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Abstract

Developing a standard schema at the abstract syntax
tree level for C/C++ to be used by reverse engineering and
reengineering tools is a complex and difficult problem. In
this paper, we present a catalogue of issues that need to
be considered in order to design a solution. Three cate-
gories of issues are discussed. Lexical structure is the first
category and pertains to characteristics of the source code,
such as spaces and comments. The second category, syn-
tax, includes both the mundane and hard problems in the
C++ programming language. The final category is seman-
tics and covers aspects such as naming and reference reso-
lution. Example solutions to these challenges are provided
from the Datrix schema from Bell Canada and the Colum-
bus schema from University of Szeged. The paper concludes
with a discussion of lessons learnt and plans for future work
on a C/C++ AST standard schema.
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1 Introduction

Recently, GXL (Graph eXchange Language) has
emerged within the reverse engineering community as a
standard exchange format (SEF) for data [3, 13]. In order to
keep the format flexible, GXL does not prescribe a schema
for software data. Instead, features have been provided for
users to specify their own schema, separate from instance
data. This concept is analogous to databases, which have a
schema that is distinct from instance data. By schema, we
mean a description of the form of the data, in terms of a set
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of entities with attributes and relationships that prescribe
the form of the instance data. A schema is derived from
a model, a description that relates entities in the schema
to their real-world counterparts, thus providing a basis for
meaningful interpretation of the data.

With a common syntax for exchange established, work
now proceeds to defining standard schemas for various lev-
els of analysis. A standard schema is a schema that tool
builders have agreed upon to facilitate data exchange be-
tween tools. In this paper, we present results from work
towards a standard schema for C/C++ at the abstract syntax
tree level. These results are a catalogue of issues to be con-
sidered and some sample solutions. By presenting interme-
diate results we seek to advance the shared understanding
within the field and to provide a basis for discussion. One
of the hallmarks in the development of GXL was ongoing
consultation and consensus building with the end user com-
munity, and we plan to follow in this tradition. Moreover,
the creation of a standard schema for C/C++ is a complex
problem and it would be beneficial to have an open process.

In this introduction, we lay the groundwork for discus-
sion. We begin by defining the terms we will be using. We
then provide a motivation for our work and describe the
scope of the problem we are attempting to solve. Finally,
we give a short overview of the remaining sections in this
paper.

1.1 Terminology

Grammars are used to define the syntactic structure of
a programming language. For a given sentence that is in
the language, the grammar induces a certain derivation (or
more than one if the grammar is ambiguous), characterized
by a parsetree. This parse tree is determined by the under-
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lying grammar and may contain unnecessary artifacts like
chain rule derivations. The purpose of an abstract syntax
tree (AST) is to describe the syntactic decomposition of
the represented program, which is basically a tree-nesting
structure, but without any unnecessary detail. What consti-
tutes an unnecessary detail depends upon the intended use
of the abstract syntax tree. Compilers, for instance, are gen-
erally not interested in brackets used to specify associativ-
ity within expressions, as this information is represented by
the nesting structure of the represented expressions. On the
other hand, source-to-source transformation tools have to
reproduce the code as true to the original as possible and
therefore need to retain information about brackets.

During the semantic analysis phase of front ends the
ASTs are usually decorated with some additional informa-
tion, such as resolution of names. These decorated ASTs are
sometimes referred to as abstract semantic graphs (ASG).
However, in this paper we use AST for denoting a deco-
rated abstract syntax tree.

1.2 Motivation

Building tools is expensive, in terms of both time and
resources. An infrastructure for tool interoperability allows
tool designers and users to re-purpose tools, which helps to
amortize this cost. Consequently, it is important to design
an SEF that uses a representation that is compatible with the
largest number of tools possible.

Flexibility is particularly important with a C++ front end
because its output is the basis for many other downstream
analyses, such as design recovery, clone detection, calculat-
ing metrics, architecture analysis, and code transformation.
Writing a robust and reliable C++ front end is expensive and
is a project with little research value. Nevertheless, such a
tool is needed to handle a growing number of industrial case
studies.

These two factors taken together illustrate the impor-
tance of designing a robust schema for C++ ASTs. Conse-
quently, we need to work carefully on this standard schema
and to solicit feedback through activities such as the discus-
sion and publication of intermediate results, as we do in this

paper.

1.3 Fundamental | ssues

When undertaking a large and complex project, an im-
portant first step is to define its scope by articulating both
what we are doing and what we are not doing.

e \We are creating a standard schema for C/C++ at the
AST level.

e \We are primarily working on defining a schema rather
than specifying a front end. However, we will also
make prescriptions for front ends that implement the
schema. It is difficult to completely separate the two;
for example reference resolution is not a design de-
cision that affects the schema, but it does need to be

specified in order to create a standard format for ex-
change.

e The schema should be independent of any parsing
technology. This independence would permit changes
to the schema and grammar without affecting the
abstract syntax, e.g., the grammar from which the
schema is derived may need to be restructured into
an LALR(1) grammar if yacc is used to generate the
parser. This change should not affect the schema.

e \We are initially focusing on ANSI C++. We intend
to work on this language first and broaden later. We
are aware of the need to be compatible with other lan-
guages (e.g. Ada, COBOL) and in particular, dialects
of C and C++ (K&R, ANSI, Borland, Microsoft, etc.).

Finally, there is one fundamental issue that we have not
yet resolved: who are the end users of this schema and
what are their requirements? Clearly, the usefulness of this
schema will depend on where it will be used. Transforma-
tion tools require a “source code complete” representation,
i.e. one with enough detail to allow regeneration of the orig-
inal source. If this schema could support this level of detail,
would this format even be useful for such an application?

14 Overview

The remainder of this paper will be a catalogue of issues
in creating a standard schema for C++ ASTs and examples
of solutions for these issues. The schemas that provide those
examples are introduced in Section 2.

Section 3 discusses three levels of Representation Is-
sues. This list of issues extends previous work on devel-
oping an exchange format by Bowman, Godfrey, and Holt
[8]. Issues on the lowest level, Lexical Structure, include
the Line/Column Number Problem, and the Project Han-
dling Problem. The second level, Syntax, encompasses the
basic mechanisms of how the format will represent C++
AST. Finally, the highest level, Semantics, deals with issues
such as the Resolution Problem and the Naming Problem.
A Discussion of lessons learnt and alternative solutions is
presented in Section 4, and followed by a Conclusion in
Section 5.

2 Existing Schemas

Because the main purpose for ASTs is to represent the
syntactic structure of the program, the abstract syntax is
derived from the grammar. We can divide the methods
of deriving the AST into two cases, automatically derived
schemas and manually derived schemas.

Automatically derived schemas. The translation from the
parse tree to the AST can be formally specified by a set of
transformations, which can be automatically interpreted to
carry out the translation from parse tree to AST. Some trans-
formations may be applied to reduce the size of the tree. A
typical transformation is to eliminate tree nodes for concrete



terminals. Changes to the language’s grammar influence the
abstract syntax. A key advantage of automatically derived
schemas is that creation of the abstract syntax is completely
automatic, so schemas for new languages can be derived
quickly. Also, every syntactic detail can be captured in the
ASTs with automatically derived schemas. For example,
Semantic Designs [5] and the Dutch research group at CWI
[23] derive their schemas automatically from the underlying
grammar and use other transformations to trim the resulting
ASTs.

Manually derived schemas. The AST can be designed
manually. In this case, the translation is carried out by soft-
ware engineers. Manually derived schemas are generally
more abstract, because human judgment is superior in de-
ciding what is essential in a given language. The Datrix and
Columbus schemas described in this paper are both manu-
ally derived.

Schemas can be language-specific, that is, applicable to
only one language or language-independent, applicable to a
set of languages. The Bauhaus schema, for instance, mod-
els C and a subset of Ada in one joint schema [18]. The
Datrix and Columbus schemas both support a form of gen-
eralization across languages that are similar to C++. Multi-
language and multi-platform compiler suites generally use
a common intermediate format to minimize the number
of interfaces between front- and back ends. For example,
the Stanford University Intermediate Format (SUIF) works
with different languages, currently C and Fortran [4].

Another way to attain independence from the language’s
grammar is through an application programming interface
(API) that provides traversal and query operations on the
AST. One successful example is the Ada Semantic Interface
Specification [16].

In the remainder of this section, we briefly introduce the
Datrix schema and the Columbus schema for C++ ASTSs.
These two schemas will provide sample solutions to issues
discussed in the next section. Unfortunately, lack of space
prevents us from including other noteworthy schemas, such
as ones from CIA, gen++, Semantic Designs [5], Visual
Age C++ [17], and cppML (Waterloo version) [19].

2.1 Datrix Schema

The Datrix Group at Bell Canada developed a schema for
representing an AST for C/C++ and Java programs. Their
goal was to create a common front end for an extensive set
of software analysis and assessment tools.

Schema documentation. The Datrix schema is spec-
ified in detail in a report available via the web from Bell
Canada [1].

Source completeness. The Datrix schema represents
essentially all syntactical and some semantic information
about the source program. Source completeness is violated
in two aspects. First, the schema represents only prepro-
cessed code, therefore all macro and other preprocessor in-

formation is lost. Second, semantically meaningless details,
such as redundant semicolons and brackets are not retained.
The first problem is hard to solve (see Section 3.1.1), while
it is relatively easy to overcome the second by extending the
schema.

Language independence. The Datrix schema was de-
signed initially to handle C++, C and Java. While this origi-
nal schema handles a limited set of languages, the intention
was to extend and specialize the schema to handle other lan-
guages.

Bell Canada | mplementation of Datrix Schema

The Datrix team at Bell Canada implemented a front end
that parses C/C++/Java and emits information in VCG (for
visualization) [22], and TA [14]. It has been used in produc-
tion to assess software from vendors and serves as a proof of
concept that the Datrix schema is workable. The implemen-
tation is proprietary to Bell Canada, but a binary executable
is available to research institutions free of charge [2].

CPPX Implementation of Datrix Schema

In the first half of 2001, the team of Thomas Dean, An-
drew Malton and Ric Holt built CPPX (C++ Extractor) [9].
This Open Source tool is based on GNU’s GCC front end
and produces information according to the Datrix schema
for C++in VCG, TA, and GXL formats.

2.2 Columbus Schema

The project team at the University of Szeged (in a coop-
eration with the Nokia Research Center) created a C/C++
schema for various reengineering and reverse engineering
tasks such as creating UML Class Diagrams [20] and cal-
culating metrics [21]. The ISO/IEC C++ standard of 1998
served as the basis for all design decisions [15].

Schema documentation. A description of the Colum-
bus schema with examples is available on the web [10].

Source completeness. In this aspect, the Columbus
schema is similar to the Datrix schema, except that it cap-
tures redundant parentheses.

L anguage independence. The schema has a language-
independent part and a language-specific part. The former
acts as a base-schema to provide a common root for mod-
eling other programming languages. It consists of abstract
classes that offer language independent representations of
language elements (nodes), scopes (composites [12]), and
types. The language-specific schema is built on top of the
base-schema and extends it with C/C++ elements.

Implementation of Columbus Schema

The Columbus schema is used as the internal representa-
tion in the C/C++ extractor module of the Columbus reverse
engineering tool. The schema evolved into its current state
in parallel with its implementation and is used also for anal-
ysis (e.g. resolving type names and scopes) as well as data
exchange.

The Columbus system has been developed in coopera-
tion between the Nokia Research Center and the University



of Szeged, Hungary by the team of Arpad Beszédes, Rudolf
Ferenc, Ferenc Magyar, Tibor Gyimothy, Mikko Tarkiainen
and Gabor Marton. This tool implements a general frame-
work for combining a number of reverse engineering tasks
and provides a common interface for them. It supports
project handling, data extraction, data representation, data
storage, filtering and visualization [6, 11]. Extractors for
different programming languages can be integrated into the
Columbus framework using a plug-in API. The current ver-
sion has a C/C++ extractor and a Java extractor is under
development.

During extraction the system produces separate internal
representations for each precompiled compilation unit and
the linker plug-in merges these units into a unified AST.
During linking, duplicated elements, such as declarations
in header files, are removed.

3 Representation |ssues

In designing an AST-level schema for a language, we
need to decide what elements from each of three levels of
abstraction we want to represent.

e Lexical Structure: tokens, separators, layout, and com-

pilation units.

e Syntax: features of the language specified by the gram-

mar.

e Semantics: interpretations placed on the syntax, such

as name resolution, control and data flow information.

Some decisions can be made easily. For example, we
definitely want the syntax. We also need some semantic
aspects, like name resolution (including resolution of over-
loading). When multiple compilation units are linked, we
also need some kind of global name resolution. Other se-
mantic information such as control and data flow are not
intrinsically part of the AST, but other tools should be able
to compute these flows using the AST. It is these kinds of se-
mantic analysis, and not parsing, that makes writing a C++
front end difficult.

3.1 Lexical Structure

In C/C++, it is straightforward to identify the lexical to-
kens; it is less straightforward to decide which ones should
be stored in the schema. Some tokens are not syntactically
significant, such as spaces and line breaks, so some front
ends elect not to store them. These and other lexical prob-
lems are discussed in this section and we show how they are
solved in the two schemas.

The Datrix and Columbus schemas handle lexical struc-
ture similarly; both deal with preprocessed code and main-
tain all (or almost all) lexical information in the AST.

3.1.1 Preprocessing

Both the Datrix and Columbus schemas deal only with pre-
processed code. Macros in C/C++ are a complex and ex-
pressive programming language on their own. They can be

used to set up conditional compilation and even to tamper
with the syntax of C/C++. Due to this flexibility, it is dif-
ficult to represent (and subsequently reconstruct) arbitrary
preprocessor artifacts.

3.1.2 Line/Column Number Problem

This problem concerns the recording of location informa-
tion for entities in the schema and has been discussed by
Bowman, Godfrey, and Holt in Section 3.3 of their paper
[8]. They noted some complications within this problem:
1) the path in a mangled file name needs to be invariant
over different installations; 2) location ranges for a single
entity are not always contiguous (examples are C++ classes
and conditional compilation units); and 3) the level of detail
required varies significantly between tools (some need line
numbers, others require column numbers as well, and yet
others use file offset).

Datrix Schema

The Datrix schema records the line and column position
of most items in the AST. Each node uses the beg (begin)
and end attributes to record line and column numbers. For
example, the attributes beg: 24.8 and end: 25.13 indicate
that an element begins at line 24, column 8 and ends on line
25, column 13.

File names are stored in special nodes within the AST, at
the point where the file is included. This approach assumes
that included files contain sub-trees of the AST, which is
sometimes not true. Due to this difficulty, the CPPX imple-
mentation has adopted an alternate approach, much like the
one used in the Columbus schema.

Columbus Schema

Every scope element (e.g. class, variable, function) has
an attribute called path for storing the path and file name
of its declaration/definition and line, endline, col and end-
col attributes for saving the exact location in the file. Lan-
guage elements are organized according to scopes (names-
paces, classes) and file information is stored in the mem-
bers. The schema does not have an entity for representing
files/compilation units.

3.1.3 Project Handling Problem
A software project, or system, consists of a set of source
code files (compilation units). The language elements in a
project can be organized hierarchically by compilation units
or by namespaces. These two hierarchical structures offer
two different ways of constructing an AST for the entire
project; thus we have the Project Handling Problem. Some-
times known as the Linking Problem, this issue is also re-
lated to the Naming Problem in Section 3.3.1.

Datrix Schema

The Datrix schema uses mangled names for externally
visible symbols in the same way that standard compilers
and linkers use mangled names to allow linkage between
separately compiled parts of a whole program. The graphs



for each separate compilation are linked to form a single
large graph, in which common parts, e.g., header files, are
combined. At the time of writing, neither the Bell Canada
nor the CPPX implementations perform this linkage.

Columbus Schema

The Columbus schema gives hamespace scopes prece-
dence over file scopes. There must always be at least one
namespace object, the global namespace, which represents
the top-level namespace of the project files. Path informa-
tion is stored in the member objects and can be used to re-
construct files. Similarly to Datrix, the Columbus schema
uses mangled names for externally visible symbols to help
link separate compilation units.

3.2 Syntax

Now we turn our attention to Syntax, the raison d’étre
of the AST. We will use a common example to explain how
the Datrix and Columbus schemas represent C++ templates,
types, functions, and statements. The code for the example
is in Figure 1, while the ASTs for the two schemas are given
in Figures 2 and 3, respectively. We have simplified both
diagrams for clarity by omitting nodes and attributes, such
as line numbers, that are not necessary for our discussion.

The two schemas and their diagrams use some common
conventions. Both schemas use integers as unique identi-
fiers for nodes, so the key of the topmost node in both fig-
ures is “1”. The class of each node is given to the right of
the key number; for example, in Figure 2, the class of node
1 is Generic. Both schemas use a name attribute in nodes
to give the name of the source item being represented; for
example, in both figures, the name attribute of node 1 is
Array.

Edges in the basic AST are drawn using thick lines,
while other relationships, such as references to declarations,
are drawn using thin or dotted lines. Sometimes edges are
ordered and this is shown in the diagrams using parenthe-
sized order numbers, for example, in Figure 2, ArcSon(2)
from node 1 to node 3 indicates that this is the second Arc-
Son edge leaving node 1.

We will now use the common example to explain how
the template, types, function and statements are represented
in the two schemas.

3.21 Templates
C++ templates are well known for being complex and diffi-
cult to handle. In the example, the template has two kinds
of parameters: a type (class T) and a value (int Size).
Datrix Schema
The Datrix schema represents templates by a straight-
forward encoding of their syntactic structure. For exam-
ple, in Figure 2, the Array template is represented by node
1, together with its four descendent nodes, numbered 2 to
5. These four represent template parameter T, template pa-
rameter Size, private member arr, and public member get.

tenplate <class T, int Size>
class Array {
T arr[Si ze];
public:
virtual const T& get(int idx) {
T& t = arr[idx];
return t;
}
[* set()...*/
1

QWO ~NOULA,WNE

=

Figure 1. The common example

The source code excerpt implements a generic (template)
array, which expects two parameters (the type of the stored
elements and the size of the array) and has a public function
get that returns the stored element. The language features
in this example were chosen to illustrate key decisions in
designing the two schemas.

The edges from node 1 to its descendents are ArcSon edges
(they are arcs to sons). Node 2 is a TemplParamType object,
which indicates that T is a type template parameter. Analo-
gously, node 3 is a FormalFctParam object, which indicates
Size is a value parameter. The contents of the template are
located by the third and fourth ArcSon edges descending
from Array’s node 1, which connect the nodes for arr and
get.

Columbus Schema

There are two kinds of templates in C++: class- and
function templates. The schema makes no difference in
representing them by separating the template representation
from the actual template object. This template representa-
tion is a composite node called TemplRep (node 2 in Figure
3). The two template classes are ClassTempl (node 1) and
FuncTempl that represent the class template and the func-
tion template, respectively.

Templates can have three kinds of template parameters:
the “usual” type name called TemplParamTypeName (node
3), the non-type or value (node 4), and another template.
The non-type parameter is modeled with the class Tem-
plParamNonType that contains a Parameter (node 5) object.
A non-type template parameter is syntactically the same as
a function parameter. Finally, the parameter that is itself
a template is represented by the class TemplParamTempl,
which simply stores the parameter template recursively
composed with a ClassTempl or FuncTempl class.

The schema handles both class and function templates
in the same way by separating the template representation
from the actual template object. Consequently, the template
representation can be treated as a module separate from the
rest of the schema.
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3.2.2 Types

Like templates, the representation of types is also a complex
and difficult task for the C/C++ language. In the common
example there are three elements that have types: an array
(T arr[Size]), a function (virtual const T& get(int)) and a
function parameter (int idx).

Datrix Schema

The general pattern for representing types in Datrix is to
use a node for the element and to add nodes and edges to
show its type and value. In the example, T arr[Size] is rep-
resented starting at node 4 in Figure 2. The array, arr has
an Instance edge connecting it to ArrayType (node 6). From
there, an Instance edge indicates that the array element is of
type T (node 2), and an ArcArrayDim edge points to the ar-
ray size, Size (node 3). The reference type T& is represented
with the class RefType (node 7) and the function parameter
int idx is represented with a FormalFctParam (node 9).

Columbus Schema

The type representation is modeled with the class Type-
Rep (node 8 in Figure 3) that contains two composite nodes
called TypeForms that stand for the type prefix and suffix
(nodes 9 and 10, respectively). The type prefix represents
the part of the type before the name of the typed object (vir-
tual const T&), while the type suffix represents the part af-
ter it; typically arrays ([Size]) and function parameters (int
idx).

The type prefix and suffix consist of small building
blocks called TypeForms (nodes 11-13). These can be sim-
ple ones like pointers (TypeFormPtr), arrays (TypeFormArr)
and parentheses (TypeFormPrth); or composites like decla-
ration specifier lists (TypeFormSpecs) and function param-
eter lists (TypeFormParams). The first composite (node 11)
stores references to primitive specifiers modeled as Prim-
Spec objects (nodes 16-18) or to objects that are represent-
ing types such as classes, typedefs and enums. The second
composite (node 13) stores the function parameters. Note,
that this flexible type representation can encode an arbitrar-
ily deep nesting of parameters that are pointers to functions.

Similar to the template representation, the type repre-
sentation is also completely separate from the typed object
(e.g. a variable). This way a unified type representation is
achieved and enforced in the schema, which contributes to
the modularization of the schema as well.

3.2.3 Functions
The AST for a function needs to record the function’s name,
its parameters, its return type and body. In the common
example (Figure 1), the function get has one parameter, idx,
areturn type of T&, and a body containing two statements.
Datrix Schema
Each function is represented by a sub-tree rooted at a
node of type Function with the function name stored in the
name attribute. There are edges from this node to func-
tion parameter(s), the body of the function, and return type.

In Figure 2, the sub-tree for the get function is rooted at
node 5. From there, the first son arc, ArcSon(1), locates its
parameter idx (node 9) and the second son arc points to a
Block object starting the function body sub-tree (node 10).
An Instance edge connects its return type T& in node 7.

Columbus Schema

In the Columbus schema all member objects (variables,
functions, typedefs, etc.) are represented exactly in the
same way: they are derived from the abstract base class
called Member, which has common properties for all mem-
bers like visibility and location information. Individual
member classes are: Variable (node 6), Typedef, Function
(node 7), Parameter (nodes 5, 14), Enum, Enumerator, Us-
ing and NamespaceAlias. These classes also contain at-
tributes (virtual, default value, etc.) specific to the elements
they are representing.

Function parameters are treated as part of its type rep-
resentation (see Section 3.2.2), so parameters of function
pointers are handled the same way.

3.24 Statements

The AST needs to represent statements and also expres-
sions. These are illustrated in the common example (Figure
1), by the two statements on lines 6 and 7 in the body of the
get function.

Datrix Schema

In the Datrix schema, structured statements, such as for-
loops and if-statements, are represented using specialized
node classes. Expressions are represented by an operator
node with an attribute that records the particular operator
and edges to its operands. Simple statements, notably as-
signment statements, are considered to be expressions.

Statement 6 in the example declares local variable t and
initializes it. This is represented in Figure 2 starting at node
11. An Instance edge indicates t’s type, T& (node 7). An
ArclnitVal edge points to an expression rooted at node 13
that gives t’s initial value. In this BinaryOperator node,
the op (operator) attribute is array-ref to represent the sub-
scripting expression, arr[idx]. Its operands are found by
following the ArcOpd edges to its children (nodes 15 and
16).

Columbus Schema

The Columbus schema does not cover statements yet,
but this is ongoing work. Design decisions and experiences
from the Datrix schema will be used to make the schema as
useful as possible.

The elements discussed in this subsection give the fla-
vor of how the two schemas deal with syntax. For more
information about how they handle other language features,
consult their respective documentation schemas [1, 10].

3.3 Semantics

In this section we discuss some of the semantic informa-
tion to be included in the schema, in particular naming and



resolution. While this information is not strictly part of the
abstract syntax, it is needed by downstream analysis tools.

3.3.1 Naming Problem

This problem was discussed by Bowman, Godfrey, and Holt
in their paper [8]. When storing and exchanging data with
GXL, each entity must have a unique identifier. While auto-
matically generated identifiers suffice, they make it difficult
to combine data from different compilation units (and dif-
ferent tools), and to compare different versions of the same
software system. Some approaches use the name of the en-
tity itself plus some path information to generate the unique
identifier. Unfortunately C/C++ allows different elements
to use the same name. For example, labels and variables
can share names because they are stored in different symbol
tables.

Datrix Schema

Entities in the Datrix schema have unique identifiers that
are positive integers assigned arbitrarily by the front end.
The approach does not use mangled names nor the full path
name; rather, it simply uses the names as they appear in
the source program. Nodes with the same name are dis-
tinguished by their unique identifiers. Since neither imple-
mentation of the Datrix schema currently performs global
linking, mangled names are not (yet) needed.

Columbus Schema

The Columbus schema uses the same approach as Da-
trix to identify the nodes. Besides the unique identifier, a
so-called mangled/decorated name is created for each func-
tion in a manner very similar to compiler systems. Since
C++ allows function overloading, multiple functions with
the same name can exist within the same scope. This
mangled name allows us to distinguish them by including
the name and return type of the function together with the
names and types of its parameters. For example, the func-
tion get in the common example would have the mangled
name: get@virtual$const$T $& @ (int)).

Different identifiers assigned to the same entity in differ-
ent compilation units (e.g. included from the same header
file) are reconciled during the linking phase. The front end
re-assigns these identifiers and all references to the original
identifiers are checked and corrected. Like Datrix, scoping
information is not part of the name, because it can be unam-
biguously determined from the hierarchical structure of the
AST.

3.3.2 Resolution Problem

Bowman, Godfrey, and Holt also discussed this problem
[8]. They wrote, “Fact extractors detect when one source
code entity refers to another, and record this as a relation.
The algorithm the extractor uses to determine which entity
is referred to depends on the source language and the im-
plementation of the extractor” (Page 96). They gave four
categories of resolution:

1. Not resolved.

2. Resolved to declaration. Typically, compilers only re-
solve to this level. An identifier may have multiple
declarations, but only one definition.

3. Resolved to static definition. Typically, a linker is used
to resolve all references to global variables and func-
tions to the appropriate definition.

4. Resolved to dynamic definition. This level of resolu-
tion requires dynamic analysis tools and is only needed
for languages that use dynamic binding, which in-
cludes C/C++.

Datrix Schema

The Datrix schema resolves the use of an identifier to its
corresponding declaration, as per category two in the above
list.

Columbus Schema

Not all references are resolved in the Columbus schema,
because statements are not yet represented. However, the
linker in the front end resolves references to forward dec-
larations (e.g. global variables and functions) to their static
definition, as per category three.

4 Discussion

In this section, we will consider some of the lessons
learnt from attempting to design a standard schema for C++
ASTs. We begin with a comparison of the two schemas and
then critically examine our approach to solving this data ex-
change problem. This discussion also considers alternative
approaches, such as source code tagging, standard APlIs,
and modular schemas.

4.1 Comparison of the Two Schemas

Not surprisingly, the independently developed Columbus
and Datrix schema have a lot in common since they are both
derived from the C++ grammar. However, they differ in
their terminology and details. Since the Columbus schema
is not yet complete, we cannot compare their handling of
statements and expressions, but we can compare them in
other respects.

One significant difference between the two schemas is
the representation of types. The type representation of the
Columbus schema directly reflects the syntactic decomposi-
tion of the type declaration whereas the Datrix schema has a
more straightforward semantic representation. The Colum-
bus schema separates prefix and suffix parts for declarations
and captures type qualifiers and specifiers as nodes within
the prefix and suffix parts. Though this modeling eases re-
generating the original code, it complicates type compar-
isons because prefix and suffix parts need to be combined
to get the full type information.

The Columbus approach appears to be more detailed,
more symmetric and uses additional nodes and entity types
to encode structure than the Datrix approach. Consequently,



the Datrix schema requires the reader to have greater knowl-
edge of the source language information. For instance, the
Columbus schema clearly distinguishes the template param-
eters from the member declarations of the template by a dis-
tinguishable edge and a node TemplRep that contains the
template parameters (node 2 vs. nodes 6 and 7 in Figure
3). In contrast, the Datrix representation has only ArcSon
edges leading to both template parameters and members
(see edges coming from node 1 in Figure 2). Consequently,
edges become more or less untyped since they refer to in-
comparable nodes: to parameters (nodes 2 and 3), and to
members (nodes 4 and 5). As a negative consequence, one
has to traverse all outgoing ArcSon edges of a template (in-
cluding those that lead to parameters) in order to find the
members of a template. Also, the Datrix schema “over-
loads” edge types, e.g., the Instance edge does not mean
just a direct instance.

Both schemas have room for improvement. Both use
flags in some nodes to encode subtyping and these should
be changed to use real subtyping. For instance, Datrix has
just an abstract class for operators and the exact operator
subtype is encoded as an additional attribute op. Similarly,
in the Columbus schema, references and pointers are both
of the same class TypeFormPtr and are distinguished by a
flag kind.

Finally, neither schema includes typing information for
subexpressions. Type inference in the presence of over-
loaded operators and functions is a difficult task. If we want
to take advantage of a front end that gives typing informa-
tion, the schema needs to have placeholders to capture this
information. It would be good if implicit type conversions
were represented explicitly. Otherwise the resulting AST
would contain type errors.

4.2 Other Approachesfor Exchange

Given all of the difficulties and problems that we have
identified in this paper, one question that arises is: Are we
using the right approach? Are the complications a conse-
quence of the solution we have chosen or the basic problem
itself? We can attempt to answer this question by examining
other approaches to sharing data about source code.

Rather than using XML to encode extracted data as a
graph (as GXL does), another approach is to encode the
AST itself using the structure of XML documents. The Har-
monia framework for building CASE tools [7] and cppML
developed at University of Waterloo [19] both use this ap-
proach. While Harmonia adds tags to source code as meta-
data to achieve this structure, cppML only uses tags and
records the additional information as attributes on the tags.
Although this approach is more consistent with how XML
tools handle documents, i.e. translating nested tags into a
hierarchy, the problem they are solving is not inherently
simpler.

Another approach is to provide an API (application pro-
gramming interface) to an in-memory representation of the
parsed source code. IBM’s VisualAge C++ compiler pro-
vides an API to its internal data structures [17]. As men-
tioned earlier, the Ada community has a standard API,
called ASIS, to allow other tools to use the intermediate
representations inside compilers [16]. It should be noted
that ASIS follows a previous unsuccessful effort (DIANA)
to promote tool interoperability by standardizing ASTs for
internal representation.

A major difficulty of attempting to standardize a schema
for C++ ASTs is to bring tools into compliance. This signif-
icant effort of modifying tools to produce and use the new
information format may not be acceptable for tool builders
and vendors. One possible solution to solve this problem
would be to develop a framework for modular schemas
with well-defined interfaces between modules. Each mod-
ule would contain the subset of the schema relating to a par-
ticular problem, for example, templates, projects, or type
handling. The framework would allow people to pick and
choose among different predefined sub-schema “plug-ins”
and should be extensible so that the users may define their
own sub-schema solutions. The framework may include
predefined transformation algorithms that map between dif-
ferent schemas, similar to ones discussed by Bowman, God-
frey, and Holt in Sections 4.2-3 of their paper [8].

Consider, for example, the type representation portions
of the Datrix and Columbus schemas. These are quite sepa-
rate from the other parts of the schema and could easily be
two alternative type representation plug-ins. It would also
be possible to define a general sub-schema, which covers
several possible solutions. However, such generalization
may not always be possible when solutions are quite dis-
tinct, as is the case with the template handling in Datrix and
Columbus schemas.

5 Conclusion

We plan to continue our work on creating a standard
schema for C++ at the AST level. In doing so, we hope to
advance the state of tool interoperability in the reverse engi-
neering and reengineering community through the use of an
SEF, GXL. Whether or not a standard schema proves to be
the final answer for exchanging low-level software data, we
believe the lessons learnt and the schema itself will be valu-
able in future efforts. Indeed, we have learned a lot about
our own schemas and ways they can be improved.

We invite others to participate in this effort to define a
standard schema. In particular, we are looking for designers
of analysis tools to test and critique our schemas as we re-
fine them. Anyone interested in this problem should contact
one of the authors directly or join the mailing list (instruc-
tions are available at:

http://rgai.inf.u-szeged.hu/mailman/listinfo/gxI-cpp).
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