
Using Transitive Changesets to Support Feature Location

Sukanya Ratanotayanon
Dept. of Computer Science

Thammasat University
Bangkok, Thailand

sratanot@cs.tu.ac.th

Hye Jung Choi
Dept. of Informatics

University of California, Irvine
Irvine, CA, USA

hchoi7@uci.edu

Susan Elliott Sim
Dept. of Informatics

University of California, Irvine
Irvine, CA, USA

sesim@uci.edu

ABSTRACT
In this paper, we present a new construct, called Transitive
Changeset, that can be used for feature location. Transitive
Changesets are created by extending changesets from revision
control systems with additional information. A changeset
temporally associate changes and conceptual descriptions
provided in a commit transaction. By following transitive
relationships from these changesets, we can create a Transitive
Changeset that relates concepts in the problem domain to a list
of program elements that enclose changes made in the
transaction and other relevant program elements. We have
implemented a prototype Eclipse plug-in, Kayley, to create
Transitive Changesets.

Categories and Subject Descriptors
D.2.3 [Software Engineering]: Coding Tools and Techniques –
programmer editors.

General Terms
Algorithms and Documentation.

Keywords
Feature location, source code search, changesets, commit
transactions.

1. INTRODUCTION
Feature location deals with finding where a specific feature is
implemented within software artifacts. It is an important
problem, because in order to complete maintenance tasks a
programmer needs to know where these features are located in
the source code. Locating a feature can be challenging because
relevant lines can be scattered through the code base and tangled
with other features [2, 5]. A common approach is to search the
source code [9] using keywords from the problem domain;
programmers often know how to describe the features at a
conceptual level, but not the implementation details. However,
this approach has limitations, because there is a gap between the
search keywords, which uses vocabulary from the problem
domain, and the strings in source code, which uses vocabulary

from the solution domain [1, 6, 8]. The conceptual keywords are
usually not present in the code, and on the rare occasions when
they are, the conceptual keywords may not appear in all the
places where the feature is implemented. In this paper, we
propose an approach to bridging the gap between programmers’
domain knowledge and information in the source code text using
a construct called Transitive Changeset.

Transitive Changesets are created from information that is
recorded by revision control systems and other common
software tools, such as issue trackers, and extend the available
information using transitive relationships. Transitive Changesets
contain conceptual-level information that is difficult to find in
the source code and relates this information to a list of program
elements in the code. Consequently, performing keyword search
on the changesets could yield better results than straight code
search. The relevant code sections can be located via the
program elements included in the returned changesets.

Using information retrieval techniques, the Transitive
Changesets are indexed to create a searchable repository with
which programmers can locate features through searching
changesets. We indexed the Transitive Changeset using their
descriptions and names of included program elements. The
conceptual descriptions included in the changesets allow
programmers to search using keywords from the problem
domain. Descriptions from bug reports or feature requests can be
added to the changeset provide more descriptive data.

The searches return a list of changesets that match the search
keyword. The user selects relevant changesets, which are
analyzed further using program analysis techniques. The
program elements included in the group of selected changesets
are 1) validated in the current version of code; 2) expanded
using a static dependency graph (SDG); and 3) ranked using
relevance metrics. Metrics used to rank the results, include the
TF-IDF score of the changeset containing the program elements
and the depth of program elements in the static dependency
graph. This analysis aims to increase the completeness of final
results and to make a large set of results more manageable. We
have built a prototype of this approach as an Eclipse plug-in,
named Kayley.

The paper proceeds as follow: Section 2 reviews previous work
in feature location, especially ones using information from
revision control systems. Section 3 presents the definition of
Transitive Changesets. In Section 4, we give an overview of our
approach to feature location through Transitive Changesets.
Future work and conclusions are given in Section 5.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ASE’10, September 20–24, 2010, Antwerp, Belgium.
Copyright 2010 ACM 978-1-4503-0116-9/10/09...$10.00.

2. BACKGROUND
Feature location is both an activity performed by programmers
and a research problem. It is common for programmers to know
what they need to do, e.g. add a new button to a dialog box, but
not know where to make the change in the source code. The
process that the programmer undertakes to figure what lines of
code need to be changed is called feature location. In turn,
algorithms for feature location has been a topic of research for
many years [1]. Approaches include querying for a specific
feature and mining for a many features at once. Our approach
builds on the former.
When locating a feature in the implementation, programmers
often can describe features only at the conceptual level, but do
not yet know precisely where they are in the code. They
commonly perform searches for a feature using keywords at the
conceptual level, which do not always appear in the code.
Commit transactions can be used to bridge this gap. Research
has found version histories from a revision control system, such
as CVS or Subversion, to be valuable sources of information,
which can be used to locate code sections relevant to features.
Comments provided in each commit transactions are helpful in
identifying the purpose of the changes made. CVSSearch [3]
uses the comments of commit transactions as metadata to label
lines of code that are modified in the commit transactions. In
addition to commit transactions, data from other sources can be
used as metadata to improve the repository. Hipikat [4] showed
that artifacts from issues trackers, such as bug reports and
features requests, contain useful explanations of feature
implementations. The commit transaction can also be linked
with artifacts from these trackers.
A number of Information Retrieval (IR) techniques, which deal
with the problem of retrieving information from large
collections of unstructured data [5], have been applied to locate
features using diverse software artifacts. Latent Semantic
Indexing (LSI) [11, 12] and vector space model [1] compute the
similarity between sections of documents. These have been
used, for instance, to find traceability relations between
requirements and source code. These IR techniques can be
applied to information from the revision control system to
improve search and ranking.

Static analysis has also been used to improve feature location.
For example, SNIAFL [10] combines IR techniques with static
analysis, and addresses the issue of low precision and recall by
expanding and analyzing search results using call graphs. This
technique addresses the problem of sections of code that are
relevant, but not modified in a commit transaction; these code
sections are not returned if only changesets are used in the
repository. Static analysis can reveal relationships between
program elements and locate these missing code sections.

3. TRANSITIVE CHANGESETS
A changeset is a concept commonly found in revision control
systems. Tools such as Subversion have the concept of atomic
commit, that is, a set of changes that are successfully committed
together as a whole. Each time a developer performs a commit
transaction, a changeset is created. We view a changeset as a
logical container that includes information about the atomic
changes and other metadata. The information commonly stored
in a changeset consists of a list of changed artifacts, revision

number, author of the changes, the time the changes are made
and a comment.

3.1 Changesets
We can retrieve such information from commit logs as seen in
Figure 1. The example below shows two commit transactions.
The first one has a commit comment, but the second one does
not. They list the files that were affected and the specific lines
can be identified from the corresponding diff files.

There are three important characteristics of changesets that make
them compatible with feature location. These are 1) multiple
levels of abstraction; 2) a multi-modal vector; and 3) a temporal
relationship. Each of these characteristics helps us bring to bear
a wider variety of data to the problem of feature location.

Changesets span multiple levels of abstraction because they
contain information at the domain level and the program level.
Comments usually are short descriptions about the purpose of
the change or task that was completed; these details are at the
conceptual or problem domain level. The list of changes to files
and lines contains information about the feature at the lexical or
program level.

Changesets are multi-modal vectors because they collect up
different kinds or modes of data. They bring together textual
descriptions, path names that are pointers into the file system,
file and line numbers that are pointers into the source code, and
other metadata, such as the id of the committer.

Changesets makes a new kind of information available,
specifically the time and date of the change. This tells us that
files and lines that were changed at the same time are somehow
related each other. This relationship can be a strong or weak
one, but this information is not available in any other source.

3.2 Transitive Relations
Starting from a changeset, we can create a Transitive Changeset
by expanding the stored information to pull in information from
other levels of abstraction and associating the new information
via transitive relations. The information that is incorporated
inherits characteristics from the changeset.

To associate program elements to the changeset, we analyze the
list of changed files. As a result of this analysis, we can identify
the lines that were changed in each file. Given the line numbers

$	 svn	 log	
-‐	
r3	 |	 max	 |	 Wed,	 1	 Jul	 2009	 15:30	
Change	 Paths:	
M	 /trunk/code/Queue.java	
M	 /trunk/code/Playlist.java	
A	 /trunk/code/doc/README	
	
Add	 a	 song	 to	 playlist	
	
-‐	
r2	 |	 Hye	 |	 Mon,	 28	 Jun	 2009	 14:00	 	

Change	 Paths:	
M	 /trunk/code/Treeview.java	
M	 /trunk/code/Playlist.java	
M	 /trunk/code/doc/TODO	
	
Update	 the	 playlist	 user	 interface	
	
Figure 1: Excerpt from a Transaction Log

that were changed, we can infer a list of program elements that
included the changed lines by applying static analysis.

For example, in Figure 2, we found that some of the lines that
were changed are line 55 to line 65 in the file Playlist.java.
These lines correspond to the method ‘addSong’.

These program elements affected by changes are temporally
associated with each other, as they are changed together in a
commit transaction. Therefore, we can infer that these program
elements are related even though there is no explicit relationship

in the code. In addition, they can be associated with the lines in
non-code text files that are changed in the transaction and the
concept provided in the comment due to the transitive rule.

There can be program elements related to the concept other than
the ones inferred from affected lines, because some program
elements may be related to the task, but were not modified. We
can use other types of relationships between program elements
to infer additional relevant program elements such as structural
and dependency relationship. Continuing the example, we can
use dependency to discover methods that are used by the
‘addSong’, namely ‘addArtist’, ‘addAlbum’ and
‘Artist.getName()’. Using transitive relationship, we can
associate these additional methods to the Transitive Changeset,
which in turn associate them to the concept as well.
Transitive Changesets can be used to link information at
different levels of abstraction, such as between problem and
solution domains, or indirect relationships, e.g. between
program elements and document sections. In addition, other
artifacts can also be linked to the Transitive Changeset as well.
For example, sometimes items from issue trackers for bug
reports and feature requests are linked to specific commit
transactions. We can include concepts discussed in the
descriptions of these items in the Transitive Changesets. Also, in
projects using agile method, test cases are implemented for
specific user stories [7]. Therefore, we can establish a
connection between the code being tested by the test cases and
the concepts included in the user stories. Since many types of
relationships can be used, the choice of transitive relation
determines the information or levels that can be spanned.

4. USING TRANSITIVE CHANGESETS
Transitive Changesets contain conceptual-level information that
is difficult to find in the source code and associate this
information to related program elements. Therefore, they can

Figure 2: Transitive Changeset

README
…..
52 When adding a song to a currently
53 playing playlist, the song will be add
54 to the playing queue

Queue.java
…
30 private void addQueue(Song s){

-‐	
r3	 |	 max	 |	 Wed,	 1	 Jul	 2009	 	
Change	 Paths:	
M	 /trunk/code/Queue.java	
M	 /trunk/code/Playlist.java	
A	 /trunk/code/doc/README	
	
Add	 a	 song	 to	 playlist	
-‐	

Playlist

 Playlist.java
…
…
55 private void addSong(Song s){
56 Artist artist = s.getArtist();
57 addArtist(artist);
…
65 }
…

addSong

addArtist

Artist.getName

addAlbum

addQueue

add

Figure 3: Search and Result Views of the Prototype

support feature location by bridging the gap between search
keywords used by programmers and source code. Performing
keyword search on the changesets can yield better results than
searching directly on source code. The relevant code sections
can be located via the program elements included in the returned
changesets.
We implemented an Eclipse plug-in, Kayley, as a prototype for
our approach; a screenshot is shown in Figure 3. Kayley is
capable of creating a searchable repository of Transitive
Changesets by importing a commit history from Subversion. To
discover Java program elements enclosing lines that were added
or modified, Kayley uses ASTParser provided in Eclipse to
create an Abstract Syntax Tree (AST) of the file. Information
from an issue tracker, if available, can be imported from an
XML file and added to the Transitive Changesets. The different
available repositories are in the view labeled ‘A.’

Using the prototype, after issuing a query, s/he will be presented
with a list of changesets matching the search keywords as seen
in the area labeled ‘B’. The user needs to examine the list and
select an initial set of relevant changesets. The program
elements in the selected changeset are shown in the panel
labeled ‘C.’ An user can select the changesets that are
considered related and add them to the ones that were
previously selected (shown in a view labeled ‘D’.) Program
elements included in all selected changesets will be processed
and returned in the area labeled ‘E’.
Before returning program elements as final results, every
program element included in the changesets are validated
against the current version of the code and expanded using a
static dependency graph to increase the accuracy and improve
recall. Lastly, to reduce false positives, returned program
elements will be ranked using relevance metrics. In this
prototype, the metric we use are: the TF-IDF score of its
enclosing changeset, the number of occurrences in the selected
changesets, depth in SDG, size of the program element, and
number of uses in the application.

5. CONCLUSION AND FUTURE WORK
This paper proposes the use of a construct called Transitive
Changesets for improving feature location through searching
with conceptual keywords. Transitive Changesets are created
using information from commit transactions from a revision
control system. These simple changesets associate commit
comments with changed lines of code, thereby joining high level
concepts with low level implementation details using a temporal
relation. The information in the commit transactions are
extended through transitive relations. Program elements related
to the ones directly affected by the changes such as their callees
can also be added to the Transitive Changeset to increase the
completeness. We implemented our approach in Kayley, an
Eclipse plug-in, which creates an index of the Transitive
Changesets that programmers can use for feature location
through search. Program elements included in the selected
changesets are then extended, ranked, and returned as search
results. Because Transitive Changesets join information at
different levels of abstraction and includes information at the
conceptual level that match the keywords provided by
programmers, searching on the Transitive Changesets would
provide better results than directly searching on the source code.

We propose to continue this work by refining the algorithm for
ranking the changesets and program elements that are returned.
In addition, we plan to conduct an empirical evaluation of
Kayley, both in terms of its ability to locate features.

6. ACKNOWLEDGMENTS
Special thanks to Rosalva E. Gallardo-Valencia and Roy
Tiburcio, for their valuable advice in implementation and
preparing this manuscript.

7. REFERENCES
[1] T. J. Biggerstaff, B. G. Mitbander, and D. Webster, "The

concept assignment problem in program understanding," in
Proceedings of the 15th International Conference on
Software Engineering Baltimore, Maryland, 1993, pp. 482-
498.

[2] G. Canfora and L. Cerulo, "How crosscutting concerns
evolve in JHotDraw," in Proceedings of the 13th
International Workshop on Software Technology and
Engineering Practice, 2005, pp. 65-73.

[3] A. Chen, E. Chou, J. Wong, A. Y. Yao, Z. Qing, Z. Shao,
and A. Michail, "CVSSearch: searching through source
code using CVS comments," in Proceedings of IEEE
International Conference on Software Maintenance, 2001,
pp. 364-373.

[4] D. Cubranic and G. C. Murphy, "Hipikat: recommending
pertinent software development artifacts," in Proceedings
of the 25th International Conference on Software
Engineering Portland, Oregon, 2003, pp. 408-418.

[5] M. Eaddy, A. Aho, and G. C. Murphy, "Identifying,
assigning, and quantifying crosscutting concerns," in
Proceedings of the First International Workshop on
Assessment of Contemporary Modularization Techniques,
2007, p. 2.

[6] G. Fischer, S. Henninger, and D. Redmiles, "Cognitive
tools for locating and comprehending software objects for
reuse," in Proceedings of the 13th International Conference
on Software Engineering Austin, Texas, 1991, pp. 318-328.

[7] C. Mike, User Stories Applied: For Agile Software
Development: Addison Wesley Longman Publishing Co.,
Inc., 2004.

[8] V. Rajlich and N. Wilde, "The role of concepts in program
comprehension," in Proceedings of the 10th International
Workshop on Program Comprehension, 2002, pp. 271-278.

[9] J. Singer, T. Lethbridge, N. Vinson, and N. Anquetil, "An
examination of software engineering work practices," in
Proceedings of the 1997 conference of the Centre for
Advanced Studies on Collaborative research Toronto,
Ontario, Canada, 1997, p. 21.

[10] W. Zhao, L. Zhang, Y. Liu, J. Sun, and F. Yang, "SNIAFL:
Towards a static noninteractive approach to feature
location," ACM Transactions on Software Engineering
Methodology, vol. 15, pp. 195-226, 2006.

