
Tracing Transnational Flows of IT Knowledge Through
Open Exchange of Software Development Know-How

Susan Elliott Sim
Department of Informatics

University of California, Irvine
Irvine, CA 92697-3440

+1 949 824 2373
ses@ics.uci.edu

Kavita Philip
Department of Women’s Studies

University of California, Irvine
Irvine, CA 92697-2655

+1 949 824 7092
kphilip@uci.edu

ABSTRACT
Information technology (IT) is often promoted as a socially and
culturally agnostic tool that will allow emerging economies to
leap into the digital age and reap the wealth that accompanies it.
But in addition to the programming language, software tools, and
books, know-how is needed to turn bright ideas into innovative,
marketable solutions. This know-how can only be acquired from
experience or from other IT developers. An effective means for
sharing know-how is through an open exchange, which we
characterize as a space where interested people can learn, critique,
and contest ideas. It’s a locale that is defined in terms of activity,
rather than geography, technology, or membership. We use open
exchanges of know-how as an analytical lens to example
historical examples and contemporary instances. While
conducting fieldwork in India, we observed open exchange
occurring at Barcamp Bangalore. It is through these exchanges of
know-how, rather than the transmission of tools or software
artifacts that IT knowledge flows between international locales.
We conclude this paper with a discussion that is mutually
informed by contemporary practice and historical configurations.

Topics
 Community technologies and networking
 Information technology and services

Keywords
Open Source, software development, knowledge, know-how,
transnational circuit

1. INTRODUCTION
Information technology (IT) is commonly touted as the route to
national progress and the renewal of the global economy. While
there are many good reasons to accept this claim at face value, we
suggest that future IT innovation might better be served by

analyzing this process (a) technologically and (b) socio-
historically. A more nuanced formulation of this claim is likely to
have beneficial effects on various kinds of policy-making that
base themselves on versions of this claim.

First, we wish to disaggregate the notion of knowledge itself, and
specifically IT knowledge, into two components, “know-what”
and “know-how.” No doubt IT could be further subdivided, but at
a first level of approximation, this heuristic division reminds us
that technology itself is both a knowledge-system and a practice.
It is both a highly systematized, explicitly formulated and
repeatedly tested set of logically nested truths (which allows us to
know what laws hold), and a highly fluid set of practices, intuitive
beliefs, and implicit codes (which allow us to know how to do
things).

There has been much historical and sociological work on
expertise (and “know-what” forms of IT knowledge), but less on
the intuitive, socially coded set of practices we wish to lump
under the heading of know-how. We suggest that understanding
know-how will help us better understand some of the ways in
which (1) groups of software developers share knowledge, (2)
software development innovates, and, (3) IT knowledge travels
along transnational circuits of practitioners.

Thus the policy areas that are elucidated include questions such
as: Where should we look for the next wave of ideas in software
development to fuel the nation’s economy? We suggest in closing
that many sites of often-overlooked creativity and innovation may
exist in marginal networks outside the mainstream areas of
software development.

Below, we briefly explain what we mean by know-how. We then
explore why a more complex ethnographic understanding of
know-how might elucidate the ways in which software innovation
occurs, and how this shifts our models of global dispersion of
technological practices. Finally, we explore the policy
implications.

2. WHAT IS TECHNOLOGICAL KNOW-
HOW?
In their classic work “The Social Shaping of Technology,” Donald
Mackenzie and Judy Wajcman [1] suggest that technology has
three layers of meaning: physical objects, the human activities
associated with these objects, and most importantly, knowledge
about how to conceive, design, build and repair these objects, a
rather fuzzy area they term know-how. This latter area, “know-

Copyright and Disclaimer Information
The copyright of this document remains with the authors and/or their
institutions. By submitting their papers to the iSchools Conference 2008
web site, the authors hereby grant a non-exclusive license for the
iSchools to post and disseminate their papers on its web site and any
other electronic media. Contact the authors directly for any use outside
of downloading and referencing this paper. Neither the iSchools nor any
of its associated universities endorse this work. The authors are solely
responsible for their paper’s content. Our thanks to the Association for
Computing Machinery for permission to adapt and use their template for
the iSchools 2008 Conference.

how,” is fuzzy, and not merely to post hoc analysis. More
intriguingly, expert technological practitioners often cannot put
into words how they know what to do when confronted with a
technological challenge. Other theorists have suggested that
know-how cannot be captured in words, and is often visual and
tactile, not just mathematical or verbal [1] (pp. 3-4), [2].
Historians of technology have suggested that this sort of implicit,
practical skill at the nexus of art and craft is in fact the older
meaning of technology itself, and have explored the variations of
meaning in la technologie (French, “technology”), la technique
(French, “technique”), and die Technik (German, “technics,” in
Lewis Mumford’s translation).

A set of issues is raised for us by this STS approach to technology
and the practical arts. First, how does know-how function in
software development? Second, what can we learn from other
historical examples? And finally, how does this function in a
global, not just national, context?

2.1 The Role of Know-How in Software
Development
Know-how has an important role in software development and its
acquisition is necessary to attain proficiency in the craft. Whereas
know-what is explicit, factual knowledge, know-how is the ability
to put know-what into practice. Know-how is necessary to
successfully innovate. Programming languages, application
frameworks, and software tools are general-purpose technologies.
They are intentionally designed to be highly flexible and
adaptable, and the onus is on the developer to use these tools to
create specific solutions. Furthermore, this know-how needs to be
constantly updated, because software technology and the
information ecologies of end-users are constantly changing.

Know-how is the link between creativity and innovation.
Creativity can be described as the generation of ideas, while
innovation is the practical application of those ideas into workable
solutions. Know-how is the procedural and experiential
knowledge that is needed to perform the transformation
successfully. In information technology, know-how takes many
forms, such as working knowledge of application program
interfaces (APIs) and libraries, the craft skills for creating a
database schema, and the judgment to know when to apply
different principles. This IT know-how is highly situated, which
means that it needs to be adapted to specific situations, and
constantly emerging, because the problems and technologies are
constantly changing. Therefore, open exchanges where people can
seek out, provide, and share IT know-how are particularly
important in this domain for sustaining innovation.

2.2 Open Source Software
The most commonly cited space of open exchange, is the domain
of open source developers, who work through communities based
on exchanging and increasing know-how. Open Source software
is often cited as means for leveling inequalities between
intellectual and material haves and have-nots. Although Open
Source developers have forged ingenious modes of sharing
knowledge, it is in fact surprisingly difficult to share know-how
through software artifacts.

This difficulty is due to properties of source code. Program
source is too complex to be understood on its own (or even with
typical documentation), too brittle to travel well between settings,

and contains completed solutions, but not the know-how needed
to build new solutions. The constraints of the problem, the
problem context, and the decisions made as part of the design
process are missing. Many technologies are complex, but software
especially so, and this complexity is often compounded by its size.
An application like Microsoft Excel can contain upwards of ten
million lines of source code. It can be very difficult to locate the
know-how in this tangled mass of classes, interfaces, design
patterns, delocalized plans, and scattered concerns. As well, it can
be difficult to modify, since the omission of a single file, or even
an error in a single line of code can cause a program to fail to
compile into an executable that will run correctly.

Open Source software artifacts are necessary, but not sufficient to
transmit know-how. Software development know-how needs to be
acquired through experience or from other practitioners. Every
successful Open Source project has a corresponding community
that interacts through forums or mailing lists, and sometimes
through embodied meetings. We have found that open exchanges
are critical to the exchange and transmission of software
development know-how.

3. OPEN EXCHANGES FOR SOFTWARE
DEVELOPMENT KNOW-HOW
An open exchange is a space where interested people can learn,
critique, and contest ideas. It is not so much a physical or virtual
place, or even a particular event, but rather an opening for a
particular kind of interaction. In this sense, the classical Greek
agora, as a marketplace of ideas, a crossroads for intersecting
contingencies, and a forum for a critical public community, was
also an open exchange. It’s a locale that is defined in terms of
activity, rather than geography, technology, or membership.
Another formulation of an open exchange in terms of activities is
“link, lurk and try,” meaning linking with others of like minds,
lurking on the periphery of a community of practice, and trying
out new things with low risk [3]. Examples of “trying” are
accessing and using new technologies, airing new ideas, and
rehearsing arguments.
Any site that has the capability for a community of individuals to
interact with each other directly has the potential to become an
open exchange. They are not necessarily geographic locations or
regular events; they can be virtual spaces and informal meetings.
Their memberships can be restricted and controlled, or they can
be informal and unregulated. The exchanges can be public, or they
can be within an organization. What distinguishes a merely social
group from an exchange is common practice, that is, the
organization of the community around a set of problems,
technologies, or know-how. The adjective “open” applies to the
sharing of ideas and solutions, unfettered by hierarchical
structural constraints, reporting relationships, and professional
rank. The most effective open exchanges appear to be ones with a
diverse membership, with people representing a broad spectrum
of local contingencies and social groups. John Seely Brown has
argued that it is the trust and “creative abrasion” in such
communities that is the key to innovation [4]. Innovation, he
argues convincingly, cannot be “managed,” but instead must be
critically nurtured by creating a space for pluralism—neither
stifling it, nor letting it run amuck.

The Open Source movement has resulted in a worldwide
community of practice and a network of open exchanges [5, 6].
Communities of practice are a highly effective means for learning
know-how, especially in domains involving design and

technology [7]. The project source code, discussions in electronic
forums, and solutions in the form of bug tracking and change sets
is open for anyone to examine, comment on, and contribute to.
Transmission of know-how occurs through both active
participation and legitimate peripheral participation, or lurking.

3.1 Historical Examples
There are many historical and contemporary examples of
innovation that has been fueled by open exchanges.

Libraries are early examples of sharing. The great libraries of
Alexandria, Tunis, Tibet, Nalanda, Baghdad were centers of
shared learning to which scholars would travel, sometimes for
years, to avail of free knowledge. A revolution in cataloguing
during the 1800s revealed a dense web of connections among
multiple knowledge elements and processes, “transforming the
library catalog from an inventory into an instrument of discovery”
[8]. By identifying these connections and innovative combinations
of knowledge elements, the library became an open exchange and
fostered knowledge creation.

Open exchanges have followed global transnational circuits long
before the modern era. For centuries, preachers, traders, warriors
and adventurers carried shared experiences, ideas, and memories
around the globe, creating global markets and shaping networked
histories [9]. While some analyses have characterized these flows
as traveling between cores and periphery, the story is a more
complicated one than the standard one about conquest,
domination, submission, and tribute. Rather, transnational circuits
of commerce and culture became the conduits for the later
development of sharing, hybrid networks. Today, open exchanges
for know-how within transnational circuits are central to
innovation in software development.

4. Open Exchanges of Software Know-How in
India Today
Around the world, BarCamps are ad hoc gatherings of software
developers, explicitly formulated as an open, interactive exchange
[10]. Forged in opposition to perceived exclusions in the sharing
of software development know-how, BarCamps, often referred to
as “non-conferences,” challenge the hierarchies among speakers
and audience, keynotes and panels, experts and laypersons.
Organized in the form of collectives that meet on the fly,
BarCamps exhibit a mode of ad hoc community exchange that
employs the most flexible current tools of know-how exchange,
including wikis, wifi, social bookmarking, photosharing,
blogging, and chat. They have become one of the most popular
“semi-official” ways in which software developers learn from,
and forge, communities of practice.

BarCamps all over India have been vital in projects such as
localization of software, popularizing new programming
languages and techniques among non-native English speakers, and
the discussion of the social and political context of emerging IT
economies. One of us (Philip) attended BarCamp Bangalore
(BCB) [11] in August 2007 to learn about open exchanges in this
context.

BarCamps are full of a palpable excitement. Participants give up
weekend leisure (after grueling work-week schedules in corporate
programming jobs) in order to meet with people they come to
consider their most intimate community, yet whom they largely
know only on-line. The combination of virtual and physical
worlds, technical and social discussions, work and leisure, and

multiple programming and human languages makes BarCamps
thrilling examples of open exchange for participants. One of the
main organizers of BCB expressed his commitment to open public
exchanges of knowledge as the primary reason for his devotion to
the BarCamp project.

Although BCB participants are not identical to the Open Source
community, many of them spoke of their involvement in India’s
free software movement. Many BCB participants reported
searching for open exchange forums not primarily from
ideological opposition to proprietary software, or social
commitments to transparency, but simply because they found they
were not learning rapidly enough in closed systems.

The emergence of open exchanges such as BCB serve to underline
our critique that the transmission of software artifacts through the
Open Source movement is not sufficient to transmit know-how.
As well, social networking practices and technologies are not
sufficient to create the communities of practice that are necessary
to locate and share know-how. Rather, it is the configuration of
the elements into open exchanges that is necessary to create an
autonomous cadre of software developers that is needed to
develop the software needed by local contexts. In this manner, IT
knowledge flows across national boundaries to bring information
works and countries into a global context.

5. Historical Lessons, Revisited
Is today’s Open Source revolution another manifestation of the
parameters that have historically governed technological
progress?

Our preliminary investigations suggest that, although the current
period of IT innovation shows many novel aspects, there are
strong historical resemblances, which are worth investigating
further. For example, historian Pamela Long’s study of “Technical
Arts and the Culture of Knowledge from Antiquity to the
Renaissance” [12] finds that in the fifteenth- and sixteenth-
century, technological practitioners commonly advocated
openness, freely disseminating their knowledge of subjects such
as mining, ore processing, artillery, and fortification. Other
historians of science have shown that early modern scientific
communities were rooted in “moral economies,” formed by webs
of values about collaboration, self-discipline, and sharing [1, 13].
These values were initially drawn from the ambient culture, such
as the model of the humble, dedicated, and self-disciplined saint,
which influenced seventeenth century models of the natural
philosopher, and remained intrinsic to eighteenth century
scientific personality-ideals. These values, however, morphed
over time into specific scientific values without direct
correspondences to the broader culture.

Scientific cultures reworked and re-circulated a dynamic web of
values to form moral economies particular to each scientific
community. The resulting scientific “moral economy” could not
be explained simply as a reflection of cultural norms. More recent
ethnographic studies of “hacker” communities suggests that their
technological practice is closely tied to their “cultural” values
regarding freedom, individuality, sharing, and innovation. For
example, ethnographer Gabriella Coleman suggests that the form
and content of Open Source software embodies structures of
linkage, transparency and connectivity that are dynamically
related with similar values in the Open Source community [14].
Since Open Source communities are globally dispersed, and
function without conventional face-to-face interaction, there are
few social mechanisms to enforce structures of exchange. Rather

than cultural or organizational conventions, it is technology that
functions as the medium of exchange, embodying “values” of
openness.

The mutual embeddedness of open cultures of exchange and
technologies of open design is only just beginning to be
understood. We suggest that the combination of historical,
ethnographic, and software engineering methodologies provides a
promising route to a robust understanding of this important
dynamic, which is a part of the most innovative new software
design practices today.

Techniques and practices of sharing are some of the most creative,
and the most controversial, technological developments of the last
decade. It is the shared excitement about technological challenges
that facilitates, and motivates, new kinds of remote
communication. It is the speed and global scope of the Internet
that allows young “geeks” to build global shared communities,
and any perceived threat to widespread access fuels much of their
activism [15-18].

Why do software sharing communities, or what we call know-how
agoras, spend so much time and energy developing technologies
and practices of sharing? Many Open Source developers have
day-jobs in proprietary software companies, but spend their
personal, unpaid hours coding and de-bugging software that
belongs to nobody, yet is potentially anybody’s. A shared
excitement about dispersed problem solving, as well as a
commitment to open exchange of IT knowledge, fuels Open
Source communities. Compartmentalization (into departments and
companies) appears to be wasteful (in terns of optimizing
creativity), because knowledge is “siloed,” meaning there is a
narrow division of labor. Developers spend a lot (too much) of
their time locating resources, and not enough time playing with
the resources. Theorists across disciplines, including legal
anthropologist Rosemary Coombe [19], ethnographer of
globalization Arjun Appadurai [20], and scholar-entrepreneur
John Seely Brown [4] have pointed out that information has a
cultural and social life – that is, it is produced, shaped, exchanged,
and designed in fundamentally social contexts, not just in
individual minds. Sharing is a key necessity for this
transformation in the patterns of design innovation, and the
emergence of open exchange systems for software know-how is a
key to creativity in IT.

6. Discussion and Implications
Histories of science and technology teach us how to look for webs
of values particular to extremely innovative technical
communities. These histories also indicate why an
interdisciplinary method is necessary: while historians of culture
and ethnographers might be alert to forms of communication,
patterns of collaboration, and innovative organizational behavior,
software engineers and hands-on programmers are needed to
identify forms of creativity that are tied to the techniques of
writing code, designing system architectures, and ensuring
interoperability. Multiple methodological skills must be combined
to discover what connections exist between technical creativity
and cultural practices.

Consider the question of: Where should we look for the next wave
of ideas in software development to fuel the nation’s economy?
We have suggested that creativity and innovation exists in
marginal networks outside the mainstream areas of software
development.

Corporations are rarely the source of radical new ideas; novel
ideas typically come from cottage industries and grass roots
organizations. A few examples from the Internet era are blogging,
digital music sharing, and Open Source software. These are
practices that originated at the margins of society, but have
become mainstream, and subsequently adopted by corporations.
Venture capitalists have long understood that the next big thing
can come from unlikely corners, so they are willing to take big
risks on unknown upstarts because the payoffs can be huge. This
observation is consistent with two decades of scholarship in the
history of technology, which suggests not only that knowledge
often flows from margins to center, but also that the very
definition of central or universal knowledge is one that
continuously incorporates margins and gives rise to new
peripheries. A continuous dynamic emerges: intellectual and
popular, mainstream and marginal, core and periphery, interact
and shape each other in a historical spiral whose parameters are
simultaneously social, political, and technical. Therefore, our
hypothesis suggests that more work is needed in the
understanding of sub-cultures at the margins (economic, social,
and geographic). We should move to investigating margins as not
simply “lacking” in the resources of the center but rather as
potential sources of radical ideas.

7. REFERENCES
[1] D. A. MacKenzie and J. Wajcman, The Social Shaping
of Technology, Second Edition: Open University Press, 1999.
[2] E. S. Ferguson, "The Mind's Eye: Nonverbal Thought in
Technology," Science, vol. 197, pp. 827-836, 16 August 1977.

[3] J. S. Brown and P. Duguid, "Organizing Knowledge,"
California Management Review, vol. 40, pp. 90-111, 1998.

[4] J. S. Brown and P. Duguid, The Social Life of
Information: Harvard Business School Press, 2002.

[5] R. Goldman and R. P. Gabriel, Innovation Happens
Elsewhere: Open Source as a Business Strategy: Morgan
Kaufmann, 2005.

[6] J. Lave and E. Wenger, Situated Learning: Legitimate
Peripheral Participation: Cambridge University Press, 1991.

[7] G. Fischer, "Social Creativity: Turning Barriers into
Opportunities for Collaborative Design," in Eighth Conference on
Participatory Design, Toronto, ON, Canada, 2004, pp. 152-161.

[8] M. Block, "Library: An Unquiet History: A Review," in
Ex Libris, 2003.

[9] N. Chanda, Bound Together: How Traders, Preachers,
Adventurers, and Warriors Shaped Globalization: Yale University
Press, 2007.
[10] "BarCamp wiki - The password is c4mp," 2007.
[11] "Main Page - BarcampBangalore," 2007.

[12] P. Long, Openness, Secrecy, Authorship: Technical Arts
and the Culture of Knowledge from Antiquity to the Renaissance:
The Johns Hopkins University Press, 2001.

[13] L. Daston, "The Moral Economy of Science," in Osiris,
Second Series, Constructing Knowledge in the History of Science.
vol. 10, 1995, pp. 2-24.

[14] G. Coleman, "The Political Agnosticism of Free and
Open Source Software and the Inadvertent Politics of Contrast,"
Anthropological Quarterly, vol. 77, pp. 507-519, Summer 2004.
[15] Creative Commons, "Creative Commons." vol. 2008.

[16] EFF, "Electronic Frontier Foundation | Defending
Freedom in the Digital World." vol. 2008.

[17] FSF, "Year end appeal - help protect your freedom! -
Free Software Foundation." vol. 2008.

[18] Linux Kernel Organization Inc., "The Linux Kernel
Archives." vol. 2008.

[19] R. J. Coombe, The Cultural Life of Intellectual
Properties: Authorship, Appropriation, and the Low: Duke
University Press, 1998.

[20] A. Appadurai, The Social Life of Things: Commodities
in Cultural Perspective: Cambridge University Press, 1988.

