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Embeddings of graphs have been of interest to theoreticians for some time, in particular

those of planar graphs and graphs that are close to being planar.  One definition of a

planar graph is one that can be drawn in the plane with no edge crossings.  While working

on the four-colour problem, Wagner(1936) was the first to show that every planar graph

has a straight-line embedding.  Tutte (1960, 1963) showed that every 3-connected planar

graph has a convex embedding.  While graph theory was originally an artifact from

mathematics, it has become quite prevalent as a means of solving problems or

representing data.  With automatically generated data sets being represented as graphs,

came the need to automatically generate embeddings of graphs in a 2-dimensional space,

such as a computer terminal or a sheet of paper.  A wide variety of fields each with their

own requirements utilize automatic graph drawing algorithms.  As a result, many

different algorithms have been developed over the last decade.  Within the last five years,

there have been annual conferences on graph drawing (Di Battista, et al., 1993; Tamassia

and Tollis, 1995; Brandenberg, 1996), special issues of journals on the topic and this year

a monograph was published. (Cruz and Tamassia, 1994)  Three different algorithms from

the field will be presented briefly in this paper: the spring model algorithm, simulated

annealing method and the Sugiyama algorithm.

Applications of Graph Drawing Algorithms

Work in this area was done mainly in response to requirements of data visualization

techniques and interactive computer systems.  Many fields in computer science, such as

software engineering, electronic circuit design and database design, have found it useful

represent data as graphs, with vertices denoting elements and edges denoting relations

between them.  These graphs are normally generated by software tools based on
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information in the system.  As the size of a graph generated from data or constraints grew,

so has the sophistication of embedding algorithms.

In software engineering, the architecture of a large software system can be visualized as a

directed graph with vertices representing modules and edges denoting various use

relations between them.  These systems are often hierarchical in nature and their drawings

should reflect this.  Furthermore, this information can be used to make the graph drawing

task easier.  (Müller, et al., 1993)

Computer hardware and microchips are now sufficiently complex that they are designed

using CAD tools.  It is then the responsibility of the tool to create a layout of the logical

gates and the connections between them on microchips and circuit boards.  This layout

should be a grid drawing.  An orthogonal drawing is one in which an edge is a chain of

horizontal and vertical segments.  A grid drawing is an orthogonal drawing in which all

the vertices and bends of edges have integer coordinates.  (Di Battista, et al., 1994)

There are many other examples of applications which use graph drawing algorithms.

Entity-relationship diagrams in database design can have a visual representation or an

algebraic one.  One of the requirements of systems analysis and design tools is that a

database description need only be entered once in either format and the alternate format

will be generated.  There is a project management technique that uses PERT charts

(Project Evaluation and Review Technique) to track dependencies among tasks.  These

dependencies form a directed graph from which other information can be derived, such as

a project critical path.  One technique used by the Human Genome Project analyses the

gene structure by representing raw data as a directed graph (Harley and Bonner, 1994).

Aesthetics

It is not difficult to design a naïve algorithm to display a graph.  A random layout places

vertices randomly within a finite space.  Edges can be drawn as minimum length straight

lines between vertices or they may be polylines, that is, lines with bends in them to avoid
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drawing elements.  A circular layout algorithms places the vertices along the perimeter of

a circle and edges are drawn across the circle.  A similar strategy places vertices at the

intersections of an n×n grid along the main diagonal.  (Noik, 1996)

The circular layout method is particularly effective for representing cliques as it

emphasizes the regularity of the graph.  Unfortunately, most graphs are not cliques.  None

of the above methods pays much attention to the readability of the resulting graph, either

as a collection of lines and dots or the data that they represent. From a graph theoretic

point of view, isomorphic graphs should look similar.  Also, planar graphs should be

drawn without edge crossings so it is easy to visually confirm the planarity of the graph.

Consequently, the drawings generated by the above strategies may not be very

informative.

The quality or usefulness of a particular embedding is highly dependent on its application

domain.  Therefore a graph drawing algorithm must take into account aesthetics: criteria

for making salient characteristics of the graph easily readable.  Readability and “salient

characteristics” are highly subjective and dependent on the purpose for which the drawing

is generated.  Some aesthetic criteria include:

• minimize the number of edge crossings;

• draw edges as straight as possible;

• vertices should be evenly distributed;

• the majority directed edges should be drawn pointing in the same direction;

• in polyline drawings, minimize bends in the edges;

• minimize the area of the area drawing;

• maximize display of symmetries;

• maximize angular resolution.

(Di Battista, et al., 1994; Eades and Sugiyama, 1990; and Cruz and Tamassia, 1994)  The

angular resolution of a line drawing of a graph is the smallest angle formed by two edges

incident on the same vertex.  If this angle is too small, it may be beyond the resolution of



3

graphic display device or even the human eye, and the two incident edges end up looking

like a fuzzy blob.

In general, it is not possible to optimize two criteria simultaneously.  For example, in the

two embeddings of K4 below, the one on the left minimizes the number of edge crossings,

whereas the one on the right maximizes the display of symmetries.  (Cruz and Tamassia,

1984)

Many of these optimization problems are either NP-hard or NP-complete.  Minimizing

the number of crossings in an embedding is NP-complete, even if the graph is hierarchical

with only two layers.  (Garey and Johnson, 1983, in Eades and Sugiyama, 1990; and Di

Battista et al., 1994)  Minimizing the area of a grid drawing is NP-hard. (Kramer and van

Leeuwen, 1984, in Di Battista et al., 1994), as is minimizing the length of the maximum

edge length (Miller and Orlin, 1984, in Di Battista et al., 1994).

Polytime graph drawing algorithms tend to either use heuristics to approximate an NP-

hard optimization, use innovative techniques to manipulate the layout or some

combination of the two.  The more complex algorithms that yield more aesthetically

pleasing graphs are usually able to approximate optimizations of several criteria.  The

specific criteria used are often determined by the specific application domain or graph

type for which the algorithm was developed.  Three such algorithms will be discussed in

the remainder of this paper.  They are the Spring Model Algorithm, Simulated Annealing

Algorithm, Sugiyama Algorithm.

Spring Model Algorithm
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There are many different strategies that can be used to draw a general undirected graph.

One method is to use a planar embedding algorithm because a planar embedding can be

constructed in linear time.  The first step is to test for planarity and if the test is positive

construct the embedding.  If the graph is not planar, then it can be planarized by a variety

of techniques such as deleting edges, splitting dummy vertices or adding dummy vertices

at edge crossings.  Planarity testing can be done in linear time.  Planarization is an

NP-hard problem but can be done using heuristics in O(n2) or less.  So overall, this

method is relatively efficient.  (Di Battista, et al., 1994; Cruz and Tamassia, 1994)

Another method is to orient the edges, say using an Eulerian walk and use a directed

graph drawing algorithm.  Finally, there is a family of force-directed algorithms which

involves transforming the vertices and edges into a system of forces and finding the

minimum energy state of the system.  This state is found either by solving differential

equations or by running a simulation of the forces.  The spring model is the most popular

algorithm in this family.  The spring model was originally developed by Eades, 1984.

The version presented here is a descendant of that algorithm developed by Kamada

(1989).

Conceptually, the spring embedder works by replacing edges with springs unit some

natural length.  It also adds springs with larger natural lengths between non-adjacent

vertices.  The vertices are initially placed randomly and a system of differential equations

is solved to find the system state with minimum energy.  By nature, springs attract their

endpoints when stretched and repel their endpoints when compressed.  Vertices that are

adjacent are kept close to each other by shorter springs.  While the longer springs between

non-adjacent vertices keep them apart, and at the same time they limit the overall size of

the embedding.

The total energy of the system is represented by the following summation:
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lij  is the natural length of the spring between vi  and v j  and is defined as l L dij ij= × ,

where L is the desired length of the edge in the embedding and d ij  is the shortest length

path between vi  and v j  in the graph.  L is sometimes chosen as a function of the

diameter of the graph and the available embedding area.

kij  is the strength of the spring between vi  and v j  and is defined as k K dij ij= 2 , where K

is a constant and d ij  is as defined above.

Rewriting the energy summation in terms of xy-coordinates, we get:
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To find local minima of this summation, we need to take partial derivatives of this and

solve to find local minima for each vertex.  This results in 2n non-linear non-independent

equations.  This system of equations is rather difficult to solve, so the problem is

considered one particle at a time.  The particle in the system with the highest energy is

identified and moved to a stable location with low energy.  Let this particle be pm , with

energy function:
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pm  is moved in a stepwise manner to minimize ∆m .  This location corresponds to where
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= = 0  is satisfied.  This is done by iteratively solving the following two linear

equations for δx and δ y , where t is the current iteration and adding them to xm  and ym

respectively. These steps are repeated until the new energy function stops decreasing.
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The algorithm is summarized by the following pseudocode.

1. compute d ij  for 1 ≤ ≠ ≤i j n ;

2. compute lij  for 1 ≤ ≠ ≤i j n ;

3. compute kij  for 1 ≤ ≠ ≤i j n ;

4. initialize p p pn1 2, , ,�

5. while (max ∆ i > ε )
6. let pm  be the particle satisfying ∆m = max ∆ i ;
7. while ( ∆m >ε )
8. compute δx and δ y ;
9. x x xm m← + δ
10. y y ym m← + δ
11. end while
12. end while

When a local minimum has been found, each pair of particles are exchanged and the

energy of the system is tested.  If a swap results in a lower energy state, the energy

minimization process restarted with the new configuration as a starting state.  This

exchange and compare process provides a means of escaping large local minima.

Eventually the system converges to a global minimum.

It takes O(n3) time to find all pairs shortest paths.  More efficient algorithms may be used

to lower this bound.  O(n) time is needed to compute each of ∆m , δx and δ y during each

iteration.  With some bookkeeping, max ∆ i  can be found in O(1) time.  The time required

by the energy minimization process is O(Tn), where T is the total number of inner loops.

T is difficult to characterize beyond this because it depends on the value of ε, the initial

position of the vertices, and the graph itself.
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This algorithm reduces the number of edge crossings as their presence increases the

energy in the system.  Also, drawings produced by this method display symmetries

present in the graph.  The same graph with different initial conditions will converge to the

same drawing.  Graphs with similar structures will also be drawn similarly.  This method

can be extended to layered hierarchical graphs by assigning vertices in the same level a

fixed y value and allowing only the x position to vary.

Simulated Annealing Method

In the most general terms, annealing is the process by which some substance is heated

until it is a liquid and then slowly cooled until it is a solid.  The slow cooling allows the

molecules to organize themselves into a crystal, a totally ordered form.  This process is

often used in the manufacturing of products such as steel.  Simulations of annealing were

developed to analyze the efficiency of these manufacturing processes.  Simulated

annealing is used as a problem solving technique where the potential solution space is

large and a combinatorial search is infeasible.  It has been applied with some success to

problems such as VLSI circuit design, graph partitioning and the traveling salesman

problem.  Davidson and Harel (1996) have applied this technique to drawing undirected

graphs with straight-line edges.  One big advantage of this algorithm is that the relative

importance of different aesthetic criteria can be varied.

The basic shape of a simulated annealing algorithm is given in the pseudocode below.

1. Initialize temperature T;
2. Initialize configuration σ;
3. E ← cost of σ;
4. while(min T not reached)
5. while(termination rule is not satisfied)
6. choose a new configuration σ′ from the neighbourhood of σ;
7. E′ ← cost of σ′;
8. if ((E′ < E) OR (random < 

( )E E T

e
− ′

)) then

9. σ ← σ′;
10. E ← E′;
11. end if
12. decrease temperature T
13. end while



8

14. end while

A configuration is a proposed embedding of the input graph.  The graph can be entered

either as a set of adjacencies or as a hand drawing.  If the input is a set of adjacencies then

the initial configuration is randomly generated.

A neighbourhood of a configuration σ, is the set of configurations that differ from σ by

the location of a single vertex. σ′ is generated by taking a vertex and placing it on the

perimeter of a circle drawn around its original location.  To simulate the behaviour of

molecules in the physical annealing process, the size of this circle is initially large and

decreases with T.

The cost of a configuration must be carefully chosen so that it reflects the desired

aesthetics of the final graph and is not overly computationally intensive to compute.

1. To ensure that vertices are evenly distributed to avoid overcrowding, the term

a
dij

ij

= λ1
2  is added to the cost function pair of vertices, i, j. d ij

2  is the Euclidean

straight line distance between i and  j.  λ1  is a weighting factor whose value

depend in the importance of this criteria relative to the others in the cost function.

2. A completely minimized cost function will spread out the vertices indefinitely.

To ensure that vertices are drawn on the display area, the following term is added

to the cost function for each node i: m
r l t bi

i i i i

= + + +






λ 2 2 2 2 2

1 1 1 1
, where r l ti i i, ,

and bi  are the straight-line distances between the vertex and the right, left, top and

bottom borders of the display area.  Again, λ 2  is a weighting factor.

3. To avoid overly long edges, the following term is added for each edge k of length

dk
2 , with weighting factor λ 3 : c dk k= λ 3

2 .

4. To reduce the number of edge crossings λ 4  is added to the cost function for pair

of edges that cross.
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5. To prevent edges from being drawn too close together, particularly those that

intersect at a vertex, the following term is added for every vertex i, edge k with

distance gik  and weighting factor λ 5 : h
gik

ik

= λ 5
2

The relative importance of each of the criteria can be adjusted by varying the weighting

factors.  The fifth factor is normally used only during an optional fine tuning stage of the

algorithm.  The main part of the algorithm is run with only the first four factors until a

termination condition is reached.  Then the drawing may be adjusted further by using the

larger cost function.

The actual value of the initial temperature depends on how many iterations are desired in

the annealing process.  At each temperature level, approximately 30n perturbations

should be performed.  The cooling function should be geometric, i.e. T Tp p+ =1 γ , with

0 6 0 95. .≤ ≤γ .  A value of 0.75 gives a relatively rapid cooling with the resulting graphs

giving good aesthetic properties.

The termination condition can be a fixed number of iterations, say 10, or when the

proposed embedding stops changing significantly over two to three iterations.

The simulated annealing algorithm runs in O(n2m) time.  The number of temperature

changes required to terminate the outer loop is constant in the sense that it does not

depend on the input graph.  O(n) perturbations are performed in the inner loop, say 30n.

It takes O(nm) time to update the cost function, which is more efficient that calculating it

from scratch.  Since the location of only one vertex is changed in a new configuration, n

vertices need to be updated and for each of these at most m edges will also need to be

updated.

This technique produces drawings that are comparable to those generated by the spring

method.  This algorithm does not produce conventional looking graphs for a several

categories of graphs.  One such group is a large cycle with no chords.  While this is
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normally drawn as a large circle, this algorithm tends to draw the cycle curled around

itself so there is not a large empty space in the middle.  Simulated annealing is also not

very good at bringing out the regularity of a graph such as a clique because it tends to

draw all edges with comparable length.  Although this has not yet been rigorously shown,

this algorithm appears to be more successful with more complex graphs than spring

algorithms.  One useful property of simulated annealing algorithms is that they are easily

parallelized.

Sugiyama Algorithm

Layered graphs are of practical interest in software engineering, PERT chart generating

and other fields that require data modeling.  The structure of a software program can be

represented as a procedure calling hierarchy.  Sometimes this structure can be drawn as a

tree but more often it needs to be drawn as a layered graph.  Müller, et al. (1993), call this

an idealized layered software architecture a (k, 2)-partite graph.  This notation means that

there are k layers and each layer has edges only to the layers adjacent to it, i.e. above and

below.  The most popular algorithm for laying out this type of graph was introduced by

Sugiyama, Tagawa, and Toda (1981) and is nicknamed after the first author.  Some of its

popularity may be attributed to its early development.

Although the overall structure of this algorithm is less complex than the first two

presented, there are many small manipulations that need to be performed.  Each of these

sub-parts can be as complex as either the spring method or the simulated annealing

method.  Consequently, only a high level description of the Sugiyama algorithm will be

presented here.

The algorithm takes an hierarchical directed graph as input and draws it in four stages.  In

stage I, the graph is transformed into a “proper” hierarchy, if necessary.  In stage II, the

vertices at each level are ordered to reduce the number of edge crossings.  In stage III, the

horizontal position of each vertex is manipulated to reduce the length of the edges.
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Finally, in stage IV the graph is drawn.  Stage I is a preparatory step and stages II and III

form the main part of the algorithm.

A “proper” hierarchical graph has no cycles, and only has edges between adjacent levels.

In stage I Sugiyama, Tagawa and Toda suggest condensing vertices as a way of

eliminating cycles and refers the reader to other sources for more detailed information.

Edges that span more than one level are replaced with placeholder vertices and edges that

connect two levels.  This hand-waving is interesting, as finding the minimum feedback

edge set is an NP-complete problem.

In stage II, an iterated barycentric method is used to reduce the number of edge crossings.

The barycentre of a graph is a vertex with the minimum distance between itself and every

other vertex in the graph.  A graph may have more than one barycentre.  Conceptually,

these vertices are those closest to the middle of the graph.(West, 1996)  The barycentric

method minimizes the distance between a vertex and its neighbours and as a result

reduces the number of edge crossings in the drawing.  In this stage, and the next, only one

level and an adjacent level are considered at a time, thus simplifying a k-level problem to

a 2-level problem, or a bipartite graph.  The edges in between the two levels are

represented as an adjacency matrix, with the upper level as rows and the lower level as

columns.  An adjacency matrix is constructed for each pair of adjacent levels.  The

barycentre for a the upper level is given as Bik
R , where R denotes row and i denotes the

current adjacency matrix, i.e. pair of levels, and k the current row in the matrix.

Similarly, Bil
C  is the barycentre for lower level, where C denote column and I denotes the

current adjacency matrix and l the current column in the matrix.

B l m m k Vik
R

kl
i
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= =

∑ ∑
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1, , ,� , the number of vertices in the upper level

B k m m l Vil
C
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k

p

kl
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p
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= =

+∑ ∑
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11, , ,� , the number of vertices in the lower level

The algorithm first calculates the barycentres for each column in the matrix for the top

two levels.  It then re-orders the columns from smallest to largest barycentre.  This change
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is then reflected in the next adjacency matrix.  This process is repeated for all adjacency

matrices.  After the re-ordering the rows of the adjacency matrix between the bottom two

levels, then the barycentres for the rows are calculated and re-ordered.  This change is

reflected in the columns of the next higher matrix.  This process is repeated until the first

matrix has been re-ordered.

In stage III, edge lengths are reduced by adjusting the horizontal positions of vertices

within a level using a priority layout method.  Each vertex in a level is assigned a

monotonically increasing priority number, say without loss of generality from left to right.

In this way, the vertex order established in stage II.  When reducing the spacing of a given

vertex, only vertices with a lower priority number on the same level may be modified.

Finally, no two vertices may lie on top of one another.  Levels are adjusted in multiple

passes from top to bottom and back to the top.  Specifically, the order of levels adjusted

is: 2, ..., k, k-1, ..., 1, t, ..., n, where t is an integer, 2 ≤ t ≤ n-1.  Often, three passes are

sufficient to make a nice looking drawing.  In the last stage, the graph is displayed on a

graphic terminal.

Stage II was tested on one hundred randomly generated graphs.  The minimum number of

edge crossings was found through combinatorial search.  The number of edge crossing in

the final embedding was compared with the minimum possible and was found to be

within 5%.  It takes O(n) time to generate all the adjacency matrices.  For each vertex in

the graph, its barycentre must be calculated twice.  Each calculation takes O(n) time, so

the total amount of time spent calculating barycentres is O(n2).  In the worst case, each

row or column re-ordering requires the entire adjacency matrix to modified.  This can be

done in O(n) time, with a constant coefficient depending in the size of the adjacent levels.

So stage II runs in O(n2) time.  One iteration of  stage III, in the worst case (i.e. every

vertex requires all other vertices with smaller priority on the same level to move), will

take O(n2) time.  In total, this stage will take O(Tn2) time where T is the number of

iterations of the up-down process.  So while, the algorithm is rather complex it runs

relatively efficiently.  It takes O(n2) with a large coefficient and large lower order terms.
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Conclusion

Since many of the sub-problems in graph drawing are NP-hard or NP-complete, it is too

computationally expensive to attack the problem directly.  As we have seen, innovative

models and heuristics have been developed to the solve the problem.  The spring method

represent a graph embedding as a physical systems with energy states.  By minimizing

energy state, an aesthetically pleasing drawing can be generated.  Similarly, the simulated

annealing algorithm is patterned after a physical process that improves the embedding by

applying many small perturbations to intermediate drawings.  The Sugiyama algorithm

uses a statistical method to calculate metrics to represent desirable aesthetic properties.

These metrics are then used to manipulate the original graph to approximate the quality of

those generated by exhaustive combinatorial search.  The particular algorithm used by a

computer scientist depends much on the problem domain for which it is going to be used.

The study of automatic graph drawing algorithms is a growing field.  As more fields in

computer science start to use graphs as a means of problem solving or data representation,

they will bring to the study their own particular requirements and insights.  So far

automatic graph drawing algorithms were of interest only in relation to some application.

But as the field grows, so too will interest in the development of these algorithms for their

own sake.
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