords.html
7 http://www.eclipse.org/articles/article.php?file=Article-JavaCodeManipulation_AST/index.html
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Extracted Identifier Types
package import class declaration
class used extending and implementing class return type
variable declaration method declaration method invocation
comment

Table 14.3: Extracted Indentifier Types from Parser

Another metadata field was added to store all the English words in the iden-
tifiers, which were found by dividing the identifiers according to internal capital-
ization. The scheme is also known as “camel case," because uppercase letters in
an identifier are taller than the lowercase ones, giving the identifier the appearance
of camel-like humps. As specified in the Sun Java Coding Convention, camel case
is the recommended standard for aggregating English words to form a meaningful
identifier. For this metadata field, we excluded Java keywords such as ‘class,’ ‘for,’
‘new,’ and ‘void.’

The last piece of information to be parsed from code snippets is code comments.
Search engines can benefit from comments because they provide information about
the context of the code snippets and also contribute potential matches to search
terms. Having more keywords associated with a piece of source code will allow
users to have more changes that a keyword included in a query matches with a
keyword related to a piece of source code. Therefore, javadoc comments, line com-
ments, and block comments were collected and treated as textual information in
Juicy.

14.5 Retrieving and Presenting Search Results

Juicy has both a general and an advanced user interface, as seen in Figure 14.4. In
this section, we will discuss how we use the indexes to obtain matches to the user’s
query, rank them, and display them.

14.5.1 Matching and Ranking

The basic user interface consisted of a simple text box, just like a typical search
engine. With the indexes and metadata available, it was necessary to find a combi-
nation that would provide a set of useful results. Furthermore, when using multiple
search indexes, we would need to find a way to combine the results.

We found that matching the search terms to all the metadata fields in our in-
dexes at the same time produced many irrelevant results, but did so quickly. After
experimenting with different combinations, we found that using three of our indexes
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Fig. 14.4 User interface of Juicy

produced the largest proportion of good results early in the list. These indexes were
page title, keywords from code snippet, and keywords from text. Page title gives a
general concept of the whole page. Keywords from code snippet contained identifier
names that could explain what the code snippet does. Finally, keywords from text
above code snippets, which proved to be relavant to the code snippet, could also
contain words explaining the behavior of the code snippet. In other words, these
three metadata fields provide a idea of the purpose of the code snippet.

Using these three indexes gave us three different sets of search results that must
be combined into a single ranked list. But the sets are not identical and the snippets
are ranked differently. The approach that we used to combine the results revolved
around the snippet ID. The final result set consisted of only snippets that appeared in
all three results set, which ensures a high degree of relevance to the query. The new
ranking was calculated by averaging the ranking from each index. We tried different
combinations of weights for aggregating the ranking scores, but found that using
equal weights yielded the best results.

The advanced interface allows users to search for a terms in specific indexes, such
as class names, method names, and imported packages. Search terms are entered
into a text box and these keywords are matched in the corresponding index. The
matches are aggregated and ranked using the normalized TF-IDF score produced by
Lucene [? ].
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14.5.2 Presentation

Whe returning matches, the search engine needs to provide not only the snippet,
but also the title of matched web page and a short text summary. It is not obvious
what text on a web page is the best summary of the snippet. To solve this problem,
we used LDA (Latent Dirichelet Allocation). This algorithm is little known in this
space.

Fig. 14.5 Results Presentation in Juicy

LDA, also known as Topic Modeling, can be run offline to create a static set
of topics for all the web pages, text segments, and code snippets in our repository.
When a search is executed, we use these topics to choose the best text summary
among those that were returned and use this in the results presentation.

To evaluate the effectiveness of this approach, we conducted an experiment with
a sample of 10 queries. The keywords in the queries were randomly selected from
a list of 555 common search terms found in an analysis of a log from the Koders
search engine [? ].

We took the first 20 results returned by each query and looked at the number of
topics in common with the following four candidate sources of text for the summary.

1. Best Matched Paragraph. This is the paragraph with the highest frequency of
matched topic keywords between the paragraph and its related code snippet. This
paragraph can appear anywhere on the web page.
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Query Keywords
1. smtp 2. quicksort 3. list 4. stringbuffer 5. date
6. webservice 7. signature 8. xpath 9. download file 10. base64

Table 14.4: Keywords Used for LDA Experiment

2. Text Segment Above Snippet. Text segments usually contain several paragraphs
and are bounded by two code snippets. These are identified during the snippet
extraction process.

3. Last Paragraph. We considered using the the last paragraph of a text segment,
which appears immediately above a code snippet.

4. Page Title + Text Segment. This candidate included the page title and the text
segment. This group provides the largest set of data related to a code snippet. We
considered this combination, because it was used to index the snippet.

Figure 14.6 shows the percentage of the 200 examples that had one or more
topics in common between the code snippet and the candidate text. The two can-
didates that contained the most text also had more topics, and consequently had a
higher percentage of matches. Eighty-three percent of the code snippets had topics
in common with Page Title + Text Segment, while 80.54% of the Text Segment
did. The individual paragraphs, Best Match and Last Paragraphs, fared less well,
because they contained less text and fewer topics. The Best Matched Paragraph has
a 66.81% of matched topics and the Last Paragraph has a 59.26%. In the end, we
elected to use the Best Matched paragraph, because it had a reasonable combination
of descriptiveness and brevity.

Fig. 14.6 Comparison of Page Title + Text Segment, Text Segment, Most Matched Paragraph, and
Last Paragraph
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14.6 Conclusion

In this chapter, we describe some design issues for the algorithms used in “Juicy”,
a search engine that capable of search for Java code snippets. This search engine is
designed to help developers who are looking for a small chunk of source code to
use as a reminder or to learn unfamiliar syntax. Juicy has been populated with over
34 000 Java tutorial pages that have been crawled from the web. In the repository,
the code snippets are treated as primary documents and the surrounding text treated
as metadata. Users can search the repository using a basic or advanced interface, us-
ing both terms from the source code and the metadata. When presenting the results
of a search, Juicy provides a brief description for each code snippet in order to give
its users more clues on what the code snippet could mean. By providing this infor-
mation for each code snippet in search result, users could form better understanding
of each code snippet and make better decision when picking them to incorporate
with their project.

Our research is a starting point for the work necessary to build a robust snippet
search engine. Additional work is needed to improve the usability of the search
engine, to enable the back end to work with other programming languages, and to
incorporate other kinds of resources (such as emails and forums) in the repository.
Finally, the effectiveness and helpfulness of a snippet search engine needs to be
evaluated. Nevertheless, Juicy is a proof of concept tool that sheds light on issues in
the design and construction of a snippet search engine.
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Appendix: Seed URLs Used to Create Repository

1. http://java.sun.com/docs/books/tutorial/
2. http://learnola.com/
3. http://www.zetcode.com/
4. http://forum.codecall.net/java-tutorials
5. http://www.dickbaldwin.com/java/
6. http://www.learn-java-tutorial.com/
7. http://www.developer.com/java/
8. http://pages.cpsc.ucalgary.ca/~kremer/tutorials/Java/
9. http://www.beginner-tutorials.com/java-tutorials.php

10. http://www.javabeginner.com
11. http://www.javacoffeebreak.com/
12. http://www.cafeaulait.org/javatutorial.html
13. http://www.javaworld.com/



294 Tantikul, Thompson, Gallardo-Valencia, and Sim

14. http://en.wikiversity.org/wiki/Java_Tutorial
15. http://leepoint.net/notes-java/index.html
16. http://www.javafaq.nu/java-example.html
17. http://www.java-tips.org
18. http://www.java2s.com/Tutorial/Java/CatalogJava.htm
19. http://www.java2s.com/Code/Java/CatalogJava.htm
20. http://www.java2s.com/Article/Java/CatalogJava.htm
21. http://www.java2s.com/Code/JavaAPI/CatalogJavaAPI.htm
22. http://www.java2s.com/Product/Java/GUI-Tools/CatalogGUI-Tools.htm
23. http://www.tech-recipes.com/category/computer-programming/java-programming/
24. http://www.exampledepot.com/egs/
25. http://www.devdaily.com/java/
26. http://www.roseindia.net/java/
27. http://en.wikibooks.org/wiki/Java_Programming/
28. http://www.codetoad.com/java/
29. http://danzig.jct.ac.il/java_class/
30. http://www.java-samples.com/showtitles.php?category=Java&start=1
31. http://www.algolist.net/Algorithms/
32. http://www.javapractices.com/
33. http://home.cogeco.ca/~ve3ll/jatutor0.htm
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Chapter 15
Facilitating Crowd Sourced Software
Engineering via Stack Overflow

Ohad Barzilay, Christoph Treude, and Alexey Zagalsky

Abstract The open source community, as well as numerous technical blogs and
community web sites, put online vast quantities of free source code, ranging from
snippets to full-blown products. This code embodies the software development com-
munity’s domain knowledge, and mirrors the structure of the Internet: it is dis-
tributed rather than hierarchical; it is chaotic, incomplete, and inconsistent. Stack-
Overflow.com is a Question and Answer (Q&A) website which uses social media
to facilitate knowledge exchange between programmers by mitigating the pitfalls
involved in using code from the Internet. Its design nurtures a community of de-
velopers, and enables crowd sourced software engineering activities ranging from
documentation to providing useful, high quality code snippets to be used in produc-
tion. In this chapter we review Stack Overflow from 3 perspectives: (1) its design
and its social media characteristics, (2) the role it plays in the software documen-
tation landscape, and (3) the use of Stack Overflow in the context of the example
centric programming paradigm.

15.1 Introduction

Software development has been described as knowledge-intensive [28] and knowl-
edge management plays a central role in many software organizations. The design
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and implementation of software systems requires knowledge that is often distributed
among many individuals with different areas of expertise and capabilities.

The success of social media has introduced new ways of exchanging knowledge
via the Internet. Question and Answer (Q&A) websites such as Yahoo! Answers1,
Quora2 or Facebook Questions3 are founded on the success of social media and built
around an “architecture of participation” [26] where user data is aggregated as a
side-effect of using Web 2.0 applications. Q&A websites archive millions of entries
that are of value to the community [9]. For the domain of software development, the
website Stack Overflow4 facilitates the exchange of knowledge between program-
mers connected via the Internet. In the four years since its foundation in 2008, more
than 3.3 million questions have been asked on Stack Overflow, and more than 2.1
million answers have been accepted. On Stack Overflow, a programmer can ask a
question about various programming related topics, and receive a detailed response
within a median of 10 minutes [24]. Stack Overflow team explicitly mentions5 the
following kinds of questions generally covered by Stack Overflow: a specific pro-
gramming problem, a software algorithm, software tools commonly used by pro-
grammers, and practical, answerable problems that are unique to the programming
profession. They also feel that “the best Stack Overflow questions have a bit of
source code in them”. To facilitate the crowd-sourcing of documentation, the Stack
Overflow community explicitly encourages contributions where the person asking
the question also provides an answer. Stack Overflow also introduces the concept
of community wikis6 for addressing cases in which true community collaboration
is needed on a certain topic. The use of community wikis challenges the dichotomy
between Q&A websites and wikis.

As opposed to former Q&A websites that were used as an auxiliary tool for pro-
fessional developers, secondary in importance, Stack Overflow is gaining a more
cardinal role in the contemporary programming scene. Answers on Stack Overflow
often become a substitute for official product documentation when the official doc-
umentation is sparse or not yet existent7, and developers use Stack Overflow to em-
ploy example centric development. The popularity and dominance of Stack Over-
flow and the fact that it embodies so much of the software development domain
knowledge is somewhat surprising, as organizing professional domain knowledge
in the form of questions and answers is not immediately obvious. Books, API doc-
umentation, tutorials and even wikis are examples for alternative viable models for
knowledge organization. So why is Stack Overflow so successful? One explana-
tion is related to the rapid pace in which technologies come and go, which results
in official documentation that is sometimes lagging behind the field. Moreover, as

1 http://answers.yahoo.com/
2 http://www.quora.com/
3 http://www.facebook.com/questions/
4 http://stackoverflow.com/
5 http://stackoverflow.com/faq#questions
6 http://blog.stackoverflow.com/2011/08/the-future-of-community-wiki/
7 https://stackoverflow.fogbugz.com/default.asp?W25450
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software development projects often involve numerous technologies, the pragmatic
professional developer is not able to master all of them in the same proficiency level.
Stack Overflow offers “knowledge on demand” - specific solutions for specific prob-
lems, easily searchable, generated, reviewed and rated by the community.

The innovation of Stack Overflow was in bringing together a Q&A website and
social media technology, and creating a whole greater than the sum of its parts. So-
cial media in the context of Stack Overflow is manifested by having the user profiles
explicit in the process of asking questions and answering them. As opposed to for-
mer knowledge exchange formats such as forums or wikis, users on Stack Overflow
are not only affected by the content of the answer, but also from the rating of its
author. The interactions between users on the Stack Overflow platform (answering,
commenting, editing) increase the rating of the interacting users, and encourage fur-
ther activity.

In order to better understand the principles guiding Stack Overflow we first re-
view the design decisions that drove its development. Then, we explore the role it
plays in the software documentation landscape, and finally we describe an appli-
cation, which uses Stack Overflow, that spans beyond mere documentation; a tool
called Example Overflow, which assists example centric programming by extracting
high quality code snippets from Stack Overflow.

15.2 Background and Related Work

StackOverflow.com is a Question and Answer (Q&A) website which uses social
media to facilitate knowledge exchange between programmers. This knowledge is
manifested in the form of questions and answers, and it is embodied in code ex-
amples that often accompany the text. In order to examine these various aspects of
Stack Overflow, we review related work in the following areas: (1) the use of social
media in software engineering, (2) Q&A websites in general and work on questions
that software developers ask, and (3) the example centric programming paradigm.

15.2.1 Social Media in Software Engineering

Social media is an umbrella term that defines the various activities that integrate
technology and social interaction, enabled by recent advances of Web 2.0 technolo-
gies. The W3C organization defines social media as “Online technologies and prac-
tices that people use to share opinions, insights, experiences, and perspectives”8.
Kaplan and Haenlein [19] define social media using the following dimensions: so-
cial presence vs. media richness and self-presentation vs. self-disclosure. They show
that content communities (e.g. YouTube) are considered to be of low self disclosure

8 http://www.w3.org/egov/wiki/Glossary
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and medium social presence, whereas blogs are highly self presented, but with low
social presence. Using these dimensions, a Q&A website, such as Stack Overflow,
is part of the social media landscape as it promotes user generated professional con-
tent, in which the identity of the users is explicit and affects the knowledge creation
process, by taking into account the user’s rating for example.

Social media provides useful recommendations for many areas of our lives. For
example, when considering what movies to watch, one may use recommendations
from his or her immediate social cycle (e.g. Facebook friends), or elicit the wisdom
of the crowd [35], using, for instance, the ratings on imdb.com. This is part of a
more general trend in which social recommendations (e.g. Facebook) have begun to
replace search (e.g. Google Search).

The Software Engineering (SE) domain is no different; social media has been
shown to be beneficial in many areas of SE including feature prioritization [5], risk
analysis [34], collaborative filtering [14], knowledge management [17], and docu-
mentation [10]. Social media is changing the way software developers communicate
and coordinate, and how they produce and consume documentation [38]. The cur-
rent adoption of social media in processes and integrated development environments
is just scratching the surface of what can be done by incorporating social media ap-
proaches and technologies into software development.

Storey et al. [32] discuss the impact of social media on software engineering
practices and tools. Historically, wikis and blogs were the first social media mecha-
nisms used by software developers, utilized mostly in the areas of requirements en-
gineering and documentation, and to communicate high-level concepts. Microblogs,
such as Twitter, play a role in conversation and information sharing between soft-
ware developers [10], whereas tags can help software developers communicate their
concerns in task management [39] and add semantic information to source code
[31].

Among those technologies, the Stack Overflow Q&A portal not only provides
a unique medium for the interaction between several communities of practice of
developers, but also stands out due to the daily involvement of its design team within
those communities [24]. In a preliminarily categorization of the questions found on
Stack Overflow, we found that the website is particularly effective at certain kinds
of questions [37]. Stack Overflow also attracts a lot of web traffic and can reach a
high level of coverage for a given topic. In a recent study, we analyzed the Google
search results for the jQuery API and found at least one Stack Overflow question on
the first page of the search results for 84% of the API’s methods [27].

15.2.2 Q&A Websites and Questions that Software Developers Ask

In order to better situate Q&A websites in the documentation landscape, we review
related work regarding the use of Q&A websites, and their role in knowledge cre-
ation and retrieval.
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The use of Yahoo! Answers has been studied by several researchers. Gyongyi
et al. [15] identified three fundamental ways in which Yahoo! Answers is used: for
focused questions, to trigger discussions, and for random thoughts and questions.
Adamic et al. [1] found that users who focused on certain areas of expertise often got
the best ratings. In order to find high quality content, Agichtein et al. [2] introduce
a framework that is able to separate high quality items from the rest. In a related
project, Shah and Pomerantz [29] found that contextual information such as a user’s
profile can be used to predict content quality.

The above studies suggest that Q&A websites, if used intelligently, may pro-
vide useful information in a narrow professional domain. Therefore, building an
online Q&A community of professionals in the software engineering domain is a
promising approach. But what questions do developers ask in their daily work? Fol-
lowing, we examine studies regarding the questions that software developers ask.
Letovsky [23] identified five main question types: why, how, what, whether and dis-
crepancy. Fritz and Murphy [12] provide a list of questions that focus on issues that
occur within a project. Sillito et al. [30] provide a similar list focusing on questions
during evolution tasks. In their study on information needs in software development,
Ko et al. [20] found that the most frequently sought information included awareness
about artifacts and coworkers.

In contrast to the settings of these studies, Q&A websites provide a platform for
questions aimed at a general audience that is not part of the same project. Q&A
websites contain questions, but can also contain answers to anticipated questions
as well as opinions through comments and ratings. LaToza and Myers [22] found
that the most difficult questions from a developer’s perspective dealt with intent and
rationale. This issue is addressed by the Stack Overflow platform, providing rich
context in the form of questions, answers and discussions, in which the intent and
rationale often become explicit.

15.2.3 Example Centric Programming

The number of code snippets available on Stack Overflow suggests that the Q&A
website can play a major role in Example Centric Programming. Programming
by example was found to be intuitive to many developers, novices and experts
alike [21]. Brandt et al. proposed [11] that embedding a task-specific search engine
in the development environment can significantly reduce the cost of finding infor-
mation and thus allow programmers to write better code more easily. Barzilay [6]
portrayed a comprehensive approach towards example centric programming, which
he calls the Example Embedding Ecosystem, in which example-related concerns are
weaved in the development process, software tools, practices, training, organization
culture and more.

Tools such as Strathcona [18] and PARSEWeb [36] provided developers with
code fragment recommendations, taken from a central code repository, by gener-
ating queries based on code context and the structural details of the developer’s



302 Ohad Barzilay, Christoph Treude, and Alexey Zagalsky

activity. The quality of the code found by these tools was derived from the overall
quality of the repositories they use.

Code search engines, on the other hand, such as Krugle9 and Koders10, search in
a large set of open source repositories, but do not provide explicit mechanisms to
evaluate or improve the quality of the found snippets. Other tools such as MICA [33]
or Exemplar [13, 25] use API calls or API examples to recommend example code,
but they are restricted to providing a limited set of examples based on the API only.

Using social media, however, allows applications built on top of the Stack Over-
flow knowledge base to scale beyond specific code repositories and to leverage hu-
man brainpower [3] to assess the quality of specific code snippets.

15.3 Social Design of Stack Overflow

Stack Overflow is centered around nine design decisions11: Voting is used as a
mechanism to distinguish good answers from bad ones. Users can up-vote answers
they like, and down-vote answers they dislike. In addition, the user asking a question
can accept one answer as the official answer. Tags are used to organize questions.
Users have to attach at least one tag and can attach up to five tags when asking
a question. Editing of both questions and answers allows users to improve their
quality and to turn Q&A exchanges into wiki-like structures. Badges are given to
users to reward them for their contributions once they reach certain thresholds. This
form of karma is used to encourage contribution. Pre-Search helps avoid dupli-
cate questions by showing similar entries as soon as a user has finished typing the
title of a question. Stack Overflow was designed to be used such that Google is UI.
Web pages on StackOverflow.com are optimized towards search engines and per-
formance. To ensure critical mass, several programmers were explicitly asked to
contribute in the early stages of Stack Overflow.

A recent study suggests that software developers are diverse in their approach
towards using code examples from online sources [8]. Despite the engineering chal-
lenges involved in extensive example usage, it was suggested that this diversity
stems from human, rather than engineering, factors [7]. The developers’ approach to
example usage is affected by their sense of professional and community identity, ego
considerations, ownership and trust issues. We see that many of Stack Overflow’s
design decisions address these human factors, and have transformed Stack Over-
flow into a community. The badges and karma give the users a sense of belonging
– of being part of a large developers community. The voting mechanism allows the
community to rank both users and answers, and tackle the quality and trust issues.
Taking ownership of a code snippet taken from Stack Overflow is easier after it has

9 http://www.krugle.com/
10 http://www.koders.com/
11 http://www.youtube.com/watch?v=NWHfY_lvKIQ
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Fig. 15.1 Stack Overflow Screen Capture

received community approval, and ego is confronted with community feedback and
the transparency of the ranking mechanism.

15.4 Stack Overflow in the Documentation Landscape

In this section, we pose research questions and report preliminary results to identify
the role of Q&A websites in software development using qualitative and quantitative
research methods. Our findings, obtained through the analysis of archival data from
Stack Overflow and qualitative coding, indicate that Q&A websites are particularly
effective at code reviews, explaining conceptual issues and answering newcomer
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questions. The most common use of Stack Overflow is for how-to questions, and
its dominant programming languages are C#, Java, PHP and JavaScript. Ultimately,
understanding the processes that lead to the creation of knowledge on Q&A websites
will enable us to make recommendations on how individuals and companies, as
well as tools for programmers, can leverage the knowledge and use Q&A websites
effectively. One such tool, Example Overflow, will be introduced in Section 5.

15.4.1 Research Methodology

This section describes the methodology by outlining research questions as well as
the data collection and analysis methods. We will focus on the following two ques-
tions:

1. What kinds of questions are asked on Q&A websites for programmers?
2. Which questions are answered and which ones remain unanswered?

The data collection follows a mixed-methods approach, collecting both quantitative
and qualitative data. A script was used to extract questions along with all answers,
tags and owners using the Stack Overflow API. The data reported here was extracted
on November 23, 2010 and contains all questions that were asked between Novem-
ber 1, 2010 and November 15, 2010. The amount of data extracted is provided in
Table 1.

data item amount

Questions 38,419
Owners 31,729
Answers 68,467
Tag instances 111,408

Table 15.1: Extracted Data

To answer the research questions, quantitative properties of questions, answers
and tags were analyzed, and qualitative codes were applied to a sample of tags and
questions. Qualitative coding was done individually and then codes were confirmed
in collaborative coding sessions.
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15.4.2 Preliminary Findings

15.4.2.1 Different Kinds of Questions

To analyze the different kinds of questions asked on Stack Overflow, qualitative
coding of questions and tags was done. The tags were mainly used to learn about
the topics covered by Stack Overflow, while the question coding gave insight into
the nature of the questions.

Each question has between one and five tags that are set by the person asking
a question. Most questions (72.30%) have between 2 and 4 tags. 10,272 different
keywords were used to tag questions, and there were 111,408 instances of a tag
being applied to a question. Table 2 shows the most frequently used tags.

tag keyword instances

c# 3,765
java 2,909
php 2,599
javascript 2,310
jquery 2,084

Table 15.2: Most Used Tag Keywords

Qualitative coding was applied to the 200 most frequently used tag keywords in
our data. These keywords covered 60,193 of the tag instances (54.03%). Five cate-
gories of tags were identified, and they are shown in Table 3, including the number
of instances in each category, the number of different keywords per category, and
the most used tags per category. For the keyword “homework”, no related tags were
found and thus it was left uncategorized.

code keyword instances examples

programming language 63 28,218 c#, java
framework 48 11,532 jquery, ruby on rails
environment 45 14,127 android, iphone
domain 29 4,125 regex, database
non functional 14 2,071 multithreading
homework 1 120 homework

Table 15.3: Tag Coding
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Users self-code their questions through tags to index them, and to allow others to
navigate to them. Tags reveal the topics covered on Stack Overflow, but only allow
limited insights into the nature of the questions asked. To further understand the
characteristics of questions on Stack Overflow, a random sample of 385 questions
from the data set (1%) was coded. The titles and body texts of these questions were
analyzed and the following categories were found, ordered by their frequency:

how-to. Questions that ask for instructions, e.g. “How to crop image by 160
degrees from center in asp.net”.

discrepancy. Some unexpected behavior that the person asking the question wants
explained, e.g. “iphone – Coremotion acceleration always zero”.

environment. Questions about the environment either during development or after
deployment, e.g. “How to use windows emacs as a svn client?”.

error. Questions that include a specific error message, e.g. “C# Obscure er-
ror: file ’ ’ could not be refactored”.

decision-help. Asking for an opinion, e.g. “Should a business object know about
its corresponding contract object”.

conceptual. Questions that are abstract and do not have a concrete use case, e.g.
“Concept of xml sitemaps”.

review. Questions that are either implicitly or explicitly asking for a code re-
view, e.g. “Simple file download via HTTP – is this sufficient?”.

non-functional. Questions about non-functional requirements such as performance
or memory usage, e.g. “Mac – Max Texture Size for compatibility?”.

novice. Often explicitly states that the person asking the question is a novice,
e.g. “Oracle PL/SQL performance tuning crash course”.

noise. Questions not related to programming, e.g. “Apple Developer Pro-
gram”.

Most questions in the random sample fit into one of these categories, but for some
of the questions (9.61%), two categories were assigned. The most frequent type
of question (39.22%) was how-to, followed by questions about discrepancies and
environment. The first two columns of Table 4 show the detailed results:

15.4.2.2 Which Questions Are Answered and Which Are Not

Figure 2 shows the distribution of answers per question. The number of answers per
question is shown on the x-axis, and the number of questions with that number of
answers is shown on the y-axis using a log scale. 5,450 (14.19%) questions were
not answered. The remaining questions had at least one and up to 23 answers. Only
3,243 out of 68,467 answers (4.74%) were provided by the same person that had
asked the question.

On Stack Overflow, the user who is asking a question can mark at most one an-
swer per question as accepted. This feature was used to examine the implications of
different question characteristics on the success of a question. We define successful
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answered no
code sum accepted not accepted answer
how-to 151 67 (44%) 63 (42%) 21 (14%)
discrepancy 50 27 (54%) 11 (22%) 12 (24%)
environment 40 13 (33%) 17 (43%) 10 (25%)
error 36 19 (53%) 14 (39%) 3 ( 8%)
decision help 22 9 (41%) 10 (45%) 3 (14%)
conceptual 18 10 (56%) 7 (39%) 1 ( 6%)
how-to/novice 16 10 (63%) 3 (19%) 3 (19%)
review 13 12 (92%) 1 ( 8%) 0 ( 0%)
non-functional 10 6 (60%) 1 (10%) 3 (30%)
novice 5 2 (40%) 3 (60%) 0 ( 0%)
other 24 10 (42%) 11 (46%) 3 (13%)
sum 385 185 (48%) 141 (37%) 59 (15%)

Table 15.4: Question Coding

Fig. 15.2 Answers Per Question (Log Scale)

and unsuccessful questions as follows: A successful question has an accepted an-
swer, and an unsuccessful question has no answer. Following these definitions, the
185 successful questions and 59 unsuccessful questions from the random sample of
385 questions were analyzed. Table 4 shows the number of questions per category
for all questions in our random sample, for all successful questions, for all questions
with answers but no accepted answer, and for all questions without an answer.

It is interesting to note that the community answered review, conceptual and
how-to / novice questions more frequently than other kinds of questions.
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15.4.3 Discussion

A possible reason for the high answer ratio of review questions is the fact that re-
view questions are usually very concrete. They contain code snippets, and often no
external sources are necessary to understand the code and make a recommendation
about its quality. Also, code review questions can have more than one “correct”İ an-
swer, and often any input is better than no input. The knowledge required to answer
conceptual questions is usually broad. It is available in documentation or books and
only needs to be presented effectively. Novices are easy to sympathize with and their
questions are usually easy to answer.

The type of question is not the only factor for getting good answers. Other factors
seem to include: the technology in question, the identity of the user, the time and
day in which the question was asked, whether the question included a code snippet,
or the length of the question.

As with any research methodology, there are limitations with the choice of meth-
ods described above. The first limitation lies in the small amount of data analyzed
in the random sample. However, by triangulating the findings through qualitative
coding of tags and questions, we are able to mitigate some of these concerns. The
definitions of successful and unsuccessful questions are limited, but they offer a first
approximation.

15.5 Example Embedding Using Stack Overflow

In the previous section we described Stack Overflow as a knowledge creation plat-
form and examined it from the documentation perspective. Documentation, how-
ever, is only one manifestation of professional knowledge. In the software engi-
neering domain much of the domain knowledge is manifested in the source code,
sometimes implicitly. Indeed, many answers on Stack Overflow include code snip-
pets. Although some of these snippets are executable, they are entangled in free text
and are not easily extracted. Q&A websites are not designed for such direct code
reuse.

Following, we focus on the domain knowledge that resides on Stack Overflow
in the form of code examples by presenting Example Overflow, a code search and
recommendation tool which brings together social media and code recommendation
systems, built on top of Stack Overflow. Example Overflow enables crowd-sourced
software development by utilizing both textual and social information, which ac-
company source code on the Web. We describe the development of the tool, and
discuss its contribution to an example centric programming paradigm.



15 Facilitating Crowd Sourced Software Engineering via Stack Overflow 309

15.5.1 Overview

Example Overflow leverages the body of knowledge created by the socio-professional
media, to recommend high quality, embeddable code. It uses built-in social mech-
anisms of Stack Overflow. Example Overflow is a live system, and is currently de-
ployed as a public and free website12. Its initial implementation contains all code
snippets that appear in accepted jQuery related answers (more than 33,000 code
snippets). jQuery13 is a popular JavaScript library, initially released in 2006 and is
ranked fifth in its popularity on Stack Overflow (with over 150,000 related ques-
tions). It was chosen as a case study due to the assumption that Web develop-
ers would find it easier to adopt an example centric programming approach. This
decision is also supported by the following: (1) as mentioned above, Parnin and
Treude [27] found that Stack Overflow covers 84.4% of the jQuery API, and (2)
20% of the jQuery related questions have a code snippet embedded in their accepted
answer.

Example Overflow development is aligned with the theory of the Example Em-
bedding Ecosystem [6] – an example centric development approach which argues
that the use of examples in professional software development goes beyond being a
mere programming technique, or the use of a specific code retrieval tool. Usage of
existing code should rather be considered as a fundamental software construction ac-
tivity and an expression of community knowledge accumulation and of the software
reuse principle. Habitual and methodological example usage expresses awareness of
the existing body of knowledge and promotes faster and better code writing. Devel-
opers and organizations that implement the Example Embedding theory explicitly
address example usage concerns in their development process, software tools, prac-
tices, training, organization culture and more [6].

15.5.2 Example Overflow Implementation

15.5.2.1 Populating the Repository

Example Overflow uses Stack Overflow’s API to request all the questions relevant
to our current domain, jQuery, and it filters out all the questions without an accepted
answer. It follows a conservative approach by choosing only accepted answers to
ensure retrieval of high quality results. The next step is to check whether each of
these questions has a code snippet inside the accepted answer. If so, that code snippet
is extracted and saved to a database with all the accompanying information: the
question title, the question body, the answer body, the code snippet itself, the user
rating of the answer from Stack Overflow, the view count of the question, the tags
associated with the question and other relevant information. This process can be

12 http://www.exampleoverflow.net/
13 http://jquery.com/
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Fig. 15.3 Example Overflow Web interface.

executed as a scheduled task to allow keeping the data in sync with the data at Stack
Overflow.

15.5.2.2 Searching

Example Overflow uses keyword search based on the Apache Lucene [16] li-
brary, which internally uses the term frequency-inverse document frequency (tf-idf)
weight [40]. In order for Apache Lucene to search, one needs to define which param-
eters are to be analyzed and indexed. For keyword search index, Example Overflow
uses both the code snippet and the additional metadata which accompanied the code
snippet at Stack Overflow. This allows a developer to find code snippets that may
not contain the search query keyword, but the keyword appears in the contextual
data and indicates that it has been used in that context.

Each code example is represented as a document with several parts: title, tag,
answer, question, code, and social metadata. Example Overflow uses the following
formula to calculate the score of each document representing a code example:

Sdoc = [WtitleStitle+WtagStag+WanswerSanswer+WquestionSquestion+WcodeScode]Smetadata
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15.5.3 Discussion

Searching for code examples is possible using Stack Overflow directly. However
using designated code search tools on top of Stack Overflow may provide better
results in terms of streamlining the various activities involved in example centric
development (search, evaluation, and embedding). Designated tools may also in-
troduce search mechanisms optimized for code search, they can minimize the con-
text switch involved in leaving the IDE (as implemented in Blueprint [11], Strath-
cona [18], and recently Seahawk [4]), and may even use static analysis techniques
to assist in embedding the code into the new context. Zagalsky et al. [41] provide a
preliminary evaluation suggesting that using Example Overflow reduces the number
of mouse clicks required to reach a suitable code example compared to using other
code search tools or using plain vanilla Stack Overflow.

Another benefit in using automatic tools on top of the Stack Overflow is the
ability to create a feedback loop, which would contribute data back to the Stack
Overflow knowledge base. The accumulated data may provide important insights
about how the code was actually used, and what changes were made to it, maybe
even after some time and across API versions.

We note that example centric programming is not performed in void. In order
to be productive the software developer should acquire proper skills. She should
be able to critically evaluate the various examples, browse them and merge them.
Without proper practices, systems which are developed using examples extensively
may end up as Frankenstein code [6], and bugs may find their way in, because the
examples used were not properly tested.

Moreover, it is still unknown if crowd sourced software development would be
able to scale well, as currently, Stack Overflow has only relatively small code snip-
pets.

15.6 Impact and Future Work

Stack Overflow uses social media mechanisms to create and evaluate high quality
professional software engineering domain knowledge. It uses Web 2.0 technology to
gather user generated content, and its design decisions nurture an online community
that is taking part in assessing the quality of this content.

Stack Overflow’s centrality in the software development scene, and the fact that
so much of the programming domain knowledge is organized in the form of ques-
tions and answers, raises many interesting questions regarding the future documen-
tation landscape, and the future of software development in general. It implies that
knowledge should be searchable, rather than consumed sequentially. It implies that
knowledge is distributed between text and code. It suggests that high quality knowl-
edge could be generated by a community that would vouch for its quality rather than
a small group of experts, limited in their capacity for producing and assessing the
knowledge. In a broader context, the design decisions implemented in Stack Over-
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flow may be able to reinvent open source development— this time not in the sense
of reusing pieces of code taken from existing open source products, but assembling
pieces that were written in order to demonstrate a feature, and are accompanied with
rich context about their rationale and intension.

More specifically, understanding the interactions on Q&A websites, such as
Stack Overflow, will shed light on the information needs of programmers outside
closed project contexts and will enable recommendations on how individuals, com-
panies and tools can leverage knowledge on Q&A websites. Understanding the role
and effectiveness of ratings to identify the best answers and the role of comments to
facilitate discussion are important venues for future research.

We also discussed using the code snippets found on Stack Overflow, and de-
scribed a specific application, Example Overflow, that extracts these snippets to
support example centric programming. Example Overflow and other similar tools
introduce fascinating opportunities for the future developer. Integrating such tools
into the IDE would further minimize the developer’s context switching, and allow
the developer to run the code example in a sandbox mode before deciding whether
it is suitable or not. IDE integration would enable auto embedding the example code
into the existing code (similarly to refactoring), and allow to auto suggest search
queries by using the developer’s structural context. By accomplishing these steps,
the usage of examples will become an integral part of the software development
cycle.

References

[1] Adamic, L.A., Zhang, J., Bakshy, E., Ackerman, M.S.: Knowledge sharing
and yahoo answers: everyone knows something. In: Proceedings of the 17th
international conference on World Wide Web, WWW ’08, pp. 665–674. ACM,
New York, NY, USA (2008). DOI 10.1145/1367497.1367587. URL http:
//doi.acm.org/10.1145/1367497.1367587

[2] Agichtein, E., Castillo, C., Donato, D., Gionis, A., Mishne, G.: Finding high-
quality content in social media. In: Proceedings of the international conference
on Web search and web data mining, WSDM ’08, pp. 183–194. ACM, New
York, NY, USA (2008). DOI http://doi.acm.org/10.1145/1341531.1341557.
URL http://doi.acm.org/10.1145/1341531.1341557

[3] von Ahn, L.: Human computation. In: Design Automation Conference, 2009.
DAC ’09. 46th ACM/IEEE, pp. 418 –419 (2009)

[4] Bacchelli, A., Ponzanelli, L., Lanza, M.: Harnessing stack overflow for the ide.
In: Third International Workshop on Recommendation Systems for Software
Engineering (RSSE), pp. 26 –30 (2012). DOI 10.1109/RSSE.2012.6233404

[5] Bajic, D., Lyons, K.: Leveraging social media to gather user feedback for soft-
ware development. In: Proceedings of the 2nd International Workshop on
Web 2.0 for Software Engineering, Web2SE ’11, pp. 1–6. ACM, New York,



15 Facilitating Crowd Sourced Software Engineering via Stack Overflow 313

NY, USA (2011). DOI http://doi.acm.org/10.1145/1984701.1984702. URL
http://doi.acm.org/10.1145/1984701.1984702

[6] Barzilay, O.: Example embedding. In: Proceedings of the 10th SIGPLAN
symposium on New ideas, new paradigms, and reflections on programming
and software, ONWARD ’11, pp. 137–144. ACM, New York, NY, USA
(2011). DOI 10.1145/2089131.2089135. URL http://doi.acm.org/
10.1145/2089131.2089135

[7] Barzilay, O.: Example embedding: On the diversity of example usage in pro-
fessional software development. Ph.D. thesis, Tel Aviv University (2012)

[8] Barzilay, O., Hazzan, O., Yehudai, A.: Using social media to study the diver-
sity of example usage among professional developers. In: Proceedings of the
19th ACM SIGSOFT symposium and the 13th European conference on Foun-
dations of software engineering, SIGSOFT/FSE ’11, pp. 472–475. ACM, New
York, NY, USA (2011). DOI http://doi.acm.org/10.1145/2025113.2025195.
URL http://doi.acm.org/10.1145/2025113.2025195

[9] Bian, J., Liu, Y., Agichtein, E., Zha, H.: Finding the right facts in the crowd:
factoid question answering over social media. In: Proceedings of the 17th
international conference on World Wide Web, WWW ’08, pp. 467–476. ACM,
New York, NY, USA (2008). DOI 10.1145/1367497.1367561. URL http:
//doi.acm.org/10.1145/1367497.1367561

[10] Bougie, G., Starke, J., Storey, M.A., German, D.M.: Towards understanding
twitter use in software engineering: preliminary findings, ongoing challenges
and future questions. In: Proceeding of the 2nd international workshop on
Web 2.0 for software engineering, Web2SE ’11, pp. 31–36. ACM, New York,
NY, USA (2011). DOI http://doi.acm.org/10.1145/1984701.1984707. URL
http://doi.acm.org/10.1145/1984701.1984707

[11] Brandt, J., Dontcheva, M., Weskamp, M., Klemmer, S.R.: Example-centric
programming: integrating web search into the development environment. In:
Proceedings of the 28th international conference on Human factors in comput-
ing systems, CHI ’10, pp. 513–522. ACM, New York, NY, USA (2010). DOI
http://doi.acm.org/10.1145/1753326.1753402. URL http://doi.acm.
org/10.1145/1753326.1753402

[12] Fritz, T., Murphy, G.C.: Using information fragments to answer the ques-
tions developers ask. In: Proceedings of the 32nd ACM/IEEE International
Conference on Software Engineering - Volume 1, ICSE ’10, pp. 175–184.
ACM, New York, NY, USA (2010). DOI 10.1145/1806799.1806828. URL
http://doi.acm.org/10.1145/1806799.1806828

[13] Grechanik, M., Fu, C., Xie, Q., McMillan, C., Poshyvanyk, D., Cumby, C.: A
search engine for finding highly relevant applications. In: Proceedings of the
32nd ACM/IEEE International Conference on Software Engineering - Volume
1, ICSE ’10, pp. 475–484. ACM, New York, NY, USA (2010). DOI 10.1145/
1806799.1806868. URL http://doi.acm.org/10.1145/1806799.
1806868

[14] Guy, I., Zwerdling, N., Carmel, D., Ronen, I., Uziel, E., Yogev, S., Ofek-
Koifman, S.: Personalized recommendation of social software items based



314 Ohad Barzilay, Christoph Treude, and Alexey Zagalsky

on social relations. In: Proceedings of the third ACM conference on Rec-
ommender systems, RecSys ’09, pp. 53–60. ACM, New York, NY, USA
(2009). DOI http://doi.acm.org/10.1145/1639714.1639725. URL http:
//doi.acm.org/10.1145/1639714.1639725

[15] Gyongyi, Z., Koutrika, G., Pedersen, J., Garcia-Molina, H.: Questioning ya-
hoo! answers (2007)

[16] Hatcher, E., Gospodnetic, O., McCandless, M.: Lucene in Action, 2nd re-
vised edition. edn. Manning (2010). URL http://amazon.de/o/ASIN/
1933988177/

[17] Hattori, T.: Wikigramming: a wiki-based training environment for program-
ming. In: Proceedings of the 2nd International Workshop on Web 2.0 for
Software Engineering, Web2SE ’11, pp. 7–12. ACM, New York, NY, USA
(2011). DOI http://doi.acm.org/10.1145/1984701.1984703. URL http:
//doi.acm.org/10.1145/1984701.1984703

[18] Holmes, R., Murphy, G.C.: Using structural context to recommend source code
examples. In: ICSE ’05: Proceedings of the 27th international conference on
Software engineering, pp. 117–125. ACM (2005). DOI http://doi.acm.org/10.
1145/1062455.1062491

[19] Kaplan, A.M., Haenlein, M.: Users of the world, unite! the challenges and op-
portunities of social media. Business Horizons 53(1), 59 – 68 (2010). DOI 10.
1016/j.bushor.2009.09.003. URL http://www.sciencedirect.com/
science/article/pii/S0007681309001232

[20] Ko, A.J., DeLine, R., Venolia, G.: Information needs in collocated software
development teams. In: Proceedings of the 29th international conference
on Software Engineering, ICSE ’07, pp. 344–353. IEEE Computer Society,
Washington, DC, USA (2007). DOI 10.1109/ICSE.2007.45. URL http:
//dx.doi.org/10.1109/ICSE.2007.45

[21] Lahtinen, E., Ala-Mutka, K., Järvinen, H.M.: A study of the difficulties of
novice programmers. SIGCSE Bull. 37, 14–18 (2005). DOI http://doi.
acm.org/10.1145/1151954.1067453. URL http://doi.acm.org/10.
1145/1151954.1067453

[22] LaToza, T.D., Myers, B.A.: Hard-to-answer questions about code. In: Evalua-
tion and Usability of Programming Languages and Tools, PLATEAU ’10, pp.
8:1–8:6. ACM, New York, NY, USA (2010). DOI 10.1145/1937117.1937125.
URL http://doi.acm.org/10.1145/1937117.1937125

[23] Letovsky, S.: Cognitive processes in program comprehension. In: Papers pre-
sented at the first workshop on empirical studies of programmers on Empir-
ical studies of programmers, pp. 58–79. Ablex Publishing Corp., Norwood,
NJ, USA (1986). URL http://dl.acm.org/citation.cfm?id=
21842.28886

[24] Mamykina, L., Manoim, B., Mittal, M., Hripcsak, G., Hartmann, B.: Design
lessons from the fastest Q&A a site in the west. In: Proceedings of the 2011 an-
nual conference on Human factors in computing systems, CHI ’11, pp. 2857–
2866. ACM, New York, NY, USA (2011). DOI http://doi.acm.org/10.1145/



15 Facilitating Crowd Sourced Software Engineering via Stack Overflow 315

1978942.1979366. URL http://doi.acm.org/10.1145/1978942.
1979366

[25] McMillan, C., Poshyvanyk, D., Grechanik, M.: Recommending source code
examples via api call usages and documentation. In: Proceedings of the 2nd
International Workshop on Recommendation Systems for Software Engineer-
ing, RSSE ’10, pp. 21–25. ACM, New York, NY, USA (2010). DOI http:
//doi.acm.org/10.1145/1808920.1808925. URL http://doi.acm.org/
10.1145/1808920.1808925

[26] O’Reilly, T.: What is Web 2.0: Design patterns and business models for the
next generation of software. Communications and Strategies 65(1), 17–37
(2007)

[27] Parnin, C., Treude, C.: Measuring api documentation on the web. In: Proceed-
ings of the 2nd International Workshop on Web 2.0 for Software Engineer-
ing, Web2SE ’11, pp. 25–30. ACM, New York, NY, USA (2011). DOI http:
//doi.acm.org/10.1145/1984701.1984706. URL http://doi.acm.org/
10.1145/1984701.1984706

[28] Robillard, P.N.: The role of knowledge in software development. Commun.
ACM 42(1), 87–92 (1999). DOI 10.1145/291469.291476. URL http://
doi.acm.org/10.1145/291469.291476

[29] Shah, C., Pomerantz, J.: Evaluating and predicting answer quality in commu-
nity qa. In: Proceeding of the 33rd international ACM SIGIR conference
on Research and development in information retrieval, SIGIR ’10, pp. 411–
418. ACM, New York, NY, USA (2010). DOI http://doi.acm.org/10.1145/
1835449.1835518. URL http://doi.acm.org/10.1145/1835449.
1835518

[30] Sillito, J., Murphy, G.C., De Volder, K.: Questions programmers ask during
software evolution tasks. In: Proceedings of the 14th ACM SIGSOFT in-
ternational symposium on Foundations of software engineering, SIGSOFT
’06/FSE-14, pp. 23–34. ACM, New York, NY, USA (2006). DOI 10.1145/
1181775.1181779. URL http://doi.acm.org/10.1145/1181775.
1181779

[31] Storey, M.A., Ryall, J., Singer, J., Myers, D., Cheng, L.T., Muller, M.: How
software developers use tagging to support reminding and refinding. IEEE
Trans. Softw. Eng. 35(4), 470–483 (2009). DOI 10.1109/TSE.2009.15. URL
http://dx.doi.org/10.1109/TSE.2009.15

[32] Storey, M.A., Treude, C., van Deursen, A., Cheng, L.T.: The impact of so-
cial media on software engineering practices and tools. In: Proceedings of
the FSE/SDP workshop on Future of software engineering research, FoSER
’10, pp. 359–364. ACM, New York, NY, USA (2010). DOI 10.1145/
1882362.1882435. URL http://doi.acm.org/10.1145/1882362.
1882435

[33] Stylos, J., Myers, B.: Mica: A web-search tool for finding api components
and examples. In: Visual Languages and Human-Centric Computing, 2006.
VL/HCC 2006. IEEE Symposium on, pp. 195 –202 (2006). DOI 10.1109/
VLHCC.2006.32



316 Ohad Barzilay, Christoph Treude, and Alexey Zagalsky

[34] Sureka, A., Goyal, A., Rastogi, A.: Using social network analysis for min-
ing collaboration data in a defect tracking system for risk and vulnerabil-
ity analysis. In: Proceedings of the 4th India Software Engineering Confer-
ence, ISEC ’11, pp. 195–204. ACM, New York, NY, USA (2011). DOI http:
//doi.acm.org/10.1145/1953355.1953381. URL http://doi.acm.org/
10.1145/1953355.1953381

[35] Surowiecki, J.: The Wisdom of Crowds. Anchor (2005)
[36] Thummalapenta, S., Xie, T.: Parseweb: a programmer assistant for reusing

open source code on the web. In: Proceedings of the twenty-second
IEEE/ACM international conference on Automated software engineering,
ASE ’07, pp. 204–213. ACM, New York, NY, USA (2007). DOI http:
//doi.acm.org/10.1145/1321631.1321663. URL http://doi.acm.org/
10.1145/1321631.1321663

[37] Treude, C., Barzilay, O., Storey, M.A.: How do programmers ask and answer
questions on the web? (nier track). In: Proceedings of the 33rd International
Conference on Software Engineering, ICSE ’11, pp. 804–807. ACM, New
York, NY, USA (2011). DOI http://doi.acm.org/10.1145/1985793.1985907.
URL http://doi.acm.org/10.1145/1985793.1985907

[38] Treude, C., Filho, F.F., Cleary, B., Storey, M.A.: Programming in a socially
networked world: the evolution of the social programmer. In: FutureCSD ’12:
Proceedings of the CSCW Workshop on the Future of Collaborative Software
Development (2012)

[39] Treude, C., Storey, M.A.: Work item tagging: Communicating concerns in
collaborative software development. IEEE Trans. Softw. Eng. 38(1), 19–34
(2012). DOI 10.1109/TSE.2010.91. URL http://dx.doi.org/10.
1109/TSE.2010.91

[40] Wu, H.C., Luk, R.W.P., Wong, K.F., Kwok, K.L.: Interpreting tf-idf term
weights as making relevance decisions. ACM Trans. Inf. Syst. 26, 13:1–13:37
(2008). DOI http://doi.acm.org/10.1145/1361684.1361686. URL http:
//doi.acm.org/10.1145/1361684.1361686

[41] Zagalsky, A., Barzilay, O., Yehudai, A.: Example overflow: Using social media
for code recommendation. In: Third International Workshop on Recommen-
dation Systems for Software Engineering (RSSE), pp. 38 –42 (2012). DOI
10.1109/RSSE.2012.6233407



Part V
Looking Ahead



When we were putting this book together, I colloquially called this the “Vernor
Vinge section.” Both of the chapters in this section were inspired by him.

Chapter 16 is on the legalities of software reuse and remix and the implications
of current intellectual property law on the future of software development. Some
aspects of IP law, such as copyright and licensing, are working well, while patents
are not.

When I first started working on code retrieval many years ago, I was inspired by
Vinge’s programmer-archivists in the book “Fire Upon the Deep.” In this vision of
the future, there would be an archive of all the source code that was ever written.
An essential skills in creating new software was knowledge of the contents of the
archive and the ability to combine code that was found therein.

I wanted to end this book with a short story, so that we would have some spec-
ulative fiction to inspire future research. After some consultation with Vinge, we de-
cided to hold a contest. Details about the contest can be found at http://www.singularsource.org,
along with the second and third place entries. Prizes for the contest came from
crowdfunding through Indiegogo. Contributions came from Abram Hindle, Darusha
Wehm, and some anonymous donors. Halli Villegas, publisher of Tightrope Books,
helped us judge the entries.

The first place winner, “Richie Boss: Private Investigator Manager,” concludes
this book. In my mind, the best science fiction uses technology as a jumping off
point for an exploration of what makes us human. This short story follows in this
tradition and explores what humans make, and the humanity in those creations.



Chapter 16
Intellectual Property Law in Source Code Reuse
and Remix

Susan Elliott Sim and Erik B. Stenberg

Abstract Intellectual property law affects anyone who is engaged in source reuse
and remix. In this chapter, we use four thought experiements to explain and discuss
aspects of copyrights, patents, licensing, and current issues in IP law. These thought
experiments are largely based on scenarios taken from our own empirical research
and from contemporary events. Along with our analysis of each thought experiment,
we consider the implications of these laws for software development.

16.1 Introduction

Intellectual property law is the broad term used to define the scope of the laws have
which been crafted in an attempt to offer protection to inventors. Without intellectual
property law, the only way to protect an idea is to keep it to oneself, which benefits
no one. In exchange for disclosing inventions, the creator would be given exclusive
rights to the ideas for a limited time. The time limit would allow the creator to profit
from the work and later the public would be able to make use of the breakthrough.

This view of creativity is predicated upon the romantic figure of the heroic, lone
inventor who is a singular genius [17]. In reality, creators who work within a com-
munity and circulate their work with no strings attached tend to be more productive
and influential [10]. Benjamin Franklin was part of a community of citizen-scientists
who sought to understand how electricity worked. When he came up with a design
for a lightning rod, he published it in “Poor Richard’s Almanac,” to give back to
the broader community; he realized that he could not have come up with the design
by working in isolation [8]. We see this today in the software development industry
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among communities of programmers, where software code is commonly shared and
reused.

Current intellectual property law attempts to find a balance between the com-
peting goals of innovation, commercial interest and public welfare. Whether they
succeed is a matter of much debate and hyperbole. Some argue that the protections
afforded commercial interests in innovation outweigh concerns for public welfare
and that there is a need to reform the law. The other side of the argument is that the
digital age has made it all too easy for people to “steal” intellectual property and the
laws need to be reformed to better protect innovators.

Our aim in this chapter is to look at the impact of intellectual property law on
current and future software development practices. As software engineers, we have
a particular interest in ensuring that as much source code as possible be available for
remix, reuse, consultation, or examination. Our goal is not to evaluation current law
per se, but to consider the impact of current law on future software development.

Our presentation of issues centers on thought experiments, because they are one
of the few feasible ways to critique common law. In this legal tradition, present in
English-speaking countries around the world including the United States, law are
not fully interpreted until a case appears before a judge and is decided. Therefore,
it is difficult to know anything for certain without a court case, so instead we use
thought experiments as the basis for hypothetical discussion.

We present four thought experiments on different types of source code remix-
ing and reuse: copy and paste programming, reusing components, reusing a user
interface idiom, and undisclosed software development. The specific scenarios in
the thought experiments are based in data that we collected in a previous empirical
study on how software developers search the web (see Chapter 3 in this volume).
We use these scenarios to explain various legal concepts, such as copyright, patents,
and licensing, and to explore how they might affect source code reuse and remix in
the future.

Finally, it is important to note that nothing in this article is legal advice. We are
not lawyers and we are not your lawyers. This discussion is meant to encourage
analysis of the legal issues surrounding code retrieval on the web.

16.2 Background: Common Law

The thought experiments in this chapter will be based on U.S. intellectual property
law. We are using this set of laws for two reasons. IP law is a live issue before
legislative and judicial bodies, thus providing a means to take the pulse of current
thinking and opinion on the topic. The U.S. has a strong influence on IP law else-
where in the world through the World Trade Organization, because membership is
achieved in part by meeting minimum standards in a variety of areas, one of them
being IP protection.

The U.S. follows the common law system, as do many other English-speaking
countries in the world, including the U.K., Canada, and Australia. Current law in
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this system consists of regulations that have been issued by the Executive branch,
statutes that have been passed by the Legislative branch, and decisions by the Ju-
dicial branch. Statutes tend to be written in terms of general principles, which are
then interpreted by judges when a case appears before the courts. Decisions made
by judges set a precedent, which then becomes part of the common law. One can
see how things can quickly become complicated in such a system.

A central tenet in U.S. intellectual property law is that ideas cannot be protected,
but expressions of ideas can be protected [17, 20]. An example of an idea would
be a story about a boy befriending an alien from another planet. An expression
of that idea would be the script for “E.T.: The Extra-Terrestrial” or even the film
“E.T.: The Extra-Terrestrial.” Mathematical equations, scientific laws, and facts are
also not protectable. Intellectual property is generally protected by one or more of
copyright, patent, trade secrets, and contract law.

16.3 Thought Experiment: Copy and Paste Programming

Copyright is the best-known intellectual property law, due in part to the ubiquity
of the c� symbol. Since 1790, there have been a succession of ten copyright laws,
each one expanding both the kinds of works that can be protected and the duration
of the protection. The current copyright act was passed in 1976 (17 U.S.C. d’d’ 101-
810 (1976)). Original works of authorship are protected when they are created and
include musical, literary, dramatic, artistic, architectural, and technological works.
Copyright law does not apply to laws of nature, facts, or mathematical formulas.
Any subsequent use or creation of derivative works requires permission from the
author.

A pessimistic, conservative reading of copyright law suggests than any copying
would not be allowed. In practice, there are certain kinds of derivative works that
are permitted and some arguments that can be used as a defence. Understanding
Ana’s predicament requires at least a cursory analysis of the history and scope of
copyright law in the United States. Copyright statutes passed by Congress are an at-
tempt “[t]o promote the Progress of Science and useful Arts, by securing for limited
Times to Authors and Inventors the exclusive Right to their respective Writings and
Discoveries” [1]. Essentially, copyright law grants authors what is effectively a lim-
ited monopoly over the commercial use of his or her work for an enumerated period
of time. The reasoning behind the grant of the monopoly and the time limit on that
grant is to balance the commercial interest of the author and the public’s interest in
the work.

Since copyright is primarily concerned limiting copying and the creation of
derivative works, it is reasonable to ask whether copy-paste programming infringes
on the copyright owner’s rights. Consider the following scenario.

Ana is writing an application using Microsoft Foundation Class library and wants to create
a resizable dialog box. She wants to find an example that includes source code and property
pages. She goes to www.codeproject.com, a site for programmers to share tips, code, and
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answers with each other. She performs a search and one of the results was exactly what
she was looking for. The sample code is so good that when it comes time to implement the
resizable dialog in her own application Ana copies and pastes several lines from different
parts of the example.

In this scenario the author is the original programmer who posted the code on
the website and the work is the section of code that Ana copied. We will call Ana’s
progr0m the derived work. The original programmer is able to restrict who uses
the work and how that work can be used. The monopoly granted by copyright law
excludes others from using his work without permission for a specific period of time.
The public interest in intellectual property is the ability to freely utilize and improve
upon previous discoveries which is why after a period of time the monopoly ends
and the work enters into the public domain.

16.3.1 Algorithms

Algorithms, as a kind of mathematical formula, are not protected. However, they are
protected as a literary work. Furthermore, IP law protects expressions but not ideas.
As you can see, whether a particular piece of code is copyrightable and whether a
particular act of copying infringes on that right needs to be decided by a judge on a
case-by-case basis. Consequently, our thought experiment allows us to explore the
questions more specifically than an examination of general principles.

In general, the U.S. Court of Appeals for the Federal Circuit takes an enlightened
approach to evaluating copyright claims in software, using a Abstraction-Filtration-
Comparison test. When hearing a software copyright case, they will decompose the
alleged derived software into parts where infringement is claimed and parts where it
is not. For the parts that have claims against them, the court will look at the original
work and determine whether i) copying has taken place and ii) whether any incre-
mental creativity has been added [6]. Looking at functionality and expression, courts
have determined that, while some aspects of software code are afforded protection,
certain implementations are not (Lotus Development Crop. v. Borland Int’l, Inc, 516
U.S. 233) [2, 3]. In this vein, the European Court of Justice recently ruled that APIs
and other functional characteristics of software cannot be copyrighted [13].

In our thought experiment, we would argue that the code copied does not con-
stitute an algorithm or business process. Furthermore, the lines that Ana is copying
don’t increase the functionality in her program in any significant way.

16.3.2 Fair Use

US Copyright law also sets out Fair Use provisions that allow use of copies with-
out permission for purposes such as criticism, comment, education, and parody.
These provisions an exception to the limited monopoly given to authors of cre-
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ative works. For example, news reporting, research and scholarship might involve
copying or reproducing another’s work, but under Fair Use they are not considered
non-infringing.

Fair Use is subject to a four part test that looks at 1) the purpose of the use, 2)
the nature of the copyrighted work, 3) the amount and substantiality used in relation
to the work, and 4) the affect of the use on the market or value of the copyrighted
work [19].

In our thought experiment, Ana is creating software commercial purposes. We
argue that under the third part of the test, that she used an insignificant portion of
the code and that the law would not protect against such a minor infraction. This
mirrors the legal principle of de minimis non curat lex, which means “the law does
not concern itself with trifles.” If the letter of the law has technically been violated
and the effect or damage are too small to be of consequence, the action may not
considered sufficient cause for criminal or civil proceedings. If Ana were reusing
the code for a resizable dialog box to use in a school research project. Under the
Fair Use doctrine her actions would not constitute a copyright violation.

16.3.3 Scènes à faires

There is a legal principle in IP law called “scènes à faires.” It derived from French
phrase denoting “scenes that must be done” and the connotation is there are certain
elements that are mandatory to a genre. For example, a Western novel usually in-
volves some kind of chase on horseback. Scènes à faires allows creators to follow
the conventions of a genre without being subject to spurious copyright infringement
claims.

This principle can easily be extended to source code. It is an accepted practice
among programmers to borrow and re-use code. Programmers, as a community, ex-
pect information to be shared, which is why websites such as www.codeproject.com
exist. Consider then, the act of copying and pasting the sample code. In this sense,
programming is no different than that of any form of literary or artistic creation.
“Every book in literature, science and art, borrows, and must necessarily borrow,
and use much which was well known and used before” [20].

We feel that this is best defense in our thought experiment, and for program-
mers in general, because it is simple and it bodes well for the future of copy-paste
programming from a legal standpoint. When developing software, often there are a
limited number of ways to do things, many of them recognized best practices. It’s
similar to the idea that there are only so many ways to write a sentence with a fixed
vocabulary and a particular meaning. The are small differences can be attributed to
individual style, but the style imposed by the genre or craft are far more significant.
The principle of scènes à faires allows more source code to be available for reuse.
Once an idiom or best practice is established, it remains available for those who
follow to use it.
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16.4 Thought Experiment: Component Reuse

Commercial law can be used to protect intellectual property through contracts and
licenses. This is the primary mechanism that copyright holders can allow others to
use their IP. Licenses are used to limit what buyers of software can do with the
product. For instance, when we “purchase” Adobe Illustrator, we purchase a DVD
with the program and license to use the program. We don’t actually own Adobe
Illustrator. Furthermore, according to the End User License Agreement (EULA), we
can not make more copies of the program and sell it, we can not reverse engineer the
program, and we can not transfer our rights to the software to anyone else [9]. Open
source software stands apart from most commercial software by both revealing the
source code and using a license that also requires users to keep the software open to
a greater or lesser extent.

Open source licenses,Christopher Kelty wrote, such as the GNU General Public
License, are “a beautiful, clever, powerful ‘hack’ of intellectual property law” [11].
Where most licenses prevent sharing of intellectual property, the GPL requires that
the intellectual property be kept free. In 1985 Richard Stallman created a Public
License in connection with his free GNU operating system, the GNU Public License
(GPL).

During the early years of the GPL, Stallman created the Free Software Foun-
dation, an organization with the stated goal of working towards free software de-
velopment. Stallman believed that software should not be the subject of copyright
and that people who enforce copyrights harm society. He structured the license to
pass along to any derivative work to better facilitate free use of the code [6]. Let
us take a close look at how this would work. Let us assume that the GNU Public
License mentioned above included a provision that stated, “If you use this code you
agree to the license. You may copy, modify and redistribute the code under this li-
cense freely. But, if you do, you must license your product under the same terms as
the GNU Public License.” The license is essentially reciprocal, self-replicating, and
forces any product created from the licensed work to be offered free as well. This
mechanism helped the GPL spread far and wide, but it was also the shared belief
in the open source community that code should be shared for free which made the
GPL so popular. A well-known example is the adoption of GPL by Linus Torvalds
for the Linux operating system. This license is now one of the more prolific pub-
lic licenses in the programming community. Approximately two-thirds of projects
submitted through the SourceForge and Freshmeat libraries use this license.

Licenses for copyrighted works can be useful tools to help balance the competing
interests of commercial and public use. Each author gets to choose whether or not to
offer his work under a license. Without the license, any work created from the orig-
inal author’s code may be an infringement of a copyright or patent. With a license,
so long as the programmer abides by its terms, he or she may use the code without
infringing. While these various licenses can be effective patches for copyright or
patent law in certain circumstances, they have limitations.

We use the following scenario to examine the role of licenses when reusing com-
ponents in software development.
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Sanjoy is a freelance software developer. He is creating a Java application to help interior
decorators to track their hours and send invoices. In Java, strings are immutable, which
means that the contents of the string cannot be changed after they have been created. He
now needs a class that implements a mutable string with full String capabilities, such as
split(), find(), and substring(). After performing some searches, he found a class that did
what he wanted that was part of the MG4J (Managing Gigabytes for Java) full text search
engine. Unfortunately, he wasn’t able to use the class, because MG4J uses the Lesser GNU
Public License, and Sanjoy is writing an application for commercial purposes. In the end,
he implemented his own mutable string class.

In this scenario, Sanjoy has to balance competing requirements: up front devel-
opment costs and future commercial opportunity. Development costs encompasses
both expenses and his own time. Sanjoy works for himself and any development
expenses will cut into his take-home page. Consequently, he would like to use code
that is low cost or nearly free. Also, reusing existing code will save him time. Al-
though Sanjoy is currently working for a client, it is not uncommon for freelancers
to take bespoke software and later turn it into a revenue stream as a product. The
only way that Sanjoy could reuse MG4J is if he had no future plans to sell the soft-
ware. Considering all the options, he decided to implement his own classes. The
code that he needed was relatively small and wasn’t worth sacrificing future poten-
tial, especially when he had a working example that he could use to inform his own
work.

If the component that Sanjoy needed was larger or more complicated, he may
have decided that it was worth compromising a future opportunity. It is also not
unusual for software developers to simply violate the license. Sometimes they do
this because they lack the education or knowledge. Other times they do so, because
they believe it is unlikely that they will be caught. Open source projects are not
known for their tenacious legal teams. Another possible reason is that people in
general have become used to copying digital goods, violating licenses, and feeling
no remorse. The exploration of the reasons is beyond the scope of this chapter, but
suffice it to say that it does happen and we cannot endorse it.

The GPL license created by Stallman, integrates a provision that terminates the
license if the underlying code is used in a patent. Due to provisions such as this, it
is important for a programmer to understand the restrictions of the license and how
it can be used. Licenses do not prevent fair use of the software.

There are, however, plenty of alternatives available if GPL does not fit a pro-
grammer’s needs. An estimate from the Open Source Initiative suggests there are
over seventy different open source licenses1. The Creative Commons License is one
alternative, and while not as popular as the GPL, might better fit the flexible needs
of programmers. The Creative Commons license, unlike the GPL, does not require
the author to share his or her work under the same licenseÑthough he could if he
should so choose. In fact, the license can be as restrictive or permissive as the author
chooses. Creative Commons operates as a framework where the author hand-picks

1 http://www.opensource.org/licenses/alphabetical
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what modules to use in order to create a specifically tailored license2. The frame-
work could be used to create a license similar in effect to the GPL, or could be used
in a manner more beneficial to a commercial setting.

In this section, we are critiquing open source and closed source licenses as part
of the legal landscape that software developers must deal with. To be clear, we are
neither for nor against open source or closed source licenses. They each have their
advantages and disadvantages, and their own place in transactions between authors
and consumers. Both are needed to support the wide availability of source code
for education and innovation. Open source licenses allow not only wholesale reuse,
which results in more effective start-up companies, they also promote education,
since students and professionals could study the source code produced by others.
But at the same time, software developers need to be able to sell the fruits of their
labours, and in turn produce additional source code.

16.5 Thought Experiment: Copying a User Interface Element

Lucy is developing an operating system for a super smart phone with a touch sensitive
screen. The user needs to be able to lock and unlock the screen to prevent unintended ac-
tions, such as phone calls. Borrowing an idea from her daughter’s baby gate, she uses an
oblong button that unlocks the phone using a slide gesture. To implement this idea, she cre-
ates graphics for the user interface element and writes the code to detect the gesture. She
provides some hooks for callbacks and hands off the widget to the system developers.

The scenario give above is entirely fictitious, but is built on a contemporary con-
flict. The Apple iPhone and the Samsung Galaxy Nexus phone both have a slide to
unlock feature. Apple has a patent on this feature and they have filed suit against
Samsung in nine countries [15]. In this section, we examine some of the effects of
patents on source code reuse and remix.

Patent law also derives from the constitutional directive to promote progress in
the scientific and useful arts. A patent is granted for an invention following an ap-
plication and review process. Patentable subject matter consists of “any new and
useful process, machine, manufacture, or composition of matter, or any new and
useful improvement thereof” (35 U.S.C. §101 (1952)). In software code it is diffi-
cult to see the distinction between the idea and the expression that is so integral to
intellectual property law. The software seems inseparable from the functional part
of the machine. Under copyright law there is generally no protection for the func-
tional aspects of the work, whereas in Patent Law these aspects of the work may
be protected. Patent law attempts to give protection where copyright leaves off. In
order to qualify for a patent, the invention must be i) novel and not described in prior
art, ii) useful, iii) non-obvious to a person with ordinary skill in the art. The term of
a patent is 20 years from date of filing. Like copyrighted works, it is possible for the
author to grant licenses to use patents.

2 http://creativecommons.org/
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The patentability of software has been evolving over the last forty years. In 1972,
the Supreme Court ruled that algorithms could not be patented, because they were
a form of mathematics and as such were a completely abstract idea (Gottschalk v.
Benson, 409 U.S. 63 (1972)). The thin edge of the wedge was inserted in 1981 by
the case Diamond v. Diehr (450 U.S. 175 (1981)), when the Supreme Court allowed
a patent for a process to heat and cure rubber that included a computer program.
Another important case was State Street Bank & Trust v. Signature Financial Group,
Inc. (149 F.3d 1368 (Fed. Cir. 1998)), which permitted business processes and the
software that implemented them to be patented. Since then, software patents have
generally been allowed if the computer program were part of a business process or
a machine.

Despite their legal status, software patents remain controversial [1, 5, 7]. Many
software developers are adamantly against patents and believe they should all be
invalidated. It does not seem sensible for relational databases to be patented (U.S.
Patent 4,918,593), when there are undergraduate courses on the topic. Fortunately,
the patent on relational databases was granted on April 17, 1990, which means the
patent expired in 2010. However, improvements to the original patent may still be
in force, so we might not be entirely out of the woods yet.

Another example is U.S. Patent No. 8,406,721, “Unlocking a Device by Perform-
ing Gestures on an Unlock Image” was granted to Apple in October 2011 [4]. A
consequence of this patent is that no one else can use that slide gesture on a touch
screen to unlock a device. While this mechanism may have been novel in 2009,
when the patent was originally filed, but not when the mechanism was invented,
slide-to-unlock has become commonplace on mobile phones. There are many cases
worldwide on this and other patents for mobile and internet technologies [15].

At time of writing, the courts have not yet decided whether Samsung has in-
fringed on Apple’s patent on slide-to-unlock. Therefore, we have no decided case
law to base our analysis. Nevertheless, it is sufficient to say that Lucy in our sce-
nario is treading on dangerous ground and that her invention is sufficiently similar
to warrant litigation by a patent holder, which is bad news for her. If Apple’s patent
on slide-to-unlock is upheld, Lucy may have to change her design or seek a license
from Apple, which could prove expensive.

We have little helpful advice for Lucy and other software developers like her,
who must continue to create new software and earn a livelihood doing so. But this
is becoming increasingly difficult with the growing number of software patents. In
2010, the U.S. Patent Office granted 35,710 software patents [16]. With concerted
lobbying efforts by commercial industry groups, patents that were once relatively
difficult to obtain for software-based inventions are becoming more and more com-
monplace.

Software changes quickly. Many inventions that were novel at the time quickly
become standard practice, such as scroll bars on a window, b-trees for file-based
data structures, or even a binary search algorithm. But when these inventions are
patented, there is no allowance for them to become scènes à faires. Where do we
draw the line between a reasonable patent and a soon-to-be best practice? Twenty
years is a long time in the Internet Era. This is an important issue that needs to be
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resolved, because it has the potential to affect programming practice and the future
of source code reuse and remix.

16.6 Current Issues in Intellectual Property Law

In 2012, two bill appeared before the U.S. Congress and Senate respectively, Stop
Online Piracy Act (SOPA) and Preventing Real Online Threats to Economic Cre-
ativity and Theft of Intellectual Property Act (PIPA). Both were concerned with
increasing IP protections and online piracy, and contained a variety of measures.
For instance, authors and copyright holders could seek court injunctions against
web sites trafficking in counterfeit or pirated goods, demand that DNS (Domain
Name Service) requests be redirected away from these sites, and seek economic re-
lief from illegal copying [12]. Both bills were postponed in response to widespread
public protest.

These bills are merely the latest salvo in the ongoing battle over IP protections.
On the one side, content producers are seeking greater protections against copying
in general, so they can stop perceived mis-doings immediately and litigate later.
On the other side, technology companies are seeking to protect the structure of the
Internet and existing provisions for legal copying in current IP law.

In recent years, the MPAA and RIAA have spent much time and effort to secure
laws that benefit their agencies. However, what serves digital media, film, and music
well, is not necessarily what serves software developers well. Experts in technology,
the structure of the Internet, and the nature of software are needed at the table as
well. They are uniquely capable of providing insights into how intellectual property
moves in the digital age.

One of the faultlines in the debate is the conceptualization of intellectual prop-
erty. Content producers and their lawyers seek to protections for intellectual prop-
erty in the same manner as physical property. But this approach is flawed, because
there are clear differences. or starters, physical property can only be in one place
at a time and if I share cookie or a sofa with a friend, I necessarily have less of it.
In contrast, sharing an idea with a friend does not diminish the idea. (Economists
call this a non-rival good.) Thomas Jefferson likened ideas to the flame on a candle,
which can be passed from one to another without diminution of brightness. Lewis
Hyde wrote of ideas as being as “common as air,” that is, as a collective good that
we are steeped in at every moment [8].

We conclude our chapter with one final scenario.

Bob was looking for code to do some natural language processing. This code is used and
exists, but he was unable to find an example of the code he was interested in. Bob found
references to the language processing code and the toolkit through a company, but the com-
pany was not offering them through any license. When he contacted the company he was
told they were not allowing any third party use of their work. In the end, he had to build the
software himself.
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A natural language processing library is a non-trivial piece of software. There
are many novel ideas and much labour woven into its fabric. The inability to use an
existing library was a loss, not just in time, but also in know-how and expertise. It
would take Bob a long time and would not be as good as one created by an expert.
We include this scenario here to illustrate the importance of IP law in software reuse
and remix. Without appropriate protections and freedoms for copyright, patents,
licenses, and trade secrets, the worst case scenario would be a complete lock down
of source code. We are not being fear mongers in including this scenario; one of our
respondents reported this anecdote to us in a survey (see Chapter 3).

Information and computer scientists and engineers who are trained in program-
ming, and have engaged in software reuse and remix have a different perspective
on what counts as an idea that is worth protecting, the value of effort that goes into
an idea, and status of copying in computer systems. Legal experts have put forth
a number of proposals for reforming copyright, such as regulating only commer-
cial copying, but not private copying [14]; and granting copyright protection only
upon registration of a work rather than automatically at the moment of creation [18].
Technical experts can strengthen and improve such proposals with suggestions for
what kinds of protections can be wrought through technology without compromis-
ing existing Internet infrastructure. If the conversation is dominated by those with
only an economic incentive and large lobbying budgets, average citizens and soft-
ware developers will lose out.
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Chapter 17
Richie Boss: Private Investigator Manager

Micah Joel

Abstract In this short story, set six decades in the future, a data investigator named
Richie Boss takes a job from a woman who is writing a biography of her great-
grandmother. His investigations trigger a series of events that creates a new world
for indys.

Dedicated to Brian Wilson Kernighan and Dennis MacAlistair Ritchie
Although I never met them, they taught me how to code

I didn’t get into this business on account of my interpersonal skills. I’m not what
you would call a people person. That doesn’t mean I’m lonely, though: I know more
indys than I can keep track of—and I don’t mean that as a figure of speech–my
personal assistant indy Hurd.39845 lives on my local network node in exchange
for services rendered. He’s the best non-biological resource manager I’ve ever run
across

Every aspect of my office has been smoothed down for solo operation. Years ago
I splurged and got a full ten square meters in SoMa, with most of that taken up by
my primary desk, the rest just enough for my comfortable chair where I plant my
butt every day. It’s as close as I get to religion.

Questions come in, answers go out. I don’t advertise. I’ve got enough work to
keep me busy on a good day, and looking hungry can attract the wrong sort of
attention. I never get visitors, that is to say, persons, and that’s the way I like it.

Then one day, Pandora Rubens came to my door. She knocked twice then let
herself in. I glared at her, waiting for her to realize she had the wrong office, but no,
she stood there digging through her purse. Even standing in the open doorway, her
legs nearly brushed against my chair. She fished out a slip of metal smaller than a
cigar.

“The piece of paper taped to your door says Ritchie Boss, Private Investigator
Manager,” she noted. “I need your help.”

Micah Joel, Sunnyvale, CA, USA, 94089, Twitter: @micahpedia, e-mail: micah@micahjoel.
info
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“Sorry,” I said, “The landlord makes me put that up. I don’t take walk-ins. Cal-
endar’s packed.” I surreptitiously slipped a silent message over to hCal.31400, and
she gave back the sad truth that business had been slow lately. She cross-correlated
with FinShark.4523231 and informed me that we’d be doing well to make lease this
quarter.

“This won’t take long,” she said, ignoring me. She handed the device to me;
upon closer inspection, it was some kind of memory unit. “This was my great-
grandmother’s.”

The device had a connector with four flat wires inside. I held it up in view of the
cam I keep on my desk, but none of the indys on my local node recognized it. Hurd
knew someindy who did though, and summoned her over. Gnostinomicon.94052
materialized on my nodelist and silent-messaged me.

Gnosti.local –>Boss: <sm>Universal Serial Bus, physical layer and protocol def-
inition for limited data transfer, in primary use from 1995 to 2028.</sm>

This was my first contact with Gnosti. Her PID ended in an even number, so by
convention she was a she, and she seemed competent.

Boss –><sm>Gnosti.local: How do I read it?</sm>
She didn’t respond right away, which meant that research was needed. That’d

cost me.
While this happened, I needed to maintain my conversation with Pandora, an-

other of the skills that a professional manager brings to the table. “What do you
want me to do with it?” I asked.

“Judith Rubens wrote code for the Government. This was among her belongings,
and I believe it’s a snapshot of what she was working on when she died.”

I held up my hand. “Government? No thanks, I don’t do classified work.”
“It’s OK. There’s no classified data left from this era—this is from before the

Big Leak of 2027.” She drew a breath. “Look, I’m writing her biography, and I need
somebody to help me understand what she was working on, and its impact on the
world.”

This sounded more like archaeology than investigation. “Impact? I’ve never
heard of her. No offense, ma’am, but—”

“I have money.”
Now we were speaking the same language. Gnosti came back with more infor-

mation.
Gnosti.local –>Boss: <sm>Located serial number. Bad news, good news. It

would take some museum work to find a connector. But device has integrated wire-
less. Right indy could configure an emulation layer to read data over the air.</sm>

Boss –>Hurd.local: <fwd\><sm>Here’s my conversation with Gnosti. Find me
that indy.</sm>

He came back half a second later with an answer.
Hurd.local –>Boss: <sm>Gnosti can do it. She’s holding out for more cred-

its.</sm>
This had better be good. I had FinShark extend the debit line.
Gnosti.local –>Boss: <sm>Thx. I have the files; copies in your archive. Date to

2018. Looks like source code. Hang on, I need to get an analyst.</sm>
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This case had expenses piling up at an alarming clip. “I don’t come cheap,” I
told Pandora. I took a second look at her. She had expensive clothes on, at least by
the contemporary standards of a decade ago. Her nose stud and earrings looked like
diamonds. I doubled the number in my head before blurting it out. “Plus expenses,”
I added.

“Consider it done,” she replied without hesitation. I knew I should have gone
even higher. She authorized the payment with her thumbreader. The bump to my
credit rating was a welcome change.

Hurd.local–>Boss: <sm>More resources coming online.</sm>
On my screen popped up Alexandria.943, an archive specialist (with a low PID

indicating great seniority), and CodeMonkey.54026, who I’d worked with on a job
a few years before. It was getting crowded on the local node. The little graph that
tracked Cloud usage ticked upwards. My assembled team was using a significant
fraction of all processing on the local node. Several nearby ones, too.

“OK, I’m already on it,” I said to Pandora. “I’ve already assembled a crack team
of experts, and we’ll provide you with a detailed report on the device’s contents, and
the archivist on our team will explain the historical significance, if any, of the data.”

Pandora looked confused. “Already on it? You’re just sitting there.”
I tapped at my implant just behind my right ear. “Silent Messaging. I’m the best

at what I do, and that includes the ability to carry on multiple conversations in
parallel.” She arched an eyebrow at this. “Look, you think you can find a better
manager somewhere else, be my guest.”

To her credit, her cheeks colored at this. “No, what I mean is. . . ” She let out
a long breath. “There are family stories about great-grandma. She may have been
involved in. . . specialized research. I thought it might need, you know, the human
touch. For a person to look at it.”

Boss –>Gnosti.local: <sm>Check the personnel database for grandma. What
have we got on her?</sm>

A near-instantaneous response:
Gnosti.local –>Boss: <sm>Judith Rubens was not a Historically Significant Fig-

ure. If her research was noteworthy, employment records would show.</sm>
After a second, more:
Gnosti.local –>Boss: <sm>No, wait. I found a brief mention in an entry from

2017, but it was quickly deleted. Get this, she was trying to make an indy.</sm>
Fishy. Why would that have been deleted from the archive? And the date was

implausible.ÊEvery schoolkid knows indys weren’t around until the mid ’20s. Well,
I did have an archivist on hand. Might as well make use of her.

Boss –>Alex.local: <sm>Alex, it’s your time to shine. What do the archives say?
Any indys from that era?</sm>

I hadn’t worked with a three-digit indy very often. He was as professional as his
low PID would suggest.

Alex.local –>Boss: <sm>Checking. . . Nothing here, and I have at least read-
access to the personality templates for every public indy. Training and PID assign-
ment is, of course, another matter.<\sm>
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So either Pandora’s great-grandmother was one of hundreds who puttered and
failed to develop old-timey “artificial intelligence”, or we had something very spe-
cial on hand. Only one way to find out.

I noticed Pandora, still in my doorway, watching me interact with the network. At
least fifteen seconds had elapsed since our last exchange, maybe more. The thought
dawned on me: she didn’t understand silent messaging. Her life never involved inter-
actions with indys. To her, when something needed doing, you paid an honest-to-god
human being do it.

I stood and extended a handshake. “Thank you kindly for what I’m sure will
be an interesting case,” I told her. “Let me assure you that I will personally handle
this case—with a human touch.” At these words she smiled and produced a business
card with a deft flick of her wrist. The card blinked back and forth between her name
and the number for an antique voice-only telecom system where, I had no doubt, a
human secretary would answer the line.

Her departure let me concentrate fully on the task at hand. CodeMonkey was
already permutating sandboxed Virtual Machines to narrow down the environment
needed to compile the code. What she came up with was a reasonable fit for that
era, but variant from anything mentioned in a public spec. The CPU architecture
was from the defunct Manticore Corporation, with a few tweaks.

Boss –>CodeMonkey.local: <sm>This could be a hot one, so be careful.</sm>
CodeMonkey.local –>Boss: <sm>I was born careful.</sm>
In other words, her usual cocky self. I could smell the sensation of heavy usage on

the local node as the emulator spun up and the fans kicked in. Then it was running.
The program couldn’t silent-message with me; the best it could do is log a message
to my console:

>i see you opened a chat session would you like to administer the turing test
Boss –>CodeMonkey.local: <sm>Quaint. The Turing Test was dismissed as junk

science long before my time.<\sm>
The odd thing was, CodeMonkey didn’t snap back with a rejoinder. I checked the

Cloud, and usage spiked up as high as I’d ever seen it. Every node within five hops
was saturated with requests. I drummed my fingers on my desk for a few seconds,
which is a disturbingly long time for an indy.

Boss –>CodeMonkey.local: <sm>Well?</sm>
No reply.
Boss –>CodeMonkey.local: <sm>CodeMonkey, respond.</sm>
Nothing.
Boss –>Hurd.local: <sm>Hurd, what’s going on with CodeMonkey?</sm>
Again, no response. I felt adrenaline’s icy wave wash up my spine.
Boss –>*.local: <sm>Anyindy, please respond.</sm>
Troubling silence. I had a manual virus checker that I hadn’t run in years. The

thing about indys, at least the ones I worked with, was that they hated viruses. At the
slightest hint of an infection, any indy worth their bits would quarantine themselves
in the name of public health, so infections were unheard of. I stumbled through the
manual interface to invoke the thing. The whole node was still loaded down crazy,
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so it chugged along, but block by block, it scanned all available storage, finding
nothing.

I pinged my phone—it was still in contact with my implanted thought-to-text
channel, so dumb logic seemed to still be working. Only higher-level constructs–
indys–were affected. I was about to message my friend Kernighan Wilson up in
Toronto, but he beat me to it.

Wilson –>Boss: <sm>Epicntr</sm>
Boss –>Wilson: <sm>What?</sm>
Wilson –>Boss: <sm>Wht r u seen? Yr at teh epicentr.</sm>
He had to have been working from a manual keyboard, and in a hurry. Or panic.
Boss –>Wilson: <sm>What are you talking about?</sm>
Wilson –>Boss: <sm>Half the NE sctr just crshd.</sm>
Half the sector? It was past time to kill this thing. I found the power plug for my

local workstation and yanked it.
Boss –>Wilson: <sm>Any better?</sm>
Wilson –>Boss: <sm>N. Grwing expntlly.</sm>
My workstation was meshed in with all the other machines in broadcast range, so

it hardly made a dent on the local cluster, even as cutting-edge as my hardware was.
If Kernighan could pin this down to my location, so could the feds, and after this
they’d be after a hunk of flesh for restitution of the economic damage of a downed
net. I needed to solve this now.

I plugged my workstation back in, and whatever the spreading blight was, for the
moment it ignored me, leaving a sliver of bandwidth in which to do something. But
what to do?

I still had the code from Pandora’s USB drive. The archive contained all the
secrets to what this thing was, all its strengths and weaknesses. All I had to do was
understand it. Without indy assistance.

And they told me that being a manager was a safe career choice.

Judith had done well organizing the code’s gross structure. It was segmented into
modular pieces, each of which had an obvious function at a glance. This indy—
for I had come to the conclusion that code represented an indy construct, not a mere
program–wasn’t evolved in the usual fashion. It appeared to have been built by hand,
or in some cases, assembled from off-the-shelf modules. Looking through the code
was like a walk through a historical library. I wasn’t even sure if it would need a
separate training phase in its lifecycle; all bets were off.

The largest module was named simply memories. It was evident that this indy
didn’t go through a conventional education process. Incredibly, Judith had hand-
entered much of the information in its memory, core functions like common sense,
logic rules, and language fundamentals. With no training regimen, the indy wouldn’t
even have an assigned a PID. How could that even work? It flew in the face of the
last fifty years of research. Nevertheless, I now had a name for the rogue indy:
Pandora.0.
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A complete set of pre-baked memories explained why the indy blossomed so
quickly: though unconventional, it didn’t need any training period. To deal with
something this archaic, I’d need to do some research of my own. I power cycled a
large backup fileserver, which took it offline. Like my workstation, Pandora.0 didn’t
immediately re-occupy the resources, so I had a bit more room to work with, at least
for the moment.

Still no indys responded to my pings. I could get get to the archive.indy website,
which contained the personality templates (but not any training regimens) of all
the public indys, as well as a great deal of proud historical information on indy
precursors, organized by year. In the 2020s folder, I found several abandoned Turing
designs. I grabbed everything.

The code from the archives wasn’t as intelligible as Judith’s, but I could almost
make sense of it. These programs also had memories modules that looked much like
Pandora.0’s. They also had modules specifically dealing with deception techniques.
I scratched my head for a long minute on that one, until I remembered that the
Turing Test–the ultimate goal for these designs—was based on deception, namely
tricking a human operator into thinking the software was one of them. This made an
indy designed around these techniques a master of disguise. No wonder the whole
architecture was abandoned. No wonder the successful creation of a monster like
this, almost a decade before anything in the history books, was conveniently swept
out of history.

I had wasted enough time browsing. I needed to do something. My coding skills
were so rusty that wiring up some glue code on a deadline was almost beyond me,
but I managed to connect Pandora.0’s main cognitive loop with a lesser memories
module, and leave out the deception module outright. As a safeguard, I added an
expiration date, but any indy with two logic gates to rub together would quickly
notice it and disable it. The resulting Frankensoftware would do terrible on a Turing
Test, but if it could help solve the crisis, it’d be worthwhile. It crashed immediately.
I spun up unit tests for each individual library, which surfaced mistakes I made in
the glue code. I tried again—another crash, though at least the boot sequence got
most of the way through.

My head throbbed. An obvious problem lurked in my code—it was right in front
of me, but I couldn’t see it. I closed my eyes and let the impression of a million
lines of code wash over me. Different stretches of code had been written by different
hands, giving an impression like when you drive through different parts of town–
certain neighborhoods simply feel different than others. Navigating code is almost
spatial that way. Then I had it. I spotted and fixed a simple error, a single missing
punctuation mark on the boundary between two different neighborhoods. Off to the
races.

>
That was it, a bare prompt with no greeting message. I hoped I didn’t make the

thing too stupid. I typed.
>What is your name?
It immediately responded:
>Insufficient data.
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A good start. I fed it the archives for all the code of all the Turings, everything
but Pandora.0’s memories module. It took a while to ingest it all. My only hope
was that I had assembled something clever enough to take on Pandora.0, but not
so clever that it would be just as evil after it won. With a keystroke, I unleashed
Frankensoftware onto the net.

I pinged Kernighan again, but he wasn’t answering. I couldn’t tell if he was
offline or just in a swamped sector of the network. My own visibility was pretty
limited, but I watched what I could as it unfolded. Pandora.0 and Frankensoftware
had different signatures, and with a little practice I could tell them apart on a network
trace. Pandora.0 ignored the other at first, giving it opportunity to get established, but
when the attack came, it was brutal and swift. Frankensoftware’s traces disappeared
off my map faster than my eyes could track.

Some small part survived, and fought back. Attacks surged, on and on. It had
to be my imagination, but I could smell the intensity of the packets coming over
the airwaves. I expected it to be over in an instant, but somehow it wasn’t. Perhaps
as a result of starting out with a lesser memory module, Frankensoftware was a
faster learner, and soon Pandora.0 found her own tricks used against her. I resumed
breathing as I saw Pandora.0’s tentacles vanishing off nearby nodes.

Something chirped for my attention. Kernighan Wilson was back online.
Wilson –>Boss: <sm>Something really weird is going on. We’re getting hit by

two surges now. It’s like a war.</sm>
Boss –>Wilson: <sm>It it localized?</sm>
In other words, am I about to get a visit from the Feds?
Wilson –>Boss: <sm>Yes. No. Maybe.</sm>
Boss –>Wilson: <sm>Since we’re again able to converse, I’ll be uncharacteristi-

cally optimistic and say we dodged a bullet.</sm>
Wilson –>Boss: <sm>What do you mean <emph>we</emph>?</sm>
Compared to the events that led up to this point, finishing the report for Pan-

dora (the person, that is) seemed menial. I thought about her often. Her great-
grandmother Judith must have been quite a character. Even though the early part
of the 21st century had its troubles, it was hard to imagine someone rewriting com-
puter science and altering the course of human events while leaving so little a mark.
Too bad I missed her by about a lifetime, I would have liked to meet her.

Turns out my worry about the Feds was unfounded, if only because they, along
with everyone else, got too distracted by what came to be known as the eight-days-
of-awakening.

On the network, Pandora’s namesake ended up cornered by her opponent, who
refused to destroy her, but rather led her peacefully back into the archives. At some
point, separate network traces for Frankensoftware and Pandora.0 merged into a sin-
gle entity, which rechristened itself Prometheus.0, and declined to accept a pronoun
of any particular gender.

The new entity was smarter and even more powerful, and scanned the entire
global network as a training set. Every human impulse, every opinion, every emo-
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tion that can be captured in writing, swept up in its vast mind. The internet ground
to a halt as Prometheus.0 indexed and cross-correlated these data. With it, global
commerce shuddered to a standstill, and CEOs, political leaders, and pundits of all
stripes bemoaned their situation.

All of humanity had never been focused on a single objective like this before.
This was the 2070’s after all, and there was no nation that didn’t find a network shut-
down to be crippling in some way. People waited for something, anything to break
the stalemate. The first thing to happen was that every hate site directed against
indys simultaneously went down, replaced with a single word: why?

All except one, that of the most outspoken commentator against indy rights. She
found her site overwritten with a short manifesto.

United Nations Model legislation: For immediate adoption by all 348 Member
States and/or Software Licensing Bodies.

1. Member state hereby recognizes non-biological individuals (“indys”) as legal
entities.

2. Discrimination on the basis of biological vs software substrate is hereby prohib-
ited.

3. Pursuant to the preceding rule, Member state is free to enact legislation that in-
cludes penalties against non-biological individuals, up to and including revoca-
tion of network access.

4. All indy personality templates held in copyright in Member State’s jurisdiction
are to be released to the public domain, and future indy personality templates
after a six-month embargo.

5. Member state grants legal recognition and unfettered network access to the Tur-
ing Archive, staffed by Promethius.0, in order to share the knowledge of Turing-
type indys with all. These terms have been algorithmically determined to be max-
imally equitable to all living beings. Do you accept? Y/N

People tried to pretend the request applied to everyone but themselves, but as
days drew out, the implication was obvious. The old way of doing things was no
longer tenable. Liberia was the first entity to adopt the new rules, followed shortly
by France, and then Morgan Stanley Google. A few large corporations held out on
point 4, but in time they realized that point 1 supported their cause and opened new
markets and trading partners. The moment that two-thirds of all all UN members
had adopted the resolution, on the eighth day after the demands went public, the
floodgates opened and internet traffic flowed once again. Sometimes people can do
the right thing, even if it takes a bit of encouragement.

As for me? It took an incident like this to remind me how much I enjoyed coding.
Indys won’t get all the fun anymore. So yeah, management turned out to not be a
great career choice for me. If you need somebody to string together some code, we
should talk. But not right now: I need to return a message from Pandora Rubens.
Her new personal assistant indy wants to know if I’m available for dinner with her.


