
The Work of Software Development as an

Assemblage of Computational Practice

Susan Elliott Sim

Dept. of Informatics

University of California, Irvine

sesim@uci.edu

Marisa Leavitt Cohn

Dept. of Informatics

University of California, Irvine

mcohn@uci.edu

Kavita Philip

Dept. of Women’s Studies

University of California, Irvine

kphilip@uci.edu

Abstract

Science and technology studies (STS) is a discipline

concerned with examining how social and

technological worlds shape each other. In this paper,

we argue that STS can be used to study the work of

software development as a complex, interacting system

of people, organizations, culture, practices, and

technology, or in STS terms, an assemblage. We

illustrate the application of these ideas to the work of

software development, where STS theory directs us

towards examining at human-human relations, human-

machine relations, and machine-machine relations. We

conclude by discussing some of the challenges of

applying STS in empirical software engineering.

1 Introduction

Software development is a complex activity with

involving software, hardware, individuals, groups, and

organizations. Many different disciplines have been

applied to provide insight into some aspect of the

activity. But each discipline comes with a set of

intellectual commitments that partitions the problem in

a particular way.

From a computer science perspective, source code

is given primacy in the work of software development

—programming, debugging, testing, and so on.

Computer scientists tend to see source code as the

foundation that makes everything else work, because it

is the source of the program. In this view, it is the

source, or origin, of a practice, that defines its essence.

But this is only a partial view. From a software

engineering perspective, design is given primacy in the

work of software development—specification,

implementation, and so on. In this view, it is the design

activity that defines the essence of the technological

practice. From a sociology of work perspective, people

participating in social structures and contingencies are

given primacy. In this view, it is the people who really

decide the nature of technology. From a political

science perspective, power is given primacy—the need

to exert and accumulate influence and control. In this

view, it is the ideological factors external to the

technology that really shape it. While these, and other,

perspectives are valid, they foreground one aspect of

the activity at the expense of another.

It would be more accurate to say that the work of

creating computer software is all of these things

together. But it cannot be defined by simply defining

the parts separately, and adding them up. The whole is,

literally, greater than the sum of its parts. We need a

theory that describes the interactive working of

multiple elements together. This activity involves a

large collection of people, factors, contexts, networks,

machines, and artifacts that work together.

In this paper, we argue that Science and Technology

Studies (STS) is an approach that will help us examine

the work of software development as a complex whole.

The field of STS examines the co-constitution of

society and technology. Contemporary research in STS

claims that science and technology both shape and are

shaped by culture, society, politics and individuals.

From this theory, we introduce the idea of the work of

software development as an assemblage, that is, a

complex of system of interacting parts shaped by

internal and external influences. The particular form

and structure of the assemblage constrains some

activities, and energizes others. The capabilities and

limitations of each element have an effect on the

others. By adding this analytical lens to study the work

of making computer programs, we are better-equipped

handle the integrated complexity of this human

endeavor, that is, the complex interacting whole and

the constituent parts.

Applying STS to software development has a

number of benefits, such as the availability of novel

methods and analytical lenses. But there are drawbacks

as well; the form and content of the products STS

analyses are foreign to computer scientists and

software engineers. The outputs are typically long

essays that critique existing configurations and

challenge assumptions, which require reviewers to step

outside of their comfort zones.

2 Science and Technology Studies

In this section, we give a brief introduction to STS.

Well-known works in the field include Kuhn’s The

Structure of Scientific Revolutions [4], Latour’s

Science in Action [5], Knorr-Cetina’s Epistemic

Cultures [3]. The principle that society and technology

are co-constituted is well established. Societal beliefs,

social infrastructures, and political regimes, all shape

technology. The relationships among humans, ranging

from the economics of funding to political climate at

the macro level, to individual designer’s worldviews,

shape technological design choices [6].

Scholars in STS have long argued that popular

accounts of scientific knowledge production, as

rigorous and methodical, are inadequate to the

complexity of processes of scientific practice, as

opportunistic and context-dependent. There are clear

parallels between knowledge construction in the

sciences, and system construction in software

development. For instance, new understandings of the

world external to the scientist or software developer

are necessary to accomplish their respective tasks. STS

has deployed several successful techniques to

investigate the sociology of scientific and

technological knowledge, including history (the

analysis of scientific case studies from prior periods),

ethnomethodology (observing practicing scientists),

textual analysis (studying scientific explanations in

documentation), and institutional studies (studying the

working of scientific organizations) [1, 6, 8].

Methods in STS include close reading of texts and

artifacts, observation and interruption of activity,

interviewing and interrogating participants, and paying

attention to history and social practices. Some of these

methods are familiar to empirical software engineering,

while others are not. One important distinction is social

science methods attempt to collect data more

“objectively,” without perturbing the subject under

study, whereas STS is less reluctant to engage and

challenge individuals and processes to gather data. As

well, the primary products of STS are critiques

published as monographs, a practice more common to

the humanities than the sciences. The only significant

critique that we have in software development is

Brooks’ essay, No Silver Bullet [2].

The methods of STS were created to study science

and technology in general and we believe that they can

easily be applied to computational systems and

programming practices. In studying the work of

software development, it is possible interactively

observe software developers, and conduct close textual

analyses of code and software documentation, and

draw on institutional and historical studies of the rise

of computational technology and its attendant social

practices.

A key idea in STS is assemblage, which Murphy

defines as “as an arrangement of discourses, objects,

practices, and subject positions that work together

within a particular discipline or knowledge tradition. It

is not the list of elements that make an assemblage

consequential, it is what they made possible by the

ways they articulated each other” [7]. Applying this

concept to the work of software development draws

our attention to not just the actors and the technology,

but also how they mutually define each other and the

possibilities created and eliminated by particular

arrangements. Consequently, we can symmetrically

consider the contexts of machinic work (running,

compiling) and human work (debugging, documenting,

implementing).

3 The Sites of Code Work

In this section, we apply STS principles to the work

of software development to illustrate the kinds of

perspectives and inquiries that are possible. We apply

the concept of assemblage to source code. This mode

of analysis directs us to examine how artifacts and

participants are mutually co-constructed. In other

words, in what ways has source code come to be as a

result of being created by people working in certain

contexts. By the same token, how have people been

shaped by the exigencies of source code.

For those who seek to understand the technical

challenges of software development, we wish to

demonstrate that source code is not the whole story.

For those who believe that social worlds shape

computational problems, we wish to demonstrate that

social pressures are not the whole story, either. The rest

of the story has three parts: human-machine relations,

human-human relations, and machine-machine

relations. Our approach to opening up the boxes of

social and technical interaction is based on

investigating these three areas, which together form an

assemblage that affects the work of software.

3.1 Human-Human Relations

Pay attention to the various levels at which
software is embedded within human-human
relations.

Our attention is drawn to the types of human-human

interactions that are central to the software

development process. For instance, what kinds of

human-human relations are prescribed by different

kinds of software processes? There currently exist

many different methodologies for software

development, and each facilitates a different mode of

operation and community of practice. Observing and

interacting with developers who participate in Agile

and open source leads us to ask questions about

human-human relations in these processes, such as:

What is the coder’s role in the overall design process?

What is considered good software work in this model?

Does the developer have contact with the users of the

software? Are they given room to interpret

specifications or make design decisions? What are the

values of the communities in which software

developers work?

These contrasting processes also influence the

software itself, how it is envisioned, and the worlds

that the software constitutes. The way that a piece of

software frames the technological work done by users

differs greatly when that software is continually

evolving with the users’ work practice versus when it

does not. However, when it comes to software, these

social arrangements are often overlooked. They may

impact the lives of the software engineer, but are not

considered relevant to the outcomes of software. It

seems unlikely that they have no impact at all. User

participation in the design of software has not been

extended to participation in coding practice. Because

coding is deemed to occur only when a programmer

sits in front of a keyboard, we have very few

alternative notions of what participation in coding

could look like. Should the act of coding not also

include standing in front of a whiteboard,

brainstorming about design options, and talking to

users?

3.2 Machine-Human Relations

Interpret coding as a form of writing by which
humans instruct computers, and investigate the
broader social and technical construction of
human-code interactions.

In some ways, the work of software development as

machine-human relations is well understood. Entire

areas of computer science are devoted to this topic,

such as programming languages, compilers, program

comprehension, software process, human-computer

interaction, and computer-supported collaborative

work. But the activity still warrants further scrutiny.

Drawing on the lessons from STS, it is not sufficient to

look at the apparent action. It is necessary to examine

also the meanings of the activity, people’s beliefs when

they engage in the activity, and how people are

affected when they engage with the technology. In

other words, we must investigate human-machine

relations not just in terms of direct instruction, but in

terms of its broader social embeddedness.

To begin, what should properly be construed as

computer programming? The first image that comes to

mind is a specialist software developer sitting at a

keyboard entering instructions in a programming

language, such as Java or C. Clearly, this activity is

very different from creating punch cards for an IBM

704 computer or connecting processor units in the

ENIAC using wires. Yet those activities are also a

form of programming. What of graphical user interface

programming, where the application developer is

engaged in prescribing windows, menus, and dialog

boxes by clicking and dragging? What of end user

programmers who are implementing business rules and

scientific equations in a spreadsheet? Finally, what

kind of activity are users engaged in when they have

the know-how to press a key combination, such as

control-alt-delete? The action of programming the

computer is commonly seen as less sensitive than other

macro-social factors, but with a more diverse

conception of computer programming also comes a

broadening of the category of who can be properly

labeled a programmer.

Reducing the activity of programming to typing

also reduces the programmer to a kind of intelligent

input device. So the question arises, what precisely is

being programmed? Perhaps it is the human operator

who must deal with a myriad of interfaces and existing

pieces of software in order to build new software. As

well, a large body of “technical” knowledge is

necessary to program effectively. Perhaps it is the

human operators who will be using the software who

must be trained to use an interface, prepare their data in

a particular fashion, or change how they do business to

fit within the parameters of the software.

3.3 Machine-Machine Relations

Pay attention to the ways that machine
functionality is embedded in a technological
stack.

Machine-machine relations are the ways in which

computer programming is constrained by other

technologies, both past and present. The most obvious

example is the QWERTY keyboard, which is known to

be less efficient than alternative designs, but whose

persistent legacy constrains future keyboard design.

Another example is the E-13B font, created in the

1960s to encode bank, branch, and account information

on cheques, and is still with us today. Issues of

interoperability and application program interfaces

(APIs) are ongoing concerns machine-machine

relations, but are relatively superficial ones in the

context the technological matrix supporting computer

programming.

Programming languages and software engineering

have been concerned with simplifying the work of

software development by transferring more of the labor

of creating and testing software applications to the

computer. Early computer programs were written

entirely in binary and machine instructions. Assembly

language introduced human-readable codes and

mnemonics, which could then be translated into

machine instructions, at first by humans and later by a

computer program. The first high-level programming

language, FORTRAN, was created to further simplify

programming and make the profession of programming

accessible to more workers. This “automatic”

programming was made possible by a compiler that

translated statements into machine instructions and

arranged them optimally in the computer’s memory.

Many other innovations have been introduced

including time-sharing machines, video display

terminals, editors, debuggers, integrated environments,

version control systems, and recently workbenches for

model-driven architecture. Coding practices such as

testing and documentation have always been seen as

peripheral and not-quite coding, but we take all these

layers are relevant to the construction of software.

These technologies made programming more

“abstract” and “easier” for people. The result is that

software developers are progressively more distant

from the controlling computer hardware. In reality, the

software developer is no longer instructing the machine

directly. Rather, the coder interacts with a stack of

technology that has been created by people working

within socio-technical systems at different points in

time. But this layering of elements of the computer is

due to the historical layering of design decisions that

define contemporary programming practices, and not

to an inherent computational need. Hardware design

develops in ways that are constrained by and

contingent on machine-machine interactions of various

kinds. For example, the compiler is not a necessary or

determined technical construct; it both shapes and is

shaped by computer software. Our inherited models of

this technological stack can limit our ability to

conceive of what is “computable.”

4 Discussion

The empirical and analytical methods of STS

provide a different approach to examining the work of

software development. Despite the richness of the

research questions and complexity of the answers,

applying STS to software development is challenging

in a number of ways.

Scientific and technical approaches prefer to

simplify problems, to distill them down to an equation

or model. In contrast, STS seems to revel in the

complexity of problems. So a description that appears

to be marvelous to an STS scholar appears unfinished

to an engineer.

Results in STS tend to be book length monographs

of carefully constructed prose. Such texts are virtually

impenetrable to someone schooled in computer science

and trained to read technical papers with section

headings. But the aspect of these essays that is most

antithetical to software engineering is these critiques

question existing configurations and challenge

assumptions. These results require reviewers to step

outside of their comfort zones within the dominant

paradigm. Last, but not least, STS is very effective in

raising questions, but less effective in answering them.

The results do not provide ready solutions or

prescriptions for the technology-builder to apply.

However, we believe that STS can be particularly

valuable for asking blue-sky questions about what

alternative technologies might look like. By identifying

hidden assumptions and constructions, we can think

outside the box and ask what-if questions about how

computing might be different. For instance, what might

software development look like if the first application

domain were music, and not ballistics tables? Insights

from STS can point the way to software technologies

that were not previously considered.

5 References

[1] Wiebe E. Bjiker, Thomas Parke Hughes, and Trevor J.

Pinch, The Social Construction of Technological

Systems: The MIT Press, 1990.

[2] Frederick P. Brooks, "No Silver Bullet: Essence and

Accidents of Software Engineering," IEEE Computer,

vol. 20, pp. 10-19, 1987.

[3] Karin Knorr-Cetina, Epistemic Cultures: How the

Sciences Make Knowledge: Harvard University Press,

1999.

[4] Thomas Kuhn, The Structure of Scientific Revolutions.

Chicago: University of Chicago Press, 1962.

[5] Bruno. Latour, Science in Action. Cambridge: Harvard

University Press, 1988.

[6] Donald A. MacKenzie and Judy Wajcman, The Social

Shaping of Technology, Second Edition: Open University

Press, 1999.

[7] Michelle Murphy, Sick Building Syndron and the

Problem of Uncertainty: Duke University Press, 2006.

[8] Trevor J. Pinch and Ronald Kline, "Users as Agents of

Technological Change: The Social Construction of the

Automobile in the Rural United States," Technology and

Culture, vol. 37, pp. 763-795, 1996.

