
The Coming of Software Architecture: A Historical View
Susan Sim

University of Toronto
simsuz@turing.utoronto.ca

Abstract
Six programmers with experience spanning four decades were interviewed about their use
of architecture, or lack thereof, in developing software systems. The data collected
included few surprises and a history of hardware and software. The two biggest factors in
the use of design are management endorsement and technological sophistication of
problems and solutions. The causes and effects of these factors are discussed.

1.0 Introduction

Various software development notations and methodologies were introduced in the 1970s

and 1980s. These include Structured Systems Analysis and Design (SSAD), (Yourdon

and Constantine, 1985, De Marco, 1978), Structured Programming (Meyers, 1975), and

Object Oriented Programming (Cox, 1984). Although, these methodologies are

considered standard today, significant software was written without their help before their

introduction. How was this accomplished by developers? Furthermore, even today not

all projects are developed using these methodologies. Why? What are developers using

in their place? This study attempts to answer these questions by looking at the practices

of programmers past and present.

2.0 Methodology

2.1 Procedure

Software developers with industrial experience were interviewed for this study. Each

interview lasted for approximately 70 minutes. An open ended script was used to guide

the process. The script began with questions about the subjects’ educational and

professional background. Questions progressed to projects that the subjects had worked

on with an emphasis on the design or architecture in the process or software. The

direction that these questions followed was determined by the nature of the projects.

Subjects were also asked about various resources that they found useful.

1

2.2 Subjects

Six subjects were used in this survey, two women and four men. Two started working in

software in the 1960s, two began in the 1970s, one began in the 1980s and the last in the

1990s. All subjects except one from the 1960s and one from the 1970s are still working

in software.

“Andy” is currently a software developer at IBM Canada Ltd. He started

programming in 1965 after graduating from university.

“Jack” worked for IBM Canada starting in 1966 until he retired in 1992. He

initially worked at a service bureau doing data processing for customers and later moved

into software development.

 “Sonja” graduated from computer science at the University of Toronto in 1972.

Since then, she has been working in information systems development. With some

interruptions, she has been working at Consumer’s Gas since 1978.

“Alice” worked as a programmer analyst from 1974 to 1980 in various companies

such as Sears Canada. She worked primarily with developing on-line information

systems.

“Gary” graduated from University of Waterloo in 1983 after completing a co-op

computer science degree. He has been working as a maintenance programmer at a

number of companies since then.

“Scott” began working as a programmer in 1993. He spent three years at a small

speech applications development firm and is now at an even smaller firm working on

Internet and World Wide Web applications.

2.3 Shortcomings

A random sampling was not used to obtain the subjects for this study. Therefore, subjects

may be more opinionated on some topics than average. There are relatively few data

points so second order statistics would not be appropriate in this study. This study was

designed to elucidate the point of view of programmers throughout the last four decades

of software development. As a result, we may see some “Dilbertism”, that is the

2

tendency of front line workers to be biased against management. Historical accounts

were given by subjects in current terms rather than the language of the era. Computer

terminology has evolved over years to become more succinct and specific. Once new

terms and concepts have entered into common usage, it is difficult to eschew them. Also,

the use of these terms eased communication with the interviewer who had a very modern

sensibility.

3.0 Findings

Data gathered in this study were consistent with the history of computing over the last

four decades and a naive analysis of the software industry. Many of the processes that

subjects used were common sense applied to the situation at hand in lieu of standard

methodologies. This section focuses on subjects accounts of software practices, past and

present. An analysis of the findings taken as whole will be presented in the next section.

In analyzing answers to these questions, a programmer was considered to have used

design if some effort was made to conceptualize the program before coding began and to

ensure that the program was maintainable by passing on this information. While this

could be done in a formal design document, more informal records such as back of the

envelope scribbles, comments in the code to communicate the design structure to other

programmers, or post hoc documentation, were also accepted.

3.1 Four Decades of Software Developers

The subjects were able to give accounts of industrial development practices spanning four

decades, starting in the 1960s to the present. The early experience informs us of

processes before named methodologies, such as SSAD, Object Oriented Design Patterns,

or Booch, became popularized. When contrasted with later experience, this information

traces the evolution of the industry. Taken as a whole, the interviews provide insight into

the concomitant factors in the use of design in software development.

3

3.2 Use of Design Prior to 1970

The two subjects who began working in the 1960s both started their careers at IBM

service bureaus, though on different continents. Design was done using flow charts on

paper forms with plastic templates. The same tools and symbols were used for both

program design and system design. A high level decomposition of a program consisted

of functional units, i.e. not procedures but the functionality required by the user.

Although the term didn’t become widespread until later, these units could be labeled as

modules and they corresponded to an area of responsibility for a single programmer. This

decomposition was developed primarily to make the project manageable, both for the

programmer and the supervisor, rather than to make the code more elegant. There was

also a sense of stepwise refinement. Since Wirth’s work was not published until 1971,

this appeared to be a natural psychological adaptation to dealing with a complex problem.

However, projects tended not to have a design component in their development cycle.

More often than not, programs were the responsibility of a single person. This is due in

large part to the technology in use at the time. The IBM 1401 was the standard machine

for business data processing in their Service Bureaus and the IBM 7044 was the

corresponding machine for scientific computation in their Data Centres. Most companies

did not have their own computers, nor their own developers. As a result their information

technology requirements were contracted out to a large computer company. Jack

recounted tales of his days spent at the IBM Data Centre on King St. in Toronto. This

location had a large storefront window that allowed passers-by to see the computers in

action.

The computers didn’t have operating systems, as we know them. Computers were booted

by flipping a number of toggle switches in a Morse code-like manner. Programs were

either loaded from punch cards or from a reel-to-reel tape. A large computer had 8K of

memory, while an extremely large computer had 16K of memory. In contrast, the typical

handheld programmable calculator today has 32K or even 64K of memory. Programs

were written on coding forms because interactive terminals didn’t exist. The

4

programming language for the 1401 only had two control structures: if-then and goto. A

large program had 1000 lines of code. Source code was first converted to punch cards.

These source punch cards were compiled into an object deck. These object decks were

run by prepending some header cards to the stack and loading the whole pile into a

computer.

These practices extended well into the 1970s. Subjects who worked during this era

enthusiastically shared their artifacts, such as coding forms and punch cards. The

prevalent computer technology, both of hardware and software, did not require

standardized coding practices, particularly when program was written by a single

programmer. For Alice, the bottleneck when coding was how quickly she could write. It

took her more time to commit the code to paper than it did to generate it in her head.

3.3 Design in the 1970s

Structure was the dominant software advance of the 1970s. Structured programming

languages, such as COBOL and PL/I, structured analysis and structured design were

adopted by industry during this decade. Alice and Sonja were involved in the

development of an on-line catalogue system at Sears Canada. Developers closely

followed the Yourdon and Constantine Structure Systems Analysis and Design

methodology and they implemented the system in PL/I. Jack and Andy also reported

using more structured methodologies.

The adoption of these methods can be attributed in large part to the maturation of

computer technology. IBM’s System 360 was announced in 1964. It had 256K of

memory; this was as much as thirty times more than the typical machine of the era. It

also had a modern operating system that was manipulated using JCL (Job Control

Language). JCL was confusing, complex and arcane. Time sharing systems appeared

around 1975. These terminals allowed programmers to input code directly to the

computer. While these computers were still shared resources, they were a big step up

from the coding forms.

5

In order to deal with these larger and more complex machines (and the software that they

could support), developers had to use more rigorous processes. This new technology

emphasized to industry the importance of techniques and programming languages that

academics had been advocating for the previous ten years. During this period of change

and acceptance of structured methodologies, some concepts that are still taught today

began to appear in the literature. As mentioned before, Wirth’s work on stepwise

refinement appeared in 1971. Parnas’ work on information hiding appeared in 1972.

Yourdon and Constantine were publishing and teaching their method to developers by

1974. Glenford Meyer’s book on modular programming appeared in 1975.

Although large software systems existed before this decade, this is when subjects first

spoke of projects involving teams of many people. A team could have as many as fifty

members, although teams of approximately ten were more common. Jack worked on an

ordering system project from 1976 to 1982. His team consisted of approximately 50

people, 12 to 15 of which were coders. The final deliverable had approximately four

hundred thousand lines of code. Alice’s on-line catalogue system took ten people three

years to develop. The final product was estimated to be several hundreds of thousands of

lines of source code. A software system that Gary maintained starting in 1983 became

“live” in 1978. By the time he came to work on the system, it has approximately three

million lines of source code.

3.4 Design in the 1980s

During the next decade, programming languages, analysis and design techniques changed

from focusing on structure to abstraction of structures. Developers were using “software

processes” and “design methodologies” and calling them by those names. This decade

was also marked by a greater awareness of maintenance issues. The large software

systems developed in the 1970s now had to be kept up to date and in good working order.

In the past, a piece of software was more likely to be re-written than analyzed and

maintained: The older software was relatively small and the source code fairly

6

incomprehensible so it was often easier to start over from scratch. By the 1980s, legacy

systems were large and complex enough that maintenance became the lesser of two evils.

Gary was a maintenance programmer for a software system that managed term deposits,

guaranteed investment certificates, and the like for major banks. There was a common

core to the system plus a large component for each client. Over time as more bugs were

uncovered and new banks contracted their services, the software grew to several million

lines of source code. One of their customers, a major chartered bank, decided that they

wanted to bring this branch of their data processing in-house. The customer spent over

three million dollars trying to re-implement the system and failed. In the end, they bought

the core services and their customer specific component. Gary reported that the most

common bug, accounting for one third of batch job errors, could be attributed to a date

anomaly, such as February 29.

A technological advance that occurred during the 1980s was the advent of the personal

computer (PC). PCs were relatively affordable and accessible which resulted in an

explosion in computer use during this decade and the next. Small business and home PC

users were looking for user-friendly shrink-wrapped software. Prior to this, there were

relatively few programmers working outside of large corporations developing information

systems. Software was developed for a particular customer or purpose. Now, software

was developed for the purpose of being sold in a shrink-wrapped box to the faceless

masses. The combination of PCs and GUIs was the motivation behind the next change in

software engineering seen in the 1990s.

3.5 Design in the 1990s

If “structured” was the software buzzword of the 1970s, then the corresponding one in

1990s was “object-oriented”. Object-oriented languages, such as Smalltalk and C++,

object oriented analysis and object-oriented design methods were adopted. Modular

programming advocated hiding procedures inside modules. Object-oriented

programming takes this one step further and hides both procedures and data inside

7

modules. This adoption was driven by the increasing popularity of graphical user

interfaces. Rather than coding windows, icons, menus, and pointers from scratch, it

became easier to use overlays, templates or objects and inherit this functionality. In the

past, the software to run a major enterprise application, such as billing, was several

million lines of source code. Now a single spreadsheet program on a personal computer

was several million lines. Even with advances in automatic memory allocation,

optimizing compilers, and integrated development environments, programming was

more complex than ever.

Subjects who were currently working in software seemed to understand the value and

importance of design. Two commonly cited reasons included communicating with team

members, and making the code more maintainable. Scott found that when working with

fickle customers, writing and revising design documents was easier that prototyping and

changing a program. Gary was able to articulate and draw the architecture of all the

software systems that he maintained or developed. However, these same programmers

were able to name colleagues who were quite cavalier about design, documentation or

commenting their code. The subjects attributed the behaviour of these “rogue”

programmers to a variety of causes which included, a lack of a good computer science

education, the fact that they were consultants with no vested interest in the future of the

project, or simple possessiveness.

4.0 Discussion

4.1 Architecture in Development

All developers interviewed used design as part of the software process, almost in spite of

management in some cases. Only currently working programmers used the term

architecture. One system that Gary had to maintain, he described it as starting out with a

clean architecture that was seriously damaged by underqualified programmers over the

years. When asked for more details, Gary was able to draw a rough sketch of the initial

architecture and describe where the structure had been violated.

8

The term architecture did not have a strict definition limited to the high level structure of

a piece of software. It loosely included this structure, the process by which the software

was developed and to a limited extent the problem space that the software fits. This

appears to be a legacy of SSAD where requirements analyses and design specifications

include information on the external interfaces between the system and the outside world,

i.e. other systems or users. Andy’s current project uses as its basis for design discussions

an “architecture document”. It includes information on requirements, data on

specifications and a wish list of features. He finds this a rather confusing, unwieldy and

unsatisfying document to work with. Andy feels that this document could be split up into

at least three smaller, more manageable reports, corresponding to those produced in the

SSAD process.

Design is no longer limited to a single temporal phase of a project. Both Andy and Scott

report having weekly design meetings. At these meetings, they resolved problems that

were “high level issues”, those that had impact on more than one programmer at a time.

It appears that the architecting of a piece of software has become as interactive as coding.

Designing a system on an ongoing basis may be a response to specifications being relaxed

as deadlines approach. Here we are beginning to the importance of management in the

emphasis of design in the software process.

4.2 Management

Management was the single most important reason cited for neglecting the design during

development. In the best cases, managers, both direct and upper level, were committed to

a project and the use of a particular protocol. They provided enough time for all phases

of the project to be completed properly. They supported some standardized methodology

in the form of tools, education and support personnel. In the worst cases, managers

would instruct programmers to bypass the design phase either out of ignorance or a desire

for a speedy project completion. Once management initiates a project, there is a real

desire to see results, and that means code. Steve McConnell (1993) refers to this as “the

WICA or WIMP syndrome: Why Isn’t Sam Coding Anything? or Why Isn’t Mary

9

Programming?” He suggests three ways for programmers to deal with this: 1) Refuse

such a directive and allow relations with management and their bank balance to suffer; 2)

Pretend to be coding while really working on design; and 3) Educate the boss about

technical processes. This is an example of the aforementioned, “Dilbertism”. In addition

to management’s explicit directives, there are also the implicit messages about work in

general and their relationship with programmers. This may encompass attitudes about

workstyles, code reviews and other means to encourage pride in quality software.

In the study, there were a handful of examples where management was highly supportive

good software practices. Upper level management overseeing the Sears Canada on-line

catalogue system in 1974 was committed the SSAD methodology and structured

programming and they went to great lengths to support this commitment. They put all

developers involved on this project on a 3 month training program which included an

SSAD course taught by Ed Yourdon himself. They went overseas to Great Britain to hire

managers with experience using these techniques. Finally, they gave these new managers

the authority to transfer to other projects developers who were unwilling to follow the

new methods.

At Consumer’s Gas, developers had Software Architecture Guidelines that were taught

and reinforced by a Developer Support Centre. The Software Architecture Guidelines

was a two volume document; part one contained design requirements, such as data

formats, safety, and security, part two contained coding requirements, such as variable

declaration, stanza ordering, and comments. Starting in 1980, all developers followed the

rules set forth in the guidelines and this resulted in a high level of code re-use.

Unfortunately, this standard was abandoned in 1990, along with mainframe technology

and PL/I. Since then they have been trying different programming languages, software

tools, hardware, and operating systems with lackluster success.

A project that Alice worked on at a major Canadian telecommunications company in

1979 skimped on feasibility, requirements analysis and design specification stages of the

10

project. They also used an untried development method that paired up a programmer

analyst with a user for the duration of the project. While interpersonal relations could be

quite good, both halves of the pair found this working model quite frustrating. In the end,

the product that was delivered was bug-riddled and was quickly replaced.

4.3 Time

Subjects often cited lack of time as a reason for omitting design, but this appeared to be a

corollary to lack of management support. The project that Jack enjoyed the most in his

26 years of programming was one in which his manager took great pains to ensure that

front line programmers had enough time to deliver a quality product. Unfortunately, this

made him rather unpopular with upper level management and the customer. In the end,

they delivered a product that met all requirements with very few bugs. Incidentally, due

to the way that dates are internally represented, this system will not have to deal with the

year 2000 problem.

Over the last three decades, delivery schedules have become tighter and tighter. Part of

this can be attributed to the speed with which technology changes, with the worst culprits

being the Internet and the World Wide Web. Over the last five years, the attitude of

“we’ll get it out first, we’ll get it right later” has become quite common. As a result,

development has become demo-driven rather than product-driven. It is extremely

important to develop working prototypes for marketing to show to customers or for upper

level management to show to investors as quickly as possible.

4.4 Software and Technology

As one would expect, less time was spent on formal design on small projects than on

larger ones. This is not to say that a design was omitted altogether but that formal

documents were not written. Experienced programmers often able to put together small

programs of a thousand source lines or less using only scribbles on lunch napkins,

envelopes, Post-It notes or whiteboards. Occasionally, this architecture information

would be transcribed into documentation. These smaller programs tended to have a

11

cleaner, more consistent architecture despite the lack of formal design. Perhaps a

thousand source lines of code is an upper limit of how much a programmer can hold in

her or his head at once.

Sometimes it is a particular design method that is omitted rather than an entire design

phase. Scott recalled an occasion when marketing asked that he use Microsoft

Foundation Classes in a product inappropriately so that the product literature could

include the buzzwords “developed using MFC”. There is also a big gap between when a

developer first hears about the theory behind a particular software technology and when

she or he understanding it well enough to put it into practice. In the 1970s, when the new

technology was structured programming, the questions were “What makes a good

module? What should I put in it? How big should it be?” In the 1990s, when the new

technology is object-oriented programming, the questions are “What makes a good

object? What should I put in it? How big should it be?” La plus ça change, la plus ça

même.

4.5 Technological Change

Subjects with more than fifteen years of experience were asked to compare software

developed in the past with software that is being developed today. This question was

simply intended to solicit their opinion and they were free to use whatever basis of

comparison that they wished. A common consensus was that compared to the 1970s,

developers today are better but that their products are not. They use more sophisticated

software processes and tools. They also develop larger systems with better user

interfaces. However, these systems are written poorly on platforms that change extremely

quickly. Programmers are under much more intense time pressures. This rate of change

makes the software very difficult to maintain. Mainframes marked a long period of

relative stability of hardware. They allowed analysis and design methodologies to mature

and developers to evolve an understanding of large legacy systems. With rapidly

changing microprocessors, networking, operating systems and user applications, we may

not see another period like this in the near future.

12

5.0 Conclusions

5.1 Factors in the Use of Design

The two biggest factors in the use of design in development were management

endorsement and technological requirements. In the case of the former, management may

have implicitly or explicitly support the use of design. The most significant way that they

did this was to provide sufficient time deliver a quality product. In the case of the latter, a

design method was adopted when there was a proven need for it, such as when problems

became too complex to solve using an existing method. Looking at the data, it could be

argued that structured programming was adopted to deal with large software systems that

were ushered in by the System 360 mainframes and that object-oriented programming

was adopted to deal with graphical user interfaces. In other words, a particular design

method was used when the problem being solved demanded it, not because the theory

sounded interesting. It was often difficult to take an idea straight out of academia and

apply it in practice because good tools support or even an appropriate programming

language simply were not available. Consequently, there appears to be a ten year gap

between the time an idea first appeared in the academic literature and the first report of its

use by subjects.

5.2 Further Inquiries

In the course of several interviews, single points arose that were worthy of further inquiry.

Unfortunately, there was not sufficient time in the interviews to cover any of these topics

in detail. An entire study could have been done on any one of the following areas.

• For a period time in the early 1980s, Jack was an instructor for a “modernization

course” that was intended to teach introductory computer science to programmers

who had started working at IBM in the 1960s. The entrance requirements, material

presented and culture surrounding this course were quite unusual for IBM.

• While working on the investment management software, Gary established a “Hall of

Shame”, a collection of particularly grotesque or senseless bugs. His favourite

13

example is a one-page long if-statement to set a flag followed by an unconditional

assignment of the same flag to true.

• The content and culture of the Software Architecture Guidelines at Consumer’s Gas,

where Sonja worked is quite intriguing. How was their development initiated? What

was the actual rate of code re-use?

• Alice still has much of the material from the SSAD courses that she took at Sears

Canada. An item of particular interest was the student manual from Ed Yourdon’s

course. It would be interesting to compare this material to what is taught today in

information systems courses.

In order to generalize the findings of this study, a short answer paper survey could be

developed and sent to a large number of programmers. The statistics derived from the

survey could be compared to the data gathered in these interviews. If a correlation could

be found, the combined results would be very strong because they would be supported by

two very different research techniques.

Acknowledgments

I am grateful to all the subjects for their patience with a very 1990s student and generosity

with their time. This study and report would not have been possible without them.

14

References

B.J. Cox. Message/Object Programming: An Evolutionary Change in Programming
Technology. IEEE Software, 1(1):50-61, 1984.

T. De Marco. Structured Analysis and System Specification, Prentice Hall, 1978

S. McConnell. Code Complete: A Practical Handbook of Software Construction,
Microsoft Press, 1993.

G.J. Meyers. Reliable Software Through Composite Design. Van Nostrand, Reinhold,
1975.

D.L. Parnas. On the Criteria To Be Used in Decomposing Systems into Modules.
Communications of the ACM, 15(12):1053-1058, 1972.

E. Yourdon and L.L Constantine. Structured Design: Fundamentals of a Discipline of
Computer Program and Systems Design, Prentice Hall, 1985

N. Wirth. Program Development by Stepwise Refinement. Communications of the ACM,
14(4):221-227, 1971.

