
After the Scrum: Twenty Years of Working without
Documentation

Sukanya Ratanotayanon

Department of Informatics
University of California, Irvine

sratanot@uci.edu

Jigar Kotak

Department of Informatics
University of California, Irvine

jkotak@uci.edu

Susan Elliott Sim

Department of Informatics
University of California, Irvine

ses@ics.uci.edu

ABSTRACT
Agile processes enable software development projects to react to
rapid changes in the development environment. However, they
are often criticized for not creating and maintaining standard
documentation such as requirements and design documentation.
The lack of documentation can be detrimental for maintaining
knowledge, especially in the long run, because there is no
explicit medium for communication to new people and among
existing developers. This poses an important question: whether
the use of agile processes in long run is feasible. In this paper,
we presented a field study of an organization that has been using
an agile process for more than 20 years and has been successful
in maintaining knowledge over that period. Instead of written
documentation, they use living documents, well-connected
communication, and working software are prioritized as
mediums for maintaining knowledge. However, success is not
easily achieved. There are important factors that enable the
organization to use the current practices successfully. These
factors are: shared values, overlapping knowledge among team
members, low turnover rate, and well-understood requirements.

1. Introduction
Processes in the agile family have gained increasing

popularity recently due to the competitive environment
and rapid changes in both technologies and requirements.
The lightweight characteristic of agile processes enables
fast-paced development and rapid reaction to change.
However, much skepticism toward agile processes has
been shown, especially by the proponents of plan-based
software processes, due to the lack of standard
documentation, which can be detrimental for maintaining
and distributing knowledge among project members
throughout a project’s life cycle.

Agile software processes do not produce and maintain
any high-level documents other than source code and
comments. Instead, it recommends communication and
collaboration among people in the project as a means of
maintaining knowledge rather than using documentation.
The process suggests that documentation be created and
maintained only when necessary and only to facilitate
communication. For example, the process advocates
documenting important knowledge that will help others
understand the source code as comments. The facts that

there is no explicit medium for knowledge transferring,
and most important knowledge resides only within team
members’ heads raise an important question. Is long term
use of the agile approach feasible? This concern is
especially valid when the software project reaches its
maintenance phase and the original developers of the
system are leaving or are no longer available.

Most field studies of agile projects have not
investigated this issue. They have studied projects that
only recently adopted agile processes and have focused on
how the agile processes were adopted [1], [2]. We have
conducted a field study within a small organization that
has been using an agile process for more than 20 years. In
this study, we interviewed all staff members who were
involved in two particular software projects. The first
software project is being implemented as a computer
system for the first time and is in the development phase.
The second project is one of the organization’s critical
applications and is the third generation of computer
systems performing the same task. This second
application is in its maintenance phase and has already
lost some of its original developers. However, even
without documentation, the remaining developers are able
to sustain the knowledge required to maintain their
software successfully.

At first blush, one would expect that scrums, or
frequent, informal face-to-face communication would be
insufficient to sustain knowledge over decades. However,
this was not the case. We found that mediums through
which knowledge is mainly retained and distributed are:
living documents, well-connected communication, and
exemplar software systems. However, there are a number
of factors that enable this organization to use these
communication mediums effectively, and these have led to
successfully sustaining and distributing the knowledge.
These factors are: shared values, overlapping knowledge
among team members, a low turnover rate, and well-
understood requirements.

In the next section, we review related studies.. The
method employed in our study and the characteristics of
the organization and projects under study are presented in

Section 3. Section 4 describes in detail the mediums used
to maintain and distribute knowledge in this organization.
Section 5 analyzes the factors that enable them to
successfully use these mediums effectively. Section 6
presents concerns that the organization has about
maintaining its knowledge in the future. We conclude our
paper in Section 7.

2. Related Work
Agile processes are a family of lightweight processes

that share a common framework called “Agile Manifesto”
established in early 2001 by the Agile Alliance [3]. The
Agile Manifesto declares that agile processes value:

� Individuals and interactions over processes and tools,

� Working software over comprehensive documentation,

� Customer collaboration over contract negotiation,

� Responding to change over following a plan.

In addition, a true agile process will have the
following characteristics: iterative, incremental, self-
organized by team member, and emergent [4]. Examples
of famous agile processes are Extreme Programming
(XP), Scrum, Crystal, Adaptive Software Development
(ASD), Feature-Driven Development (FDD), and Lean
Development (LD).

Agile processes are popularly adopted by small teams
building software that requires fast development and fast
reaction to changes. Agile processes normally prioritize
communication and shared tacit knowledge as a means to
maintain and sustain knowledge in software projects.
Documents are created only to facilitate the
communication and are updated only when necessary [5].
This raises skepticism about the ability of agile processes
to maintain and distribute knowledge among team
members throughout the development life cycle.

Maintaining and distributing knowledge is crucial in
software development processes. This is especially true in
the case of maintenance, when sometimes a person who is
responsible for maintaining the system is not involved in
its development. Information has to be stored in some
form in order to help the maintainer gain an understanding
of the system. Failure to address this issue could lead to a
“thin spread of application domain knowledge,” and
“communication and coordination breakdown” [6], which
eventually lead to the failure of the project.

In traditional plan-based processes [7-9], a standard set
of documents associated with software development
phases is prescribed as the medium for communication to
new people on the project, existing developers, users, and
other related software projects. These documents are used
to enforce conformity of coding standards, design
documents, and requirements, as well as to provide
mechanisms for tracking project features, status, and bugs.

The cost of producing and maintaining these
documents, however, poses a problem, especially in small
teams such as those practicing agile processes. Although
there are many advocates for using documentation as a
means to transfer and sustain knowledge [10-12], there is
also evidence against the effectiveness of documents as a
means to maintain and distribute knowledge. Studies show
that, in practice, developers do not do a good job of
documenting [13]. In addition, developers don’t feel that
it’s worthwhile to update certain types of documents.
Therefore, documents are not created and maintained a
timely manner, and they become outdated [14, 15]. This
inconsistency undermines the value of documentation as a
means for maintaining knowledge in an organization.

3. Empirical Method and Field Site
In order to better understand how knowledge is

maintained and transferred without the benefit of
documentation, we conducted a field study of an
organization that has been using an agile development
process for more than 20 years. This section presents the
method employed in our study and the characteristics of
the organization and projects studied.

3.1 Method
We conducted interviews with 9 technical and non-

technical staff members who were involved in two
specific software development projects. A detailed
description of the projects is presented in section 3.2. We
employed semi-structured interviewing techniques, which
involve a set of questions designed to cover the ranges of
topics. These questions are open-ended in order to
encourage subjects to talk at length about their
experiences and also help us learn about other related
issues. The questions, selected to promote conversation,
fall into three categories: (i) their background and their
roles in the project, (ii) documents and information
required for their tasks, and (iii) the means used to obtain
required information and to record information obtained
during their tasks.

Each subject was interviewed individually for 30 to 60
minutes. For each interview, there were two interviewers:
the first interviewer took the role of ensuring that all the
topics in the protocol were covered, and the second
interviewer, freed from focusing on the protocol, focused
on following up on interesting but unanticipated remarks.
In addition to the notes taken during the interview,
interviews were tape recorded.

3.2 Field Site and Project Characteristics
The interviews were conducted at a small

administrative office at a university, which we will call
“IStar.” IStar has a flat hierarchy and employs 14
individuals: 6 nontechnical staff and 8 technical staff.
Non-technical staff carry out IStar’s business. Technical

staff implement software to support IStar’s works. Each
division has its own manager, who reports to the head of
the organization. At the time of the interviews, there were
7 full-time developers and 1 student programmer in the
technical division.

Recently, the trend of software development in IStar
has been to “move everything to the web”. All paper-
based and client-server systems were being migrated to
web applications in order to: (i) provide better service to
the students and staff, and (ii) eliminate additional costs
attached to paperwork. We studied two specific web
application projects, WA1 and WA2. WA1 is a web
application for administrators to view and perform job-
related functions concerning a student's enrollment. WA2
is a web application that allows students and counselors to
process requests for graduation. WA1 is a version of an
existing client-server system developed in IStar that has
been ported to a web application and is already in the
maintenance phase. WA2, on the other hand, is a newly
created application that replaces a paper-based system and
recently went into production.

Although we interviewed only staff members who
were involved in WA1 and WA2, the process employed
by both projects is the same for all software development
in IStar, and it has been used for more than 20 years. The
agile processes employed are not one of the famous agile
processes, but IStar’s own specific process. We perceived
this process as an agile process because, in addition to
being a lightweight process, it presents the required agile
attributes [4]:

Incremental: Developers do not elicit all the
requirements up front and implement the whole system at
once. They start with core requirements and then
implement these first. Additional features are added later,
one at a time.

Iterative: An evolutionary prototype [16] is implemented
and used to clarify the requirements of the system.

Self-organizing: Developers are allowed to make their
own estimates and to determine how to handle the
assigned work.

Emergence: There is no predetermined plan created for
the projects. Only a rough deadline is estimated for each
feature. The development is carried out by the technical
staff, and management tracks the status of the project via
frequent informal communication.

4. Maintaining Knowledge without Paper
The common opinion about documentation shared in

IStar, including the management team, is that the cost of
creating and maintaining the documents is not worth its
usefulness. Therefore, rather than using documentation,
IStar chose alternative mediums for communicating and
sustaining knowledge throughout its software life-cycle. In

this section we will describe the mediums utilized by
IStar.

4.1 Living Documentation
Rather than focusing on creating documentation, IStar

believes in using “living documents” to maintain and
transfer knowledge in software projects. The living
document refers to the staff members, especially “pioneer
employees,” who are technical and nontechnical staff
members who have been employed for more than 20
years.

Pioneer employees play an important role in
maintaining knowledge throughout the software life cycle
in IStar due to their deep understanding of domain
knowledge assimilated during the years. We learned of
their importance for sustaining and passing along
important knowledge through interviews with WA1’s
developers. Since WA1 is a re-implementation of an
existing system with web application technology, it shares
similar characteristics with its predecessor system. Some
pioneer people were involved in the development and
maintenance of WA1’s predecessor system. They are able
to provide the developers of WA1 valuable advice on
requirements, data description, design decision and
solution to some known issues, which were obtained from
developing the predecessor system.

There is no documentation created during the
development phases, so how do existing developers
transfer their knowledge to newcomers when they leave
the project? This situation arose with WA1, which had
some student developers who left before the project
stabilized. The common belief in agile projects is that
comments in the source code provide enough information
for new programmers to understand the application. New
developers in WA1 disagree, however. What has allowed
other developers to obtain the required knowledge to
continue the task lies in IStar’s processes for managing the
departure and arrival of employees.

Typically, a developer who is leaving IStar will
suspend other work and reserve the last few days only for
“explaining” and “talking” to other developers whose
work is related about various aspects of the tasks. Since
this office community is tightly knit, developers are aware
of each other’s work. This lay a foundation that allows the
remaining staff to understand the information left by the
departing staff. This practice is so engrained among the
people who work at IStar that when people leave the
office on a good note they are still considered to be part of
the office. They are willing to answer telephone queries
pertaining to their applications, and if need be even to
come back to solve some of the problems.

IStar has a philosophy that “more familiarity leads to
more knowledge.” When a developer first arrives in IStar,
he is usually given a task to perform low priority

enhancement to the existing systems. The task allows the
new employee to assimilate knowledge about the
application and IStar’s process. Other programmers who
are aware of the assigned task “fill in” the new hire with
information that is vital for the task through “informal
talking” or “walk-through” discussions and meetings. This
type of activity usually lasts a couple of months.

4.2 Well-Connected Communication
Like other agile projects, IStar uses communication as

the primary medium for transferring and maintaining
knowledge. However, what we find distinctive in the
participating organization are its highly cooperative
environment and the frequency of ad hoc communication
among the staff. The organization’s environment
cultivates informal communication and a willingness to
provide information and help to others. Technical and
non-technical staff are on a good terms and have strong
connection with each other. Due to its flat hierarchy, there
are very few communication obstacles between people in
different teams or even with the management team
members. Each individual in the organization is
approachable. Ad hoc conversation is welcomed by
individuals and encouraged within the organization. Staff
members are welcome to walk up to others and initiate
informal communication, even with those in managerial
positions.

By having frequent informal communication with non-
technical staff members who are clients of the application
and domain experts, developers do not have to rely on
having system requirements documented. They are able to
collect requirements, assimilate domain knowledge, and
obtain quick feedback about the implemented system
through frequent informal communication.

In addition, this connected communication facilitates
knowledge transferring for various purposes, such as
following up an idea presented in a meeting, distributing
tasks, tracking the status of projects, and getting advice
from fellow developers. It allows one staff member to be
aware of and to understand the responsibilities of some of
other staff, which results in overlapping knowledge, as
presented in Section 5.2.

4.3 Reference Implementations and Prototyping
IStar’s developers also utilize exemplar software

systems as sources of information for their
implementations, especially when re-implementing a
system that has predecessor software. The effort spent in
developing the predecessor is therefore not lost, but used
in the current project. For an example, WA1’s developers,
with the help of pioneers, are able to use WA1’s
predecessors as examples for user interfaces,
implementation of data processing, and some computation
processes. Seeing running software also helps them to

have a better understanding of business rules and
descriptions of the data being processed.

Since IStar develops its software in an incremental and
iterative manner, evolutionary prototypes [17] are also
used to aid in communication among staff. Typically,
programmers start by developing a prototype, providing
core functionality of the system as a proof of concepts.
Interfaces of the prototype or its screen shots are then
shown to non-technical staff and fellow developers to
clarify the requirement and gain design suggestions about
its usability. The prototype itself is used to gain feedback
and a clear requirement misunderstanding. As an example,
sometimes non-technical staff members provide feedback
to programmers by running the program to determine any
incorrect behaviors. The management team also tracks
project status by observing the current working system.

5. Success Factors
In the previous section, we described how IStar

maintains and transfers knowledge without
documentation. This section presents factors that enabled
this organization to use these practices successfully. The
reasons center around creating a positive work
environment with shared values, ensuring that developers
have overlapping knowledge areas, which in turn results
in a low turnover rate.

5.1 Shared Values
At IStar, informal communication among peers is

valued over standard documentation as a medium. All
members share this value. When we asked about
documentation, we were presented with the graph in
Figure 1.

Figure 1: Amount vs. Value of Documentation

The graph shows the relationship between the value of
documentation to the quantity of documentation according
to IStar’s staff. After a certain amount of documentation,
its value decreases. The reason given was that the more
documentation generated, the more time spent by existing
developers to create it, and the more time needed by a
new developer to read it. Another reason, given by the
head of technical division, is that “a lot of people talk of
creating documentation, but not many people do a good
job at it.” Their shared value and viewpoint on
documentation cultivates informal communication and a
willingness to provide information to other developers.

5.2 Overlapping Knowledge
Overlapping knowledge is key to filling the void left

by the lack of documentation, for example, when a staff
member leaves. Due to the closeness among the staff
during their time of employment, employees discuss,
explain, argue, and communicate via other informal
means. In addition, various developers are involved in the
same project, although at different times. As a result,
overlapping knowledge areas emerge over time.
S1
S2
S3
S4
S5
S6
S7

System Requirement Development Data
Figure 2: Overlapping Knowledge

To illustrate the overlapping knowledge areas, Figure
2 displays knowledge overlap among employees with
respect to WA1. The figure shows that if any one of the
employees has to leave the department permanently,
people who share that employee’s knowledge can
combine their respective knowledge to fulfill that
individual’s duties. Moreover, because the employees
maintain close ties with one another, if any one of the
employees is leaving, the others are usually aware of this,
and the last few days are spent “telling” people how they
are doing and what they are doing. Their overlapping
knowledge aids them in assimilating the information being
passed on.

5.3 Turnover Rate
This organization has a trait that any organization

would envy: a low turnover rate. Figure 3 shows that most
of the employees have been working in the office for more
than 10 years and some are still working even after 30
years of service to the organization.

Figure 3: Service Age of Subjects

This low turnover rate aids in creating knowledge
overlap among employees. Developers assimilate domain
knowledge by interacting with non-technical staff
members over many years. The pioneer employees can
pass on their knowledge first-hand to the recent hires. As
one of the non-technical staff members points out, “[she]

would love to impart her knowledge if someone was ready
to pick her brain.”

The low turnover rate also helps to prevent the
organization from losing information the staff members
have. No matter how well aware the staff is toward others’
responsibilities, some specific information is always lost
when an existing staff member leaves the project, and it
will take some time for a newcomer to pick up the
knowledge. As mentioned above, the arrival and training
process might take up to two months. Having a low
turnover rate helps prevent the project from losing this
time.

5.4 Well-Understood Requirements
Because developers are co-located with the business

office and the goal of the software is to support IStar’s
work, developers are exposed to business logic, which
helps them to grasp the domain knowledge. The non-
technical team members and pioneer people who
understand the business process are also there to give
feedback and clarify requirements.

In addition, many critical applications have
predecessors. A system is usually re-implemented to keep
up with the technology; the requirements of the system
behavior and workflow usually stay the same. The new
system only has to mimic its predecessor behavior and
computation. The system requirements were already
gathered and analyzed when the predecessor system was
implemented, so pioneer people who implemented it can
provide this valuable knowledge of the requirements to
current developers. If pioneer people forget the
requirements, the working software can be run to obtain
the information.

6. Moving Forward
According to a pioneer technical person, IStar has

adopted this process of software development for more
than 20 years. No high-level documents such as
requirement or design documents were created. Informal
documents created are mainly reminders, such as personal
notes and online FAQs about the application’s operations.
It is worth noting that there is one document, “data
description note,” that is created and maintained regularly
and is shared among developers. This note lists database
fields, including their description for IStar’s applications.
This is not unexpected, as IStar’s applications are
“information processing” systems. Therefore, a
description of the data to be processed is important and it
is impossible, even for pioneer developers, to remember
all of the data description.

With 20 years of using these processes successfully,
one would expect IStar to be settled and secure with these
practices. However, this is not the case. As we can see,
knowledge in IStar is maintained in its staff, especially its

pioneer people. As the prospect of some pioneer people
retiring is near, IStar is concerned about losing important
information, such as critical application behaviors and
usage, domain knowledge and various kinds of
organization knowledge as these people leave.
Surprisingly, they are trying to deal with this problem
using documentation. Approximately five years ago, the
organization initiated a documentation project by hiring
an external consultant to document information from all
the pioneer people. The focus of that document was on the
operational aspect of the applications and business
processes. However, it is doubtful that the document will
be as useful in terms of completeness of information and
effectiveness in distributing knowledge because
interchanges among the staff, who are so used to informal
communication to gain required information rather than
reading. In other words, despite management concerns,
this agile development group is reverting to type by
favoring communication over paper.

7. Conclusion
In this paper, we reported on a field study of a small

organization that has been using an agile development
process for over two decades. Two successful agile
software projects were examined in detail in order to
investigate how information has been transferred and
sustained without using traditional documentation. We
found that its knowledge is maintained by using living
documents, well-connected communication, and working
software. In other words, scrums, or frequent, informal,
and intense communication, is enough to sustain
knowledge within an organization for a long period of
time. Furthermore, when human memory fails, the
environment provides aids to recall in the form of
ingrained business processes and exemplar operational
software systems.

Finally, using an agile process successfully also
requires deep commitment at an organizational level. IStar
is no exception. We also identified important factors that
enable staff to use the current practices successfully.
These factors are shared values, overlapping knowledge
among team members, low turnover rate, and well-
understood requirements. In summary, IStar demonstrates
that with the right mechanism and a hospitable culture it is
possible to use agile processes and work successfully
without documentation for many years.

8. Acknowledgments
We thank IStar staff for their time and patience with

our questions.

9. References
 [1] M. Cohn and D. Ford, "Introducing an agile process to an
organization [software development]," Computer, vol. 36, pp.
74-78, 2003.

[2] H. Svensson and M. Host, "Introducing an agile process in a
software maintenance and evolution organization," pp. 256-264,
2005.
[3] J. Highsmith, Agile Software Development Ecosystems,
USA: Addison-Wesley Publishers, 2002, pp. 448.
[4] B. Boehm and R. Turner, Balancing Agility and Discipline:
A Guide for the Perplexed, USA: Addison-Wesley Publishers,
2003, pp. 304.
[5] S. Ambler, Essay: Agile Documenation, 2005.
[6] B. Curtis, H. Krasner and N. Iscoe, "A field study of the
software design process for large systems," Communication of
ACM., vol. 31, pp. 1268-1287, 1988.
[7] D.L. Parnas and P.C. Clements, "A rational design process:
how and why to fake it." IEEE Transactions on Software
Engineering, vol. SE-12, pp. 251-257, 1986.
[8] I. Jacobson, G. Booch and J. Rumbaugh, The Unified
Software Development Process, 1999.
[9] W.W. Royce, "Managing the Development of Large
Software Systems," Proc. WESTCON, 1970.
[10] S.C.B.d. Souza, N. Anquetil, K. Oliveira and thia M.de, "A
study of the documentation essential to software maintenance,"
in SIGDOC '05: Proceedings of the 23rd annual international
conference on Design of Communication, pp. 68-75, 2005.
[11] F.A. Cioch, M. Palazzolo and S. Lohrer, "A Documentation
Suite for Maintenance Programmers," in ICSM '96: Proceedings
of the 1996 International Conference on Software Maintenance,
pp. 286-295, 1996.
[12] T. Sauer, "Using design rationales for agile
documentation," in Enabling Technologies: Infrastructure for
Collaborative Enterprises, WET ICE 2003. Proceedings.
Twelfth IEEE International Workshops, pp. 326-331, 2003.
[13] M. Visconti and C.R. Cook, "An overview of industrial
software documentation practice," in Computer Science Society,
SCCC 2002. Proceedings. 22nd International Conference of the
Chilean, pp. 179-186, 2002.
[14] T.C. Lethbridge, J. Singer and A. Forward, "How software
engineers use documentation: the state of the practice,"
Software, IEEE, vol. 20, pp. 35-39, 2003.
[15] A. Forward and T. C. Lethbridge, "The relevance of
software documentation, tools and technologies: a survey," in
Proceedings of the 2002 ACM symposium on Document
engineering, McLean, Virginia, USA: ACM Press, pp. 26-33 ,
2002.
[16] L. Horst, S. Matthias, Z. Heinz and llighoven, "Prototyping
in industrial software projects: bridging the gap between theory
and practice," pp. 221-229, 1993.
[17] C.Z. Jean and D.T. Peter, "An insider's survey on software
development," pp. 178-187, 1982.

