
Supporting Program Comprehension in Agile with Links to User Stories

Sukanya Ratanotayanon
Department of Informatics

University of California, Irvine
Irvine, USA

sratanot@uci.edu

Susan Elliott Sim
Department of Informatics

University of California, Irvine
Irvine, USA

ses@ics.uci.edu

Rosalva Gallardo-Valencia
Department of Informatics

University of California, Irvine
Irvine, USA

rgallard@uci.edu

Abstract—Agile software development involves continuously
making iterative and incremental changes to source code.
When making changes, developers quickly focus on parts of
code that they consider important, and sometimes miss other
relevant parts. Therefore, tool support is needed to help
developers locate conceptually related sections of code. We
present Zelda, a tool designed to work with Agile practices that
captures and maintains links between high-level information
and source code. We evaluated Zelda with a pilot study where
subjects were required to make a change to a small web
application (10KLOCs). They were given a task description
either on paper or in Zelda. We found that the Zelda Group
made more accurate changes and were less likely to become
disoriented.

Keywords-component; user stories; program comprehension;
link evolution; traceability links

I. INTRODUCTION

Projects using Agile processes are frequently confronted
with fast-paced technical advances and rapidly changing
requirements. Consequently, developers must make changes
to source code quickly and accurately. Previous studies of
program comprehension found that professional developers
sought only to understand portions of code that were relevant
to the task at hand [1, 2]. However, their perceptions of what
was relevant were not always correct or complete. This
mismatch is particularly problematic when an
implementation of a concept or a feature spread across
different parts of the code or artifacts. The scattering of code
is common in modern software architectures because they
often have multiple layers, and use frameworks, or existing
services. The need for effective tools to support program
comprehension is particularly high in Agile, where the
software written today is next week’s legacy code.

We seek to address this problem by providing links from
high-level concepts to their locations in source code. These
links can help developers to recognize scattered pieces of a
concept, build mental models, and make connections
between them. These links are similar to traceability links in
plan-driven software development. Due to the distinctive
software artifacts and the order in which they are produced,
Agile presents both opportunities and challenges for using
traceability links to support program comprehension.

On one hand, we cannot apply traditional traceability
techniques, as there are usually no documents from which to
trace. On the other hand, the sequence of artifact creation

provides us a code-centric and lightweight mean to capture
links. In Agile, units of work are defined as user stories and
tasks. When using test-driven development, a developer
begins by writing test cases and then writes just enough
program code to pass the test cases. By recording traceability
links among user stories, test cases, and source code, we can
map information from high-level concept such as features
and tasks to source code.

To this end, we created Zelda, an Eclipse plug-in that
helps developers create links from these user stories and
tasks to their source code, test cases and various text-based
files. Zelda can manage user stories information or retrieves
user stories and tasks from an external tool, such as XPlanner
[3]. The process for creating links requires little effort, and
the links are kept up to date automatically, so that developers
can remain focused on coding. When the underlying artifacts
are changed, links are updated by extracting information
from a Revision Control (RC) system. By analyzing the
results from differencing subsequent versions of artifacts, we
can automatically determine the correct locations of links.
Zelda also provides different types of link visualizations
using file decorations, markers in the Eclipse editor, and a
SeeSoft-style [4] visualization. These visualizations help
with browsing the source code and provide a visual aid for
creating a working set [5].

We evaluated Zelda in a small pilot experiment with two
conditions and four subjects. Subjects were given a task
description, either on paper or using Zelda, and subjects were
asked to implement changes to existing software. We found
that subjects in Zelda group were able to complete the task
slightly faster and more accurately than those in the Paper
group. While this result is difficult to generalize due to the
small number of subjects, it is encouraging.

The remainder of the paper is organized as follows. Our
approach for providing software comprehension support in
Agile processes is presented in Section 2. Section 3 gives an
overview of how we record and evolve traceability links. In
Section 4, we introduce our prototype tool: Zelda. An
evaluation of Zelda is given in Section 5. Section 6
summarizes related work and we conclude with future work
in Section 7.

II. SUPPORTING PROGRAM COMPREHENSION WITH LINKS

TO USER STORIES

When making changes to source code, developers need
to be able to work quickly, while preserving the integrity of

the original design decisions and respecting the structure of
the software. A program comprehension tool that directs
developers to look at all and only relevant sections of code
can aid this work. We hypothesize that this can be done by
creating and maintaining traceability links to associate high-
level information from user stories, task descriptions, and
concepts, to its implementation in the source code.

In Agile, only minimal documentation is created, so we
cannot employ existing traceability approaches, as there are
no documents across which to trace. Since Agile is a code-
centric process, we need a mechanism to ground the links in
the source code. In addition, the overhead of capturing
traceability links with traditional techniques is too high to be
suitable for Agile. Instead, we need a process to capture
traceability links that is lightweight and does not incur much
overhead to the daily work. Lastly, Agile developers are
normally working in a fast evolving environment, which
means captured traceability information will deteriorate
quickly, if not maintained.

On the other hand, the Agile environment presents a
unique opportunity for using lightweight traceability for the
purpose of supporting program comprehension. As software
development is test-driven, and source code-centric, a
development environment can be leveraged as a vehicle for
traceability. In Agile, the artifacts that are produced are
lightweight, for instance, units of work are expressed as user
stories [6]. When using Test-Driven Development [7], a
developer starts with a user story and begins by writing test
cases and then writes just enough program code to pass the
test cases. Because artifacts for a feature are closely
associated chronologically, we can exploit the sequence in
which artifacts are created to capture links. The linking
process can be as simple as activating a user story or a task
and associating test cases and source code with it.

The high-level information recorded in user stories and
tasks can help developers answer questions such as what is
the purpose of a section of code or test cases, and why are
they implemented that way. Linked test cases can give
information about expected behavior of classes and modules
in the system. These links also provide an effective means to
tie together the parts of an implementation of a user story
that is scattered across various modules and artifacts. By
helping developers answer these questions, these links help
developers to discover parts of the code relevant to the
required changes, and to understand the original design of
the program. In addition, mappings between a user story and
its implementation can present an example of how a similar,
new user story should be implemented.

Since Agile emphasizes working software, the
mechanism for linking user stories and tasks to underlying
artifacts must require little effort. Consequently, we have
incorporated the mechanism to create, maintain, and present
the traceability links into an integrated development
environment (IDE). Integrating traceability features into an
IDE takes advantage of source code, and similar text
documents, as central artifacts in software development. In
the same manner that development activities center around
source code, so too, do the representation and maintenance
of user stories and links. Visualizations of these links help

developers to easily see and access the scattering
implementation of a user story or a task.

III. RECORDING AND EVOLVING LINKS

Our approach takes advantage of key practices in Agile
to provide a lightweight and code centric method to capture
traceability links. It captures and evolves the links between
user stories, tasks and their implementation, including test
cases and source code. It is a common practice to keep
source code under a RC system, and we leverage this
practice to record and evolve links between source code and
other work artifacts.

A. Link Recording

We use the following example scenario to help illustrate
the mechanics and the benefits our approach.

Mike was working on a web-based application. Mike
started working with a user story, named ‘maintain user
data’, which stated “As an admin, I can create and save user
accounts, including username and password, so users can
access the system..” With our tool, Mike activated the user
story from his IDE. To implement this user story, he created
test cases and several new source files. He also modified
some existing configuration files containing captions on the
user interface in different languages.

When he finished, Mike checked in his changes to the RC
system. At this point, our tool recorded links from the user
story to lines that were added or changed in the checked in
files. Mike also manually associated lines in the
configuration file with the user story. He did not modify
these lines, but felt that they were relevant to the task.
Having completed the task, Mike deactivated the user story.

Our tool creates and stores links by integrating together
different parts of an Agile developer’s working environment.
To facilitate in recording link, our tool provides an interface
to communicate to a user story management tool, so that a
developer can access user stories and tasks right in the IDE.
The link recording occurs when a user checks in or manually
selects lines to be linked. At check in, our tool queries the
RC system for lines that are added or modified and creates
links from the active user story to these lines.

The recorded links are stored in their own database.
Benefits of this approach are that it is simple and it requires
the fewest modifications to existing software tools and work
practices. Fig. 1 is the data model for the link records.

B. Updating Link Locations

The continuation of our scenario is used to explain the
mechanics of how links are updated and presented.

User Story/Task

Link

Line No.
RC Managed

Artifact
Artifact
Version

Figure 1. Model of Links Data

Five months later, another developer, Ken, needed to
modify the feature for maintaining user data. In the
intervening time, many changes have been made to the code
base, including a number of new features related to the
‘maintain user data’ story and a bug fix. To complete this
task, he needed to locate all relevant parts of code to be
modified. He used our tool to follow the links from the
‘maintain user data’ user story to lines in the most recent
version of the code base.

The links that Mike created were helpful to Ken. It is
easy to see from description of the user story that the
implementation of ‘maintain user data’ story will be related
to Ken’s task. Despite time passing and numerous changes to
the code, we were able to show the links in the most recent
version of the file, because we automatically maintain links
over successive changes.

We keep our links up to date by piggy backing on an RC
system. To update links, our tool request RC system to
produce difference information (‘diff’) between the original
linked versions of files and their current versions. An
example of a diff result in the unified format can be seen in
the box at the left of Fig. 2. We analyze the difference result
to identify updated position of a link in the most recent
versions of the target file. Detailed information about our
algorithm for evolving traceability links can be found
elsewhere [8].

The user story can have links added at different times, so
it is possible to have links pointing to different versions of
the same file. Our tool updates these links starting from the
version where they were injected and then accumulates them
so that they can be presented together.

The updated links can be “unchanged,” “removed,” or
“modified” as shown by the lines labeled 1, 2, and 3,
respectively in Fig. 2. An “unchanged” line has the same
content, but may have moved to another location within the
file, for instance, the line 1. Link 2 is an example of a
“removed” link that cannot be found, and is not shown to the
user. A “modified” link is one where the content has
changed, and may have moved. See the link number 3 for an
example of an unchanged link. The ‘modified’ links will be
presented to a developer, but will look different from ones
that are ‘unchanged.’

IV. ZELDA

A prototype platform for recording and maintaining
traceability links in Agile environment, called Zelda, has

been implemented as an Eclipse plug-in. Zelda comes with a
built-in system that allows users to maintain user stories and
tasks. The information of user stories and tasks is stored in
MySQL database. It is also possible to import user stories
and tasks from an external source, such as XPlanner [3]. An
interface has been provided to communicate with these
external systems.

Fig. 3 shows a screenshot of the Zelda tool. The available
user stories and tasks of a developer can be seen in the
Browser view, labeled C. A user stories or tasks that the
developer is interested in or currently working on can be sent
to the Virtual Stack view, labeled E. This view presents a list
of current working set of user stories and tasks. The user can
activate and de-activate user stories and tasks in the list using
actions on the view to created links to files.

When present the links related to a user story or a task,
Zelda analyzes the link information stored in the database
and the diff results obtained from Subversion to determine
the current locations of the links. The updated link locations
are shown in the following visualizations.

Overview: Visualiser plug-in from the AJDT group is
used to implement this visualization, labeled as B. It presents
an overview of all links to files and their associated lines.
The files are shown as long blocks and the associated lines
are shown as horizontal stripes within the blocks. This
overview provides easy access to the implementation of a
user story. The developer can jump to a section of the code
by double clicking on either the block or the stripe.

File Decorations: The links of a user story or a task are
presented at the file-level granularity using a file decoration
in the package explorer view in Eclipse, as shown in the area
labeled A.

Markers: Markers are used to show links at the line
level, as shown in the area labeled D. A marker is used to
present the most recent location of each link. By using
markers, links can be presented in a manner that is grounded
in the source code.

Program Element Tree: This view raises the level of
abstraction in which we show links to source code. Program
elements containing lines that are linked to a user story or a
task is shown in a tree view using its hierarchical structure as
shown in the area labeled F.

V. EVALUATION

We conducted a pilot study to evaluate Zelda. The goal
was to conduct an initial assessment of our tool for helping
developers to deal with scattered implementation of a user
story or a task. In the study, we asked subjects to modify an
existing web-based survey management application. There
were a total of four subjects. We divided them into two
equivalent groups, each consisting of one undergraduate
student and one professional software developer. All subjects
reported having experience in Java and web development.
However, none of them had experience with either JSP (Java
Server Page) or XML.

To ensure that all subjects were working from the same
starting point, we provided them with a description of what
would be involved in the required changes. This description
would be analogous to preliminary research done by a

Figure 2. Locating Links with Diff result

developer to create an accurate effort estimate or risk
assessment. The subjects received the task description and
the preliminary research result either in Zelda or on paper,
and they were required to implement the changes. In
addition, subjects were asked to think aloud as they worked
to provide us with additional insight into their behavior.

A. Software and Requested Change

The application used in this study was an open source
web-based survey management tool called VTSurvey [9]. It
is a typical three-tiered web application running on a Tomcat
application server. VTSurvey consists of 38 Java files, 74
JSP files, and 4 DTD (Document Type Definition) files.
There are a total of 10,342 lines of code in the application.

VTSurvey allows an administrator of the application to
create, delete, and edit users of the system. Initially, it did not
maintain each user’s email address. Subjects were requested
to modify the system to accept, maintain, and present this
data. We gave the subjects an outline of the solution, which
included: i) change description, ii) system description, iii)
files affected by the change (including description of work
required in each file), iv) risks, v) effort estimation, and vi)
test cases.

In the Zelda Group, subjects were given the task
description with links to relevant information in Zelda and
they were allowed to use Zelda as they wished. In the Paper
Group, subjects were given the same information on paper
and did not have access to Zelda. Both formats of task

description contained the same information and were
structured similarly.

B. Procedure

Each study session had four parts: background
questionnaire, familiarization task, implementation task, and
debriefing. The background questionnaire asked subjects
about their educational background, employment history,
and level of experience with some software technologies. In
the familiarization task, we showed the subjects the
programming environment, and how to compile and run the
project. Subjects were given a step-by-step instructions for
implementing a ‘Hello, World’ JSP page and were asked to
implement the page. In addition, the Zelda Group received
training on how to use Zelda in this task. In the
implementation task, subjects were given the task description
in a format according to their group and were asked to
implement changes specified in the task description. The
change was divided into two sub-tasks:

Task A: The system shall allow the administrator to
provide an email address upon adding a new user.

Task B: The system shall present the user’s email
address as another column on the user account listing page.

The subjects had a maximum of 90 minutes to complete
the task. At the end of that time or once they had finished the
implementation, whichever occurred first, we debriefed the
subjects. They were asked to evaluate their own
performance. As well, subjects in the Zelda Group also had
the opportunity to express their opinions about the tool.

A

C

E

D

B

F

Figure 3. Screenshot of Zelda User Interface and Link Visualizations

During the study, subjects were asked to think aloud as they
worked to provide us with additional insight into their
behavior. The subject’s activities were recorded by a web
camera, a microphone, and screen capture software.

C. Results

On the average, the time subjects in both group spent in
completing each of the two subtasks is comparable. To
analyze the accuracy of the implementation, the work of each
subject was scored out of 60. The average scores for both
groups are the same. The results are shown in Table 1.
Subject2 and Subject3 who received high scores are both
professional software developers. The results show that
individual differences were the biggest factor in the success
of the subject, more so than the treatment factor. This result
is similar to those obtained by Robillard and Murphy [10].

We also analyzed the number of relevant and irrelevant
files viewed by the subjects. A relevant file was defined as a
file containing information that could help a subject to
perform the implementation task, but may or may not need to
be changed. As presented in Table 1, we observed that the
subjects in the Paper Group viewed more irrelevant files. We
hypothesized that Zelda helped subjects to focus on relevant
files. Upon further inspection, we found that both subjects in
the Paper Group missed the same relevant file mentioned in
the outline of the solution, which caused them to miss the
internationalization strategy in the software. As a result, both
subjects hard coded the captions on a JSP page which would
cause an inconsistency in the application in languages other
than English.

TABLE I. IMPLEMENTATION SCORE AND NUMBER OF FILES VIEWED

Zelda Group Paper Group
Subject1 Subject2 Subject3 Subject4

Score (60) 25 55 50 30
#Relevant Files 10 11 13 13
#Irrelevant Files 0 1 6 5

In another instance, both subjects from the Paper Group
had trouble finding the correct DTD file to modify. The
application has two DTD files with the same name, but in
different locations. We provided the location of the correct
file in the task description as a part of the preliminary
investigation result. However, one subject in the Paper
condition modified the wrong file and the other subject had
trouble finding the DTD file using Eclipse’s IDE and had to
search for it. None of these difficulties was encountered by
subjects in the Zelda Group.

Another instance that showed how Zelda’s links provides
better support for accessing relevant information is how
subjects did or did not make use of architectural information.
The task description in both formats had a URL for a web
page that contained information about the system
architecture. Both subjects using Zelda followed the links
and viewed the architecture information, while subjects using
paper version of the task description did not.

In the debriefing, subjects who used the Zelda gave two
main reasons for its success. One, Zelda helped them to
concentrate on relevant files and to quickly access the code
needed to be changed. Two, Zelda allowed subjects to see

the task description and the code in the same environment.
As one subject said,

“. . . I did find it (link overview visualization) useful. Mostly
because it showed me what files were relevant for the change
and having the associated code is great. It is nice to swap
back and forth while I was doing the changes. . . . ”

He enthusiastically thought of how the tool could be
useful in other contexts,

“. . . for example, in one of the internships I did, like the first
day I was said. Here is a problem, you need to solve this. I
had no idea where to start. It would have been wonderful to
have something where the guy who was my mentor had
prepared something. This is the part of the system that you
need to look at. It would have been great. . . .”

D. Threats to Validity

One of our main threats to validity is a small number of
subjects. Although our results were positive, we could not
generalize the results. However, we did gain insight into
aspects of Zelda that subjects found useful.

The laboratory setting could also be a threat to internal
validity of this study. Zelda relies on having links between
source code and user stories and tasks. In this study, we
provided the links and knew that they were accurate. This
may not be the case in more naturalistic settings. Another
factor that may have affected performance was that
participants were unfamiliar with the tools, the domain, and
the programming languages used. Despite these factors,
Zelda showed promising results in helping programmers
focusing on the relevant information. However, to obtain
more accurate results, we need to conduct a long-term study
of Zelda usage in a practical software project using Agile
processes. A longitudinal study could reveal more nuanced
aspects of how Zelda is used and how well it supports
program comprehension in Agile.

VI. RELATED WORK

To our knowledge, Zelda is the only tool designed
specifically to support program comprehension in Agile
environments. In addition to paying attention specifically to
Agile work practices, our approach builds on existing
research in both program comprehension and traceability.

The concept of using mappings between high-level
concepts and source code has been implemented in a number
of tools. For instance, both FEAT [11] and Mylyn [12] create
links to source code, in particular, links and annotations are
associated with program elements. Non-code files were
linked only at the file level. In contrast, Zelda links to
specific lines in text files, including non-source documents.
Also, these tools do not aim to maintain their links after
underlying artifacts change. Zelda keeps link locations up to
date, by taking advantage of an existing RC system.

There is a large body of research in traceability, with
some adaptations specifically to Agile. The most common
definition of traceability is requirements traceability, which
is defined as “the ability to describe and follow the life of a
requirement, in both a forwards and backwards direction”

[13]. Typically, research in traceability is not compatible
with Agile, because they mainly concerned with linking
high-level documents [14-16]. The main drawbacks of these
tools is the high cost of defining and capturing traceability
relationships between artifacts, a steep learning curve, and no
support for linking source code. There is a traceability
approach [17] intended to work with Agile, but has similar
limitations. The traceability features of these tools are more
sophisticated than those in Zelda. For instance, they can help
manage requirements and analyze the consistency of
requirements between documents. Instead, Zelda uses a
relatively simple links and in exchange the tool is more
lightweight, simpler to use, and tailored for Agile.

There are other approaches in the traceability literature
that may be applicable to Agile software development and
Zelda. Some tools can automatically discover traceability
links from available artifacts to source. A variety of
approaches have been used, including analyzing the runtime
trace of a scenario [18] and analyzing comments in source
code [19]. It may be possible to add this functionality to
Zelda in the future.

VII. CONCLUSION AND FUTURE WORK

We present an approach for providing software
comprehension support in Agile software development using
traceability links, and present our prototype tool, Zelda. We
leverage the sequence in which artifacts are created in Agile
development to provide a lightweight, code centric means to
capture links between user stories, test cases, and source
code. These links provide explicit mappings to help
developers to find information necessary to complete the
task, including details about the scattered implementation of
concepts. These links reduce cognitive load in locating and
forming a working set of task-relevant code fragments. It
also provides a means to reuse existing knowledge by
presenting examples of code usage and strategies for
implementing a feature. To ensure the long-term value of
these links, Zelda can automatically maintain the correct
location of these links in the later versions of the artifacts,
even after they were affected by successive changes.

We performed a pilot study to evaluate Zelda with a
small web-based survey management application. Subjects
were given a task description containing preliminary
investigation results for required changes, either as in Zelda
tool or on paper. We found that although subjects who used
Zelda perform only marginally faster, they were more
focused, and were more willing to make use of additional
information.

We have only focused on using Zelda with a newly
created project so far. Another aspect that needs to be
examined is how to use Zelda with projects that are in
progress. Zelda must be able to support comprehension for
the purposes of adaptive, corrective, and perfective
maintenance. As well, adoption of Zelda must be able to
proceed incrementally and in a manner that is compatible
with existing tools. To this end, features are needed to import
existing information from various sources to create links. For
example, an existing check-in comment and a bug report can

be associated with the code from the change set for a
particular commit operation in a revision control system.

VIII. ACKNOWLEDGMENTS

Many thanks to Derek Raycraft for his help in editing the
paper. Also thanks to our subjects for their participation in
the study. This research was supported in part by a grant
from the Agile Alliance Academic Research Program.

REFERENCES
[1] A. Lakhotia, "Understanding Someone Else's Code: Analysis of

Experiences,"Journal of System Software, vol. 23, pp. 269-275, 1993.

[2] V. Subramaniam and A. Hunt, Practices of an Agile Developer:
Working in the Real World, Pragmatic Bookshelf, 2005,
097451408X.

[3] XPlanner http://www.xplanner.org/ 2009.

[4] S.G. Eick, J.L. Steffen and E.E. Sumner, "Seesoft-A Tool for
Visualizing Line Oriented Software Statistics," IEEE Transactions on
Software Engineering, vol. 18, pp. 957, 1992.

[5] A.J. Ko, H.H. Aung and B.A. Myers, "Eliciting Design Requirements
for Maintenance-Oriented IDEs: A Detailed Study of Corrective and
Perfective Maintenance Tasks," in Twenty-Seventh International
Conference on Software Engineering, pp. 126-135, 2005.

[6] M. Cohn, User Stories Applied: For Agile Software Development,
Addison-Wesley, 2004, 0-321-20568-5.

[7] K. Beck, Test-Driven Development by Example,2002,0-321-14653-0.

[8] S. Ratanotayanon, S.E. Sim and D.J. Raycraft, "Cross-Artifact
Traceability using Lightweight Links," in Proceedings of the 5th
International Workshop on Traceability in Emerging Forms of
Software Engineering, 2009.

[9] VTSurvey http://vtsurvey.sourceforge.net/ 2009.

[10] M. P. Robillard and G. C. Murphy, "A Study of Program Evolution
Involving Scattered Concerns." Technical Report CS-2003-06,
Department of Computer Science, University of British Columbia,
March 2003.

[11] M.P. Robillard and G.C. Murphy, "Representing Concerns in Source
Code," ACM Transaction on Software Engineering Methodology,
vol. 16, pp. 3, 2007.

[12] M. Kersten and G.C. Murphy, "Mylar: A Degree-of-Interest Model
for IDEs," in Proceedings of the 4th International Conference on
Aspect-Oriented Software Development, pp. 159-168, 2005.

[13] O.C.Z. Gotel and C.W. Finkelstein,"An Analysis of the Requirements
Traceability Problem," in Proceedings of the 1st International
Conference on Requirements Engineering, pp. 94-101, 1994.

[14] L. Naslavsky, T.A. Alspaugh, D.J. Richardson and H. Ziv, "Using
Scenarios to Support Traceability," in Proceedings of the 3rd
International Workshop on Traceability in Emerging Forms of
Software Engineering, pp. 25-30, 2005.

[15] T. Hughes and C. Martin, "Design Traceability of Complex Systems,"
in Proceedings of the Fourth Symposium on Human Interaction with
Complex Systems, pp. 37, 1998.

[16] B. Azelborn, "Building a Better Traceability Matrix with DOORS," in
Telelogic INDOORS Europe, 2000.

[17] C. Lee, L. Guadagno and X. Jia, "An Agile Approach to Capturing
Requirements and Traceability," pp. 17-23, 2003.

[18] A. Egyed, "A Scenario-Driven Approach to Traceability," in
Proceedings of the 23rd International Conference on Software
Engineering, pp. 123-132, 2001.

[19] J. Sayyad-Shirabad, T.C. Lethbridge and S. Lyon, "A Little
Knowledge can Go a Long Way Towards Program Understanding,"
in Proceedings of the 5th International Workshop on Program
Comprehension, pp. 111, 1997.

