
Design Methods as Discourse on Practice
Marisa Leavitt Cohn, Susan Elliott Sim, Paul Dourish

Department of Informatics, University of California, Irvine
Irvine, CA 92697-3440

{mlcohn, ses, jpd}@ics.uci.edu

ABSTRACT
In this paper, we present a view of design methods as discourse on
practice. We consider how the deployment of a particular set of
design methods enables and constrains not only practical action
but also discursive action within the design practice. A case study
of agile software development methods illustrates the ways that
methods establish conditions for who can speak in the design
process and how. We indentify three main kinds of discourse
work performed in the invoking of design methods. These are the
establishing of ontologies, the authorizing of voices, and the
legitimizing of practices. We then discuss implications of this
view on methods for CSCW research on the relationship between
methods and practice as well as implications for participation in
the design process.

Categories and Subject Descriptors
K.4.3 [Computer and Society]: Organizational Impacts –
Computer-supported collaborative work

General Terms
Management, Measurement, Documentation, Performance,
Design, Human Factors, Standardization, Theory, Verification.

Keywords
Methods, Discourse, Authority, Voice, Design, Participation.

1. INTRODUCTION
What do methods do? This has long been a question in CSCW in
considering the relationship between methods and action.
Methods can be seen as resources to practical action, as ways of
regulating organizational work, or to narrate the performances of
human-machine configurations [25]. But methods also tell us
about roles, objects, and subjects that exist in the universe of a
particular approach to design. Methodological commitments may
be secondary to the accomplishment of work, but they also
establish a particular discourse in which action unfolds. The
question of who has voice in the design process is in part a
question of how methods shape the discourse – fixing
relationships between designers and stakeholders and shaping
who can speak and how.

This paper explores this question of who can speak in the design
process and the modes of authority and legitimation that are
deployed through methods. We consider first the tradition in

CSCW of considering the relationship of methods to practice and
then discuss a case study of software development methods as an
example of organizational design methods and collaborative
design work. Using a lens of discourse we identify the kinds of
discursive work that are accomplished by practitioners in their
deployment of agile methods and consider implications for both
CSCW research and design practice.

2. METHODS IN CSCW
The relationship between methods and practice has long been a
concern of CSCW research on systems design
[1,2,5,7,14,15,17,24,25,26]. This is in part because systems design
is oriented to the methodical and ordered aspects of work that are
available to computerization. The paradox of systems design is
that it relies upon the articulation of methods for work but those
very methods are never a complete or accurate description of
work practice. Methods are a way to talk about practice in an
idealized form in order to support practices of accounting, due
process, or to share generalizations about practice with other
audiences. Methods, rather than being accurate descriptions of
enacted work, are resources to and outcomes of practical action
[14,25]. Even for the scientist or social scientist, methods
comprise a particular story about research activities that
foreground certain actions and background others. In design, as in
science, local conditions and contingencies arise which require
deviation from method.

Much of the early work in CSCW on methods focuses on this
issue of the gap between methods and practice [2,14,25].
Designers of organizational workflow or information systems
encountered representations of the organizational structure of
work, organizational routines, and methods for getting work done.
These might be found in diagrams, forms, workflows, or narrative
texts describing work practice. Suchman in particular critiques the
assumption in systems design that methods are stepwise
specifications for action which are then realized by actors and that
the successful accomplishment of work depends upon the
adequacy and completeness of these specifications [25]. Rather
“making procedures work” is an accomplishment of practical
action. Methods are always an incomplete representation of action
and can be resources to action such as when a person consults the
standard procedure as they work, or can be used to support
accounts for work after-the-fact. While the meaning of
“procedure” has a definite technical meaning to systems
developers, it has a “softer” meaning for the accomplishment of
organizational work. This discrepancy can become problematic if
organizational methods are taken as accurate descriptions of work
practice, leading to inappropriate system requirements. Once
designed, systems can impose a set of methods upon work.
Organizational methods, once coded into methods to be carried
out by computers-in-use, may be less available to the flexible and
situated nature of work.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
GROUP’10, November 7–10, 2010, Sanibel Island, Florida, USA.
Copyright 2010 ACM 978-1-4503-0387-3/10/11...$10.00.

A second concern regarding the gap between methods and
practice is related to issues of voice and authority. Suchman notes
that treating methodical accounts of work as a means for the
realization of work resembles a Tayloristic approach to managing
and controlling work [25]. While she suggests that the assumption
that methods determine practice is faulty, she nonetheless points
to the ways that methods can be imposed as a way to construct
authority over the actions of others as part of a system of
regulation and control, however incomplete and imperfect. Gerson
and Star raise a similar concern about the use of methodical
representations of work as system requirements [14]. They say
that such representations are always incomplete in part because
they represent particular viewpoints about work while “screening
out” others. Viewpoints about work are always multiple in real-
world systems. Design methods that codify only expert and
explicit organizational knowledge will neglect voices and
perspectives such as that of “the computer room managers who
are the only ones who can coax the system into functioning, or the
crack secretary who ‘really runs the place.’” Generating system
requirements from articulated organizational methods will leave
out work practices such as the work that goes into articulating
those methods. They recommend the adoption of methods from
the sociology of science that have been successful in describing
and analyzing how tacit knowledge is incorporated into scientific
facts as a way to capture the multi-voiced effort of organizational
work. They also call for design methods that are integrated into
the context of ongoing use and maintenance [14].

This article reflects more upon this second concern raised in
CSCW research on the relationship between methods and
practice. While it is important to consider the ways that gaps
between methods and practice can lead to systems that inhibit and
constrain practical action, we would like to reinvigorate the
question of what it means to represent particular voices in the
design process? What consequences do methods have for who can
speak in the design process and how?

To answer these questions we draw upon an empirical case study
of agile software development practices as an illustrative example
of design methods. Agile methods are in many ways the antithesis
to the design methods critiqued by Suchman and Gerson and Star
[14,25]. Agile as a professional movement seems almost to
respond to their call for design methods that integrate design with
use and acknowledge the multiple and fragmented viewpoints on
systems design. Agile methods construct no notion of a single
authority over the design process such as a ‘Systems Architect,’
nor any singular authoritative document that represents the
requirements for the system. A case study of agile methods thus
offers a prime opportunity to reexamine questions about the
relationship between methods and practice in systems design and
how methods have consequences for the representation of voice
and construction of authority in the design process.

3. AGILE METHODS
While we will refer throughout this paper to “agile methods”,
“Agile” is actually a “family” of software process models,
methods, and techniques. These include Extreme Programming
[3] and Scrum [21]. The distinguishing feature of agile methods is
their emphasis on adapting to change and taking an incremental
and iterative approach to design and development, rather than a
phased and sequential approach to minimize change through
careful planning. In agile methods, “design” is not a phase of the
development cycle but is considered to be happening throughout

development. These kinds of methods originate in the late 1990s
as a reaction to the more “rationalized, engineering-based”
approaches to software development [11 citing 20]. The software
development community expressed frustration with changing
expectations leading to wasted coding effort. Extreme
Programming in particular was a move towards “programmer-
centric” computing, emphasizing collocated programming teams
and pair-programming and less documentation writing. In many
ways the agile methodology is likened to a social movement.
Agile methods are seen to have “divided the software
development community into opposing camps of traditionalists
and agilists” [20]. One contributor to the Agile Manifesto, written
in 2001 by contributors to Extreme Programming, Scrum, Crystal,
and other agile methods, narrates agile’s history saying, “A bigger
gathering of organizational anarchists would be hard to find” [4].

Agile methods coincide with calls within CSCW for iterative
design, collocation of designers and stakeholders, integration of
design with use implementation and maintenance, and evolving
systems over time. Since the agile process is iterative and
incremental there are many more occasions in which individuals
have the opportunity to voice their perspective on what the system
should be designed to do or how it should perform. However, this
does not mean that everyone has a voice or that all voices are the
same. Rather, it means that it is all the more important to
understand the nuances through which methods establish
conditions for possible voices to emerge in the design process.
The main instrument to discipline who can say what in the design
process is not located in the representational artifact of the
requirements document and the deliberative process that goes into
articulating that document. Instead, there is an ongoing process of
articulation and rearticulation of system requirements. Agile thus
offers an ideal case study to reconsider CSCW concerns.

Many of the agile methods we will be discussing in this paper are
derived from the Scrum software process model. We will be
discussing some concepts like the “User Story” which are
common to many agile processes, as well as some that are
particular to Scrum like the Scrum Master, the daily stand-up
meeting, or the Scrum Board. While organizations often pick and
choose which methods to use from any model and often mix
methods from multiple models, the focus of the paper will be to
consider the relationship between the methods chosen by the
people in our case study and their practices.

Scrum is a software process that is in the agile “family” and is
depicted in Figure 1 below [10,21]. In Scrum, rather than dividing
the software project into phases in which certain activities such as
design are accomplished, the project is divided into time
increments, called “Sprints” or iterations. The duration of the
sprint varies from company to company, but is typically between
1 and 4 weeks. In the figure the sprint is represented as 30 days.
During the sprint there is a daily “stand-up” meeting at which all
team members are present including software developers, heads of
teams, and usually a “product owner” who is a representative
from a customer company or in many cases an internal proxy for
the customer such as a customer service representative. The daily
stand-up meeting is depicted by the 24-hour cycle. Several sprints
can be grouped together into a release that often coincides with a
meaningful time period like a fiscal quarter or a set of features
being completed. In many companies the software is being
updated for the user at the end of every sprint, in others at the end
of a release. Either way, new software updates are being released

on the order of every few weeks to months, rather than years as is
common in traditional phased development.

Figure 1: The Scrum Process (based on model [10])

A typical Scrum project begins with a meeting at which many
ideas for system features and requirements are brainstormed and
archived in a “Product Backlog” in the form of “User Stories.”
User Stories are like system requirements written in a narrative
text form with the format: “As a <role>, I can <action>, so that
<goal>.” According to [10], a User Story is multi-modal and
exists in three parts – the written description of work to be done,
conversations about the work, and test cases. The written
description of the User Story should be small enough to fit on a 3”
x 5” index card or sticky note and must be able to be completed in
a single sprint. In principle, the user stories can be written by
anyone in the organization but should emphasize the “user’s”
point of view. This however can mean that the point of view can
be that of a programmer, CEO, customer service representative or
anyone internal to the company who interacts with the software,
so long as it is written from their perspective as a user.

At the start of each sprint the team gathers for a spring planning
meeting at which they draw user stories from the product backlog
and generate new user stories and decide which should be
completed in the given sprint. This is determined in part by
priority and in part by the “sprint velocity” which is a number of
“User Story points” that a team will complete in a sprint. Every
user story is estimated with a number of points for the general
“size” of the requirement. This set of user stories becomes the
sprint backlog. At the daily stand-up meeting the team meets for
about 15 min to give quick updates. The sprint concludes with a
review meeting to look back on the practices of the sprint, what
worked and what did not.

During the sprint, user story cards are often placed on the Scrum
Board for others to see. The board is typically divided into
columns such as “not started,” “in progress,” “tested,” and
“accepted.” The cards can be placed on the board and moved from
one column to the next to indicate progress. Teams often have a
way to indicate user stories where a bug or issue is impeding
progress such as a pink colored card or column. Software
developers also often take the user story cards down from the
board while they are working on them.

There are five primary roles on a Scrum team: Scrum Master,
Product Owner, Team Members, Stakeholders, and Users [21].
The Scrum Master facilitates the software development process by
tracking the team progress and helping to remove impediments.
The ‘Scrum Master’ maintains the product backlog, prepares for
and convenes the daily stand-up meeting, and tracks the
completion of tasks for each sprint in a “burn-down” chart which
shows the number of user story points left in the sprint. The

‘Product Owner’ represents business concerns. This person could
be the person paying for the project or a figurative surrogate for
customers. The ‘Product Owner’ should write and prioritize user
stories. 'Team members' includes everyone working to build the
software including developers, testers database analysts, system
administrators, and technical writers. ‘Stakeholders’ refers to
anyone with an interest in the software product, but in practices
this tends to be business interests. ‘Users’ is a subset of
stakeholders of the software. Individual users are not usually
involved in the development process but are often consulted to
gain feedback. The User role might be fulfilled by someone who
will use the software or a surrogate.

4. METHODS AS DISCOURSE
CSCW research tends to emphasize the consequences of methods
for practical action. When organizational methods are
computerized and imposed without an adequate understanding of
the organizational practice, there can be a gap that is
consequential for the accomplishment of work at a practical level.
This imposition can radically alter the kinds of practical action
that will be required to make the methods work for local
conditions. The fact that work will get done regardless of which
method is adopted, however, tends to lead to the tacit implication
that methods do not matter much at all since they have little
impact on the ultimate outcome of work. Whether an organization
adopts iterative or plan-based methods, software will be
developed and claims that a particular method guarantees certain
product qualities are suspect. Methods provide a way of
accounting for work to others and thus deploying any set of
methods will do so long as they provide a shared language.

But this shared language, as a kind of discourse on practice, has
consequences with regards to voice, authority, and participation in
the design process. The methods deployed in a design project
have consequences for discursive action as well as practical
action. Methods enable and encourage certain kinds of discourse,
establishing the conditions for who can speak and how. Methods
inhibit or preclude other ways of speaking. Methods establish
certain conditions for possible discursive actions – who can speak
about what and when. This is not about consequences for the
shape of the outcome of work but rather about who can participate
and who can say what in the design process.

Design methods are productive of certain roles and ontologies –
certain subjects and objects. For example, requirements
engineering methods construct the “requirement” as an object of
the design process along with associated artifacts that represent
requirements. In agile methods, the “requirement” is replaced by
the “user story” object. Both the requirement and the user story
are available to the practical accomplishment of getting software
developed, but each sets up a different set of conditions of what is
speak-able and by whom in the design process.

Foucault addresses this quality of methods in his work on
governmentality [12]. By governmentality, Foucault refers to
methods of government and the ways that they articulate a
rationale for governing over subjects and objects – what he calls
governmental reason or governmental rationality. He aims to
consider governmentality without calling its methods “primary”
or “original” and “already given.” Instead he considers how
methods are a reflection on and rationalization of practice.
Governmentality is not simply the articulation of a mode of
managing and regulating the state; it calls a particular notion of

the state into being. In his analysis of governmentality, he
considers the social construction of the concept of “sovereignty”
how governmental method “fixes the definition and respective
positions of the governed and the governors… in relation to each
other.” Likewise design methods call certain concepts, such as the
“system” into being and fix relations between the designer and the
designed or between system and use. Technological systems, like
the state, are “a specific and discontinuous reality” that is
expressed through the discourse of method, setting up the
conditions for its material realization [12].

This approach to methods aligns with existing CSCW work on
methods and practice but draws attention to method as discourse
rather than resource or outcome. It focuses on the ways that
methods are a discourse on practice. Methods establish the
discursive conditions in which practice takes place in the sense
that they fix certain relations and concepts that can be taken up in
practice. Discourse does not determine practice but it does shape
who can speak about what and how. Considering methods as
discourse emphasizes the ability of organizational groups to
narrate work and systems rather than the ability for organizational
groups to accomplish a particular end product.

In this article, when we speak of methods we mean methods as
stories about sequences of actions already carried out or to be
carried out. They can be used to talk about practice in an idealized
form for purposes of accounting, due process, or to share
generalizations about practice with other audiences. But they are
also idealized forms through which people think about and talk
about their own practice. They form a discourse on practice by
shaping a set of conditions for possibility in the design process –
possibilities for speaking and representing voice. This article is an
inquiry into the conditions of possibility established by agile
methods.

This definition, and its conflations between stories about actions
that are performed at or away from the computer interface, actions
that might be individual or collective, and stories that might
address organizational structure (e.g. “every day our team gathers
for a group meeting to discuss progress”) or specific
organizational routines (e.g. “I pull up a list of reports on the
screen, sorted by date, then print the most recent report”), aligns
with the way the term “method” was used by our informants. To
our study participants, method is many things and can be used
interchangeably with terms like “technique” and “process.”
Methods thus exist at many levels, telling stories about the
behavior of the organization, of specific teams, of individuals, and
of the system. The term is even used at the level of software code,
specific methods in the software which perform certain steps of
action. This is not a meaningless conflation of the term. Rather,
much of the work of producing software is translating methods for
social and practical action into more technical methods that can be
written in code and performed by computers. How these
transformations are accomplished collaboratively by the group is
what this paper aims to illustrate. The discursive work of methods
in this case of software development is relevant for thinking about
the role of methods in design practice more broadly.

Gerson and Star note that there is a “proliferation of
‘methodologies’” in response to the problematic gap between
methods and practice [14]. This is also the view of Truex et al in
their deconstruction of software development [26]. They note that
“method” is the privileged text for software. Methods proliferate
in part because systems design is oriented to method. Methods are

accounts and representations of work that highlight what is
methodical and screen out what is amethodical. Systems designers
are oriented to method and the job of software developers is often
to read for and write methods can be translated into code-able
methods. In a way, systems design invokes a process of
proliferating methods to bridge some gap between current practice
and future practice. While other terms like “procedure” or “plan”
have been used to talk about methodical accounts of
organizational work, we chose the term method because of its
privileged role in systems design and software and to draw
attention to the, at times productive, conflations that occur
between methods at various levels (design, organization, code).

Methods that have been realized computationally have a way of
imposing themselves on human actors and can be used as
instruments of control. As Suchman suggests, methods can be
used to construct authority over a process. Whether that authority
is realized has little to do with whether the methods are enacted by
people but more to do with the ways that they can be imposed
upon and used to discipline people. While agile methods are not
as heavy-handed and overt as those which Suchman critiques,
methods are still part of the construction of authority in the design
process through the ways that they legitimize certain kinds of
subjects and objects and ways of speaking about design activities
and objects. Methods still play a role in setting up the conditions
for possible voices to emerge in the design process. The following
sections draw on our case study of agile methods to explore
various ways that methods set up these discursive conditions.

5. OUR CASE STUDY AND METHODS
This article draws upon a case study of agile software
development methods. Our case study brings together
ethnographic fieldwork and interpretative analysis of agile
discourse. We have conducted ethnographic research across
various sites including agile trainings, workshops, and networking
events for agile practitioners in California including official
certification trainings offered by the Agile Alliance. We have
interviewed a total of 18 agile practitioners in five companies. We
also conducted a week-long observational study of agile work
practice at two companies near Denver, Colorado in which we
observed planning meetings and ongoing work practice and spoke
with team members in a range of roles from software
programmers and engineers to customer service representatives,
managers and CEOs. We have also included in our case study,
analysis of prescriptive texts including blogs, textbooks, and
articles about agile methods. The two companies who participated
in our observational field study include one, FastTools, that
develops software tools and training workshops for agile software
development and another, Easy Retirement∗, that develops
retirement planning software tools for companies and individuals
to manage retirement plans and packages. Both of these
companies utilize agile methods from the Scrum process model.
Many of the examples we draw upon to illustrate our exploration
of methods come from these observations of the two companies.

Our observational field study of agile software development
methods in practice was initially designed to investigate how agile
methods and artifacts support the articulation of system
requirements and the implementation of those requirements. In
analyzing our data for these research questions about the role of

∗ Names of organizations and individuals have been changed.

documentation and artifacts in the articulation of system
requirements, we realized that some of the most compelling
stories about our data dropped out. We realized that methods
have been considered for the ways that they support group work
of coordination, articulation, and negotiation, in systems design.
But we had observed methods accomplishing other kinds of work
for collaborative group work. This motivated us to analyze agile
methods for the discursive work they support as well. In analyzing
our data we have employed interpretive methods drawn from
narrative and literary analysis. Close readings of methods,
artifacts, and stories are being used in the emerging
interdisciplinary field of Software Studies, which combines
approaches from media studies, comparative literature and
sociology of science [13].

In agile software development processes, design takes place in an
iterative process. Agile places value on collocation of users and
designers and the iterative design of the software system and
organizational processes. It is therefore a unique case of software
development in which the ways that methods narrate their work
overlaps significantly with the ways that they narrate the software
system itself. In more highly phased and architected systems, in
which large requirements documents are drafted, the narration of
what the system is precedes the work to implement the system.
Different teams of actors tend to perform the work of creating a
story about the system and its behavior and the work of
identifying assumptions and translating the requirements in
programming languages and tests. By placing much of this work
in a coterminous iteration of approximately two weeks, performed
by collocated teams, the ways that methods shape the ways that
the system and the work to build and use it are narrated is greatly
exposed. In the following section we discuss themes within
discursive work. We aim to develop these themes in ways that
will be relevant to other design contexts as well.

6. DISCURSIVE METHOD WORK
It is easy to identify the ways that “agile” imagined as an
overarching methodology is deployed as part of discourse at the
level of the software profession. One of the most common
narratives we heard in our field study was that of contrasting agile
to other methodologies like “waterfall”. Many of our informants
described what agile was in terms of what it was not, identifying
agile in contrast to the values and especially the documenting
techniques of other methodologies. Agility often is offered as an
alternative counter-narrative to software processes driven by large
amounts of documentation. It articulates its origins within a
movement to renew the celebration of computer programming as
a craft by allowing programmers to “do what they do best” – to
write code not documentation. In a way it is a programmer-
centered design process that arrives at a broader valuing of users
through this first step to empower programmers to focus on
programming rather than on specifying requirements. By being
thrifty on documentation and design artifacts like architecture
diagrams, it reinforces the idea of the process as counter to highly
architected and phased software processes. Agile methods are
increasingly popular in industry, but this is in part due to those
who in the past could not say they had any formal process
claiming to adopt Agile to legitimize their process. Some of our
informants explained the agile process to us in terms taken
straight from the Agile Manifesto’s stated values: “individuals and
interactions over process, working software over documentation,
customer collaboration over negotiation, responding to change
over following a plan.”

At this level, where methodologies pit against other
methodologies, it is easy to see discourse at work and ideologies
being formed. However, one of our findings is that much of the
same work gets done both before and after adopting agile
methods. For the tester, for example, when working in previous
“Waterfall” processes she would find a workaround to the phased
approach to development. Rather than wait for the requirements to
be implemented before starting her work, she would take the
requirements document and pore over it for assumptions and
going back to the engineers who wrote it to get edits and
refinements, doing her best to incorporate a tester’s perspective
early in the process. As she put it, “other people will wait… but I
never worked that way.” In agile methods, on the other hand,
“test-driven development” is the norm, but the tester had other
kinds of workarounds to make up for agile methods emphasis on
light documentation. She kept a personal wiki of all user stories
and their associated tests.

This confirms the skepticism in CSCW towards methods, which
claims that the accomplishment of practical action will proceed
regardless of the method being used and that methods do not
determine practice. At the same time, however, the tester talked at
length about the qualitative ways that her work is now different
from what it is like to interact with documents to the kinds of
relationships she has with people. In this section we identify and
discuss three themes within the discursive work we observed in
the deployment of agile methods.

6.1 Establishing Ontologies
Methods enable people to speak about particular objects and
subjects as part of design practice. This element of discourse is
called ontology. Ontology refers to the “study of the most general
kinds that exist in the universe” [16]. A discourse constitutes an
ontology of the objects and subjects that can be talked about, that
are considered elements in the bounded universe of the discursive
community or discipline. In requirements engineering, for
example, requirements are a part of this discipline’s ontology.
Requirements can be talked about in terms of their qualities and
how they are elicited or engineered, but are assumed to exist as
part of the natural universe of software development. To Foucault
ontologies are not only a set of objects that we construct, but also
a way of positioning subjects and making ourselves subjects of
knowledge production [16]. The “user” is another good example
of an ontological subject. Identifying a person as a user is a first
step towards gaining knowledge about use.

One of the primary ways that agile methods establish an ontology
is through the method of writing “user stories.” The “user story” is
an ontological object of agile software development that does not
exist in other methods. It is often compared to and contrasted with
other forms of requirements gathering tools like scenarios [8] or
use cases [9]. In our case study of agile methods we have
observed several debates about the differences between a user
story and a use case. An illustration that these concepts are
ontological is that the ideas are incommensurable. There is no
satisfactory way to differentiate the use case from the user story
across the divide between users of agile and other methods. For
example, ‘Tom’ might ask ‘Jerry’ what makes a user story
different from a use case but every answer Jerry provides leads
Tom to say “that sounds like a use case.”

One can see the discursive quality of the user story as an agile
method in the ways it is used to differentiate agile from other
methodologies. The user story was considered by participants to

be the antithesis of the large requirements document found in
“Waterfall” methods. The user story is described in prescriptive
texts as multi-modal in that it exists in conversations, written
documents, and software code [21]. While the User Story exists in
these multiple places it is often written on an index card in the
format: As a <person in a role>, I can <carry out an action>, so
that <rationale or motivation for action. > An example of a User
Story might be: As a customer service representative, I can pull up
a list of customers by last name, so that I can locate duplicates. It
is a fragmentary narrative text.

In our observations and interviews with agile practitioners, we
found that the user story indeed carried multiple meanings and
could be located in multiple activities, places, and artifacts. For
our informants, the user story connotes multiple ideas at once. The
user story is both a story about a particular set of actions taking
place in the company and a way to refer to those activities
directly. Practitioners refer to the user story at times as something
taking place inside of the organization, as something that people
are playing out, much the way that actors might be enacting a
story from the inside. A person might say that the user story is
taking place, and that certain individuals are a part of it. At other
times the user story is used to refer to an account of activities, a
story told in a particular time and place such as at a group
meeting.

The agile method of “user story” enables people to talk about their
work and the software system in ways that elide distinctions
between system requirements, ongoing work, and the software
code itself. The user story is able to be many things at once. It is a
story about the performance of the software system and about
work that is taking place with the software in the workplace. At
many times we heard the story talked about in the same way you
might talk about a feature – as something that is performed by the
technical system. At other times the story was something
happening in the workspace, being played out by specific actors
supported by computers. People are in the stories, part of the
stories, in tune with the stories. A story is said to be currently
taking place, perhaps because of some new priority or change in
the organization.

These elisions between a story as an account of practice and as the
practice itself aligns with other findings about the use of narrative
in organizational settings. Boje [6] suggests that at times the idea
of a story refers to a set of utterances (such as in this case the
story which is told at a meeting and written down on an index
card) or as the “real story behind the story,” a specific ostensive
set of actions that took place. By establishing an ontology in
which stories are an object of the design process, this elision
between actual and desired system performance becomes possible.
One would never say that a requirement is taking place in the
organization in addition to being an articulation of possible action.

The user story also establishes the ontological category of “user”
as part of the discourse on practice. In the groups we observed,
the end-user of the system was often represented by a proxy in the
company such as a user experience designer who conducted
interviews with users. However, the user story still establishes
certain conditions for the kinds of relationships that it can present.
Often the user story inscribes the perspective of someone in the
company such as a customer service representative, but it does so
by casting this person as a user of the system. This at times makes
it difficult to prioritize requirements that are not user-facing but
have to do with optimizing the performance of the system or
enabling better bug handling.

The user story exists in excess of any particular artifact that may
be considered part of it. The user story was at times referred to as
an ongoing conversation within the team, or as a set of actions
that take place with the software system in a particular time and
place. A user story might be said to exist in the sense that the
work it narrates exists within the company and the software, even
though it is somewhat aspirational since the story articulates
desired performances with the system. In this way the user story
is part of everyday practice but is also within the realm of design,
sitting at some distance to current practice.

The user story as a kind of sociotechnical artifact carries with it
certain ways of voicing what the software will do. It points to the
way this story exists ostensibly within the space and cannot be
fully written down. The user story is a confusing object when
compared to the traditional “requirement.” It confounded one of
our collaborators, a software engineer, who kept asking, “where
are the requirements?!” The user story differs ontologically from
the requirements document in several ways. The fact that it is a
story emphasizes its telling rather than just the requirement as a
text that is written down. It is also understood in a colloquial way
as a story that the organization and team members are living
through, with people existing inside of the story. And it comes
along with metaphors that do not apply to the requirement, such as
being in touch with or in tune with a story, or being part of one
story more than another. The method of writing user stories does
not authorize the requirements engineer in the same way as the
requirements document to write the requirements document as the
definitive representation of the user’s needs and values. Instead,
the user story is a unit of the sociotechnical assemblage in which
the engineer as well as the user is implicated. However, it is still
important to address the question of who gets to have an
authoritative voice in an agile organization about what gets coded
and implemented in the software.

6.2 Authorizing Voice
Methods authorize different people to speak in different ways in
the design process. Methods condition the possible ways to voice
values for the design process. For example, methods shape
whether customer service representatives, requirements engineers,
ethnographers, or designers are authorized to articulate system
requirements, features, or priorities. This is in part a question of
who can speak for or serve as surrogates for whom (e.g. who can
speak on behalf of users or customers) and also who can speak for
what (e.g. who can speak authoritatively about particular artifacts
or lines of code) and in what ways.

Authority suggests that it isn’t only a matter of who can speak in
the design process, but the power that certain kinds of voices or
utterances have in practice. While anyone can speak the utterances
“I now pronounce you married” only certain officiating authorities
can speak these in a way that performs the enactment of marriage
[18]. Technical writers are able for example to write about the
system but are not authorized in most design methods to voice
design changes to the system. The work of the technical writer is
considered after-the-fact of the knowledge work that goes into
producing software even if that is not the case.

The method of writing user stories from a particular point of view
can authorize people in those roles to speak about a user story. If a
user story says, “As a human resources representative…” then it
might be possible for the developer working on coding that story
to speak to the human resources representative directly. As one
informant put it “I read that and I know it is ‘Sally’, and this is

what ‘Sally’ does every day.” This enables ‘Sally’ to have a voice
in the software process and to have authority over a particular
story. It also enables a supervisor to tell a developer “don’t ask
me, go ask ‘Sally’, she sits 10 feet away” whereas in prior to
adopting agile methods this kind of feedback loop happened but
was not authorized. This is not to say that methods can preclude
people from speaking to each other, but having authority to speak
can qualitatively change the experience and can have
consequences for the visibility, accountability, and responsibility
of individuals.

While in some cases the user story inscribes the perspective of
collocated team members in other cases the perspectives invoked
in the user stories are fictional personas or proxies for real people.
Many users of the software are not in-house and cannot be
consulted. Still, agile methods enable particular roles like that of
the “product owner” to stand in for the user. The product owner is
authorized to speak on behalf of the user. While a focal actor in a
user story might be in-house and able to re-narrate the story if the
details were unclear or have changed, the owner of the story is
authorized to see that the story is achieved. The product owner
decides ultimately which stories are worth implementing and the
acceptance criteria for whether a story is complete. The user story
owner is the developer who may not be writing all of the code for
that story but who is authorized to say, for example, when that
story is done. The metaphor of ownership is present in many agile
methods from the use of the role of product owner to provide a
singular voice for the product or the calling out of a particular
developer as the owner of a user story. Stories inscribe
perspectives in such a way that they authorize a person to re-
narrate parts of that story. But the owner of a story is authorized to
say when a story is “done”.

The Scrum Master and the Scrum task board are part of Scrum
methods in which the contrast between discursive and practical
action can be illustrated. The Scrum Master role is most similar to
a technical lead or managerial role in other methods. However,
this role is given a new title in Scrum in part because of what it
can do discursively. The Scrum Master is so called because s/he
has mastered the Scrum process and is authorized to ensure that
the team is adhering to the process. A distinction is made between
the Scrum Master and a technical lead in that the Scrum Master
does not own the requirements or own the outcome of work, but
instead “owns the process”. Leeann, the Scrum Master at Easy
Retirement, had many of the same responsibilities in her previous
role as office manager. She had always been the person covering
the distance between the business and engineering sides of the
company. She ensured that there was communication for example
to get clarifications from the CEO about a particular story, or to
justify a different approach that the developers wanted to take to a
solution. Her role as Scrum Master, and being in charge of the
scrum task board, authorize her to do the same work in new ways.
As part of her Scrum Master role she summons the team to the
task board for the daily stand-up meeting and makes sure that the
methods for the meeting are adhered to. She ensures that only one
person speaks at a time and that debates are kept to a minimum.

The Scrum task board also conditions the realm of possible ways
to speak at group meetings. At stand-up meetings, Leeann is at the
front of the room so that she can move user story cards around on
the task board and track progress on the “burn-down chart” – a
hand-plotted graph of work left to complete by the end of the
sprint. While anyone can write on the cards, the task board sets up

conditions within the space such that it is easiest for the team to
gather facing the board at a distance to see it. The task board
provides a kind of visualization of the Scrum process with all the
user stories as elements within it. As the owner of the process, the
Scrum Master is in charge of this visualization and this places her
somewhat outside of the team as an observer of the process.

Authorization can also be seen in the ways that certain material
artifacts are designated as authoritative. When a manager signs off
on a document or a contract, the document is seen to change to a
more official and authoritative state. In the traditional phased
methods of building comprehensive requirements document, this
document is often signed off at each stage before being handed off
to the next team. The documents serve multiple purposes; they
provide requirements to the development team for implementation
purposes, and they can be used after implementation to validate
the software. The requirements document is enabled to serve as a
proxy for the multiple voices that articulated the requirements in
part through the document’s signatories. Agile does away with
documents with many signatures on them, but at the same time
creates new ways to authorize work. The user story was described
at times as a mini-contract for work. Writing narrative fragments
on an index card in front of other people, taking that card in front
of other people, were ways that authors of stories were inscribed
and also ways that certain people were authorized to transform
those stories into code.

6.3 Legitimizing Practices
Methods can legitimize certain practices and artifacts over others.
This means that while we may see the same sets of artifacts being
used in different design practices, which of these artifacts are
highlighted, emphasized, and legitimized is part of the discourse
on practice. Legitimation is often about which practices are
considered to be inside of the design process versus outside, or
what kinds of practice are recognized as in accord with method
versus amethodical. When a practice is done through a
workaround or out of order it can still be integral to the
accomplishment of work, but can be deemed amethodical and in
some cases can be seen as a threat to stability in the organization.

Carol, a tester, spoke to us about how she used to deal with large
requirements documents. In phased development methods, testing
happens after implementation, but rather than waiting she would
get access to the document early and go through it making as
many assumptions as she could, sending it back with questions,
and helping to finalize it before it was passed along to the
developers. In a sense she managed to insert a testing perspective
early into a non-test-driven process. In the current organization,
testing is a legitimate part of ongoing development practice. Some
of the developers do not consistently adhere to test-driven
development and Carol can reprimand them to write tests.
Developers often write tests just after or along side of their
programming tasks, and this is part of how they practically
accomplish their work, but it also gets pointed out at the planning
meeting as the less legitimate practice.

Agile methods also legitimize certain artifacts in new ways. The
role of tests is one such artifact that takes on a new role as part of
“design.” Testing shifts from being outside of design to being
inside of design. And tests themselves are legitimated as part of
the expression of requirements rather than their validation. Code
too is an artifact that is now legitimate for different purposes. In
agile, code is considered a form of documentation. Code
documents design decisions, it documents a user story (so in a

way it is a documentation of requirements). This is a discursive
shift from seeing code as the product of requirements and the
requirements document as a proper way to validate the code’s
performance. We heard from informants repeatedly that the code
is its own documentation and is the best documentation because it
is always up-to-date. The tests were legitimated not only by the
tester but also by developers, even those who were somewhat
neglectful of writing tests all the time, saying for example that the
tests “are what the system should be doing”.

This legitimization of code and tests as integral to requirements
documentation and design is a dramatic shift from the viewpoint
that code is product and tests are product validation. Informants
would tell us “there is no documentation other than the tests and
the code itself.” At the same time, however, we also observed the
use of other documentary artifacts to keep track of requirements
and tests in an archival and comprehensive way. These documents
included a wiki with all user stories and associated tests kept by
Carol, the tester, and an excel sheet with all user stories and who
is working on them kept by the product owner, Sam, who was
formerly a compliance officer. However, there was also
significant evidence that these artifacts were not viewed as
legitimate. Carol and Sam were not forthcoming at first about
these documents, and then were reluctant to share them with us.
Eventually they shared them but also expressed some regret that
these documents were redundant with other efforts or admitted
that they were vestigial artifacts from prior methods. Sam even
laughed explaining to us that his template for tracking each user
story had a signature line at the bottom since he used to require
signatures on requirements documents. He had left the signature
line there but never used it since the team switched to agile.

Sam showed us a document of new story ideas he put together
with Carol before every sprint planning meeting. He brings this
document to the meeting to aid his memory but both he and Carol,
when sharing these user stories, write them anew on an index card
in front of the rest of the team. The documents he kept support
Sam in the practical accomplishment of remembering user story
ideas, tracking responsibilities, taking notes during discussions so
that he can keep people accountable to decisions. In his role as a
compliance officer this is important because he is the intermediary
between the company and auditors. Carol eventually showed us
her wiki where she kept all the test cases written for each user
story. We asked her if others used the wiki or contributed to it and
she said that she didn’t know, but didn’t think so. She said that
she would often respond to the developers’ questions about a user
story by emailing them a link to a page in the wiki. She too
expressed concern that her wiki wasn’t standardized within the
organization and that people might be doing duplicate work. This
is not to say that her wiki was not very supportive of the
accomplishment of hers and others’ work. Clearly the wiki served
practical purposes. What is interesting here is the way that such a
wiki is considered illegitimate in the face of agile methods.

The user stories on the other hand were not only shared publicly
during meetings, but are written and taken in front of the whole
team. They are also posted on the Scrum task board where
everyone can interact with them and view their movement across t
he board. The agile method of writing and thinking about
requirements in terms of stories favors a collective and oral mode
of collaborative work. User story cards were talked about as
lively and in movement and opposed to static and frozen
documentation. Yet the work-arounds of Sam and Carol for
keeping track of user stories and tests are reciprocal to the kinds

of work-arounds they contrived in “Waterfall” methods. Yet what
is significantly different is which of these artifacts and practices
were kept private or made more public, and what agile methods
enable for discursive as well as practical action.

6.4 Translating Materials and Ends
A large part of the work of designing systems is the translating of
ends into material form. By translation, we mean not only the
practical accomplishment of transforming the state of materials
such as found in the building of hardware, wiring of circuits, or
programming of software interfaces, but also the discursive
connections that must be made during design in order for it to
proceed. Values that are identified for design are often located in
social and cultural discourse and must be translated into technical
discourse in order for them to become viable for implementation
and compelling to designers. This can take place through various
discursive modes such as correspondence and substitution.

For example part of the process of translating values into design
through requirements engineering is the construction of a model
about the world of use that can be used to establish
correspondence between models at the level of the system design
and the external world [1,24]. This correspondence is established
and is then tethered heuristically to the design process. In some
design methods a model of correspondence is adopted from the
scientific discourse such as when user studies are conducted to
provide a science of social or ergonomic action. On other design
methods correspondence is understood more as a social contract
for purposes of validation. The written requirements document an
event in which certain utterances of social ends are articulated so
that these can be adhered to in the design process and then used to
validate the outcome. It is clear that in some design methods this
kind of discursive correspondence is not constructed at all, such as
in critical design work (see for example [22]).

Other kinds of translations occur in order to allow for the
substitution of one object for another or enabling certain subjects
to speak on behalf of others or particular objects. One can think of
this as the task of the translator who can, for example, speak on
behalf of the use context to the audience of engineers, or who can
speak on behalf of the system and code in order to translate
technical ends to stakeholders. Translation is always a two way
street in that to translate from the social to the technical posits
translatability between the social and technical. Translation work
is not just a matter of the technologist or designer getting values
into design; it is also a process of translating technical values into
the social world [15].

Methods set the conditions for this kind of translation work by
establishing ontologies, authorizing voices, and legitimizing
certain practices. One of the ways we can see this happening is in
the way that the user story establishes an ontology of the story in
which notions of inside and outside are elided. One of the ways
that requirements engineering methods enable translation is
through the clear demarcation of what is outside of the system
design and performance for the sake of correspondence [27]. The
requirements document, once written and vetted, can be used as a
substitute for the ends that it articulates. With the user story, no
such substitution is made. Rather, the user story acts as a kind of
link between people performing activities of use and design,
maintaining that link until it is no longer needed. The user story
also dissolves distinctions of correspondence because it elides
demarcations of inside and outside. There are times that the user

story is identified as something existing in the natural world
outside of the system, but it can quickly be elided into a notion of
a story as a performance-with-the-system. Agile methods do not
provide a clear ontological object that represents or models an
outside of the system for purposes of correspondence or
validation. Instead there is a constant back and forth between the
narration of practice that is inside or outside of the story.

As another example, the relationship between code and use is re-
imagined in the discourse of agile methods. Code is not
articulated as internal to the system and use occurring only at
general user interfaces. Instead code is an artifact in the work
setting, one way of documenting stories about use (albeit in
language translated for computers to receive as input). Discourse
is in part about fixing of relationships for the sake of production
of knowledge. In agile, use is not discursively tied to code as
something that can validate its performances (such as in a user
study). Instead, a web of artifacts including the tests “probe[s]
what the code really does.” “Where the requirements can say
whatever they want… the executable tests, there is no arguing
with them. If you put these inputs in them you get this output out,
that is a fact.” In this quote you can see discourse at work in the
fixing of relations between objects and the setting up of the
conditions for what can be known as a fact.

The legitimation of code as documentation and the idea of a user
story existing as a multi-modal artifact set up conditions in which
it is not possible to speak about use as a way to validate code. Use
of the latest system release is the starting point for a new narration
of the user story, a continual feedback loop. In this way the “code
is its own reward” for both the developer and the user. Code-in-
use gives everyone something to tell new stories about. Our
informants emphasize, as in the following quote, the role of
interpretation as an impediment to translation work in other
methods, whereas the role of interpretation drops out of the
discourse in agile. “When you are sitting down with the
requirements on your desk versus actually taking a piece of the
requirement in front of everybody else. Now you've opened up the
door to conversation about it and now you have perspectives from
multiple people and not just yourself in that piece of paper that
you think that you are interpreting correctly.” In agile, instead of
interpretation of a single story as text, a story is told and retold.
“There are times that… the business people ask for something and
the engineers don’t understand why it is necessary and I have to
explain the reasons to them, fill in the whole story… and then take
it back to the business.”

7. IMPLICATIONS
In this section we discuss some of the implications of this work.
As a community, if we look at methods in discursive terms
different kinds of group work are highlighted. This has
implications for the ways we might consider the organization of
design work. The findings regarding the discursive work of
methods suggest that CSCW consider aspects of design group
work in new ways with regard to the transforming of materials to
fit end goals and the narrating of design work and design
outcomes. The findings also show that the discursive work of
deploying methods has consequences for the broadening of
participation in design practice.

7.1 Narrating design work
Considering the discursive work of methods draws attention to the
ways that people narrate technological systems as part of practices

of both design and use. Many design methods, and CSCW work
on design practice, emphasize the ability of designers to describe
and represent the system that stakeholders want and value (for
example [2]). In phased design, the reliance on authoritative
comprehensive documents pushes issues of representation to the
foreground. However, in design processes where design and use
are happening continually, it may be more relevant to ask about
how the system is narrated and how particular voices are able to
emerge and become focal or authorial in this narrative process.

Our findings about discourse work suggest as well that the
narrating of the organizational work of design is mutually
constitutive and inextricably linked to the narrating of the system.
Method work involves system users (in-house) and developers to
narrate methodical stories about computer-supported work, both
design and use work. Narrating the ways that this work comes
together in the organization and in the system are difficult to
demarcate. Technologists and users of the system must find a
way to interface their methods and knit together their narrative
accounts of work with the stories that are translated into the
software system.

Work on technomethodology suggests that the system interface
can provide the user with accounts of the system’s behavior [7].
This suggests that the primary resource available for the user to
make account of the system is the system itself. Increasingly,
however, systems which bring together users and designers within
an organizational or institutional framework. Web-based
technologies allow designers to capture data about user behavior
to analyze and users have access to twitter feeds of developers.
Just as the user is a “scenic feature” of design work [23], so too
can the programmer or designer be a “scenic feature” of use. In
this way, the larger discourse of design and systems development,
as located in popular culture and media becomes relevant to these
relationships between designers and systems stakeholders.

Discourse, therefore, is increasingly relevant to the understanding
of technology design and as this paper has demonstrated discourse
is not only the context in which systems are built. Discourse is
more than a way of talking about a system, a set of utterances
taking place around the system; it can constitute the ongoing
relationships in the human-computer assemblage. This discourse
has consequences for what it means to narrate a system, and who
can have a voice in the narrative.

7.2 Broadening the scope of participation
The approach taken in this paper also has implications for
participation in design processes. While Participatory Design (PD)
literature has mostly been concerned with the involvement of
users in the design process [19], our paper has drawn attention to
a broader concern with who in the design process can speak and
how. This ranges from the user who is being represented by
customer service personnel to the coder who may work on the
system yet not be able to make decisions about what gets coded.

Methods discursively shape the scope of design, what is inside
and relevant to scope versus outside and irrelevant to scope. This
does not mean that the work that takes place out of scope is not
integral to the performance of the system. On the contrary, even
so-called “use” is a form of labor that enables the system to
perform; yet this labor is certainly precluded from the scope of
design by most design methods. What kinds of work get called
design or not design, coding or not coding has consequences for
how visible or authoritative certain kinds of labor become.

Participatory Design research sets forth guidelines and methods
for practitioners to adopt in order to enable and encourage
participation in the design process. In this way, PD implicitly
critiques methods that do not promote participation and suggests
that methods have consequences for participation. In this work we
have suggested that all methods, including PD methods, establish
a discourse on practice that sets relationships and populates the
design process with objects. With the lens of discourse the
concern becomes not only how methods can be used to get people
involved, but also the ways that these methods establish
conditions about who can speak in the design process and how.

8. CONCLUSIONS AND FUTURE WORK
Truex et al call methods an “exclusionary conceptual framework”
that “conceal” multiple voices and meanings [26]. Agre too
suggests that design techniques are often “a method for designing
artifacts and a thematics for narrating [their] operation” [1]. In
this way, methods, for systems design, are not innocuous. Rather
they are consequential to the kinds of voices and ideas that are
included or excluded from design process. Future work is needed
to understand the specific mechanisms through which voices are
authorized in design practice and to consider comparatively and
critically the various modes of authority and legitimation that
arise in different design methods. While our claims are particular
to the discourse of agile and Scrum, we hope the case study
demonstrates that an examination of methods from a discursive
perspective is possible and valuable. Additionally, it is clear from
the ways that “Waterfall” methods become one way of talking
about agile methods demonstrates that methods have discursive
interplay within the broader software profession and within the
field of design. Future studies that speak across multiple
organizations and methods could shed more light on this interplay
and its consequences.

9. ACKNOWLEDGMENTS
Many thanks to Rosalva Gallardo-Valencia for her contribution to
the field study and data analysis.

10. REFERENCES
[1] Agre, P. Toward a Critical Technical Practice: Lessons

Learned in Trying to Reform AI. In G.C. Bowker, L. Gasser,
S.L. Star and B. Turner, Bridging the Great Divide: Social
Science, Technical Systems, and Cooperative Work.
Erlbaum, 1997, 1-17.

[2] Anderson, R.J. Representations and Requirements: The
Value of Ethnography in System Design. Human-Computer
Interaction 9, 2 (1994), 151-182.

[3] Beck, K. Extreme programming explained: embrace change.
Addison-Wesley Professional, 2000.

[4] Beedle, M., Bennekum, A.V., Cockburn, A., et al. Manifesto
for Agile Software Development. http://agilemanifesto.org/.

[5] Bertelsen, O. Design Artefacts: Towards a design-oriented
epistemology. Scandinavian Journal of Information Systems
12, (2000), 15–27.

[6] Boje, D. The storytelling organization: A study of story
performance in an office-supply firm. Administrative
Science Quarterly, (1991).

[7] Button, G. and Dourish, P. Technomethodology: paradoxes
and possibilities. Conference on Human Factors in
Computing Systems, (1996).

[8] Carroll, J. Five reasons for scenario-based design. Interacting
with Computers 13, 1 (2000), 43-60.

[9] Cockburn, A. Crystal clear a human-powered methodology
for small teams. (2004).

[10] Cohn, M. User stories applied: For agile software
development. Addison-Wesley Professional, 2004.

[11] Dybå, T. and Dingsøyr, T. Empirical studies of agile
software development: A systematic review. Information and
Software Technology 50, 9-10 (2008), 833–859.

[12] Foucault, M. Lecture: 10 January 1979. In The Birth of
Biopolitics. 1979.

[13] Fuller, M. Software studies: a lexicon. The MIT Press, 2008.
[14] Gerson, E.M. and Star, S.L. Analyzing due process in the

workplace. Proceedings of the third ACM-SIGOIS
conference on Office automation systems 4, 3 (1986), 70-78.

[15] Grudin, J. The computer reaches out: the historical continuity
of interface design. ACM Press, New York, New York,
USA, 1990.

[16] Hacking, I. Historical ontology. Harvard Univ Pr, 2004.
[17] Holtzblatt, K. and Beyer, H. Requirements Gathering: The

Human Factor. Communications of the ACM 38, 5 (1995),
30-32.

[18] Lukes, S. Power. New York University Press, 1986.

[19] Muller, M.J. and Kuhn, S. Participatory design.
Communications of the ACM 36, 6 (1993), 24-28.

[20] Nerur, S., Mahapatra, R., and Mangalaraj, G. Challenges of
migrating to agile methodologies. Communications of the
ACM 48, 5 (2005), 78.

[21] Schwaber, K. and Beedle, M. Agile software development
with Scrum. Pearson Education International, 2008.

[22] Sengers, P., Boehner, K., David, S., and Kaye, J. Reflective
design. Proceedings of the 4th decennial conference on
Critical computing: between sense and sensibility, ACM
(2005), 58.

[23] Sharrock, W. and Anderson, B. The user as a scenic feature
of the design space. Design Studies 15, 1 (1994), 5-18.

[24] Suchman, L. Human-machine reconfigurations: Plans and
situated actions. Cambridge Univ Pr, 2007.

[25] Suchman, L.A. Office procedure as practical action: models
of work and system design. ACM Transactions on
Information Systems 1, 4 (1983), 320-328.

[26] Truex, D., Baskerville, R., and Travis, J. Amethodical
systems development: the deferred meaning of systems
development methods. Accounting, Management and
Information Technologies 10, 1 (2000), 53-79.

[27] Woolgar, S. Configuring the User: the case of usability trials.
In J. Law, A Sociology of Monsters: Essays on Power,
Technology and Domination. The Sociological Review
Routledge, London, 1991, 57-99.

