
Creating Task-Based Concern Maps by Merging Concern Fragments

Sukanya Ratanotayanon
Dept. of Informatics

University of California, Irvine
sratanot@uci.edu

Susan Elliott Sim
Dept. of Informatics

University of California, Irvine
sesim@uci.edu

Abstract

On any project, it is not possible to have complete
and accurate concern maps for all possible tasks. We
present an approach to creating concern maps from
available secondary software work artifacts from
common software tools, such as revisions control. We
mined and indexed concern fragments from
repositories of those tools. Developers can search the
index for an initial set of relevant fragments. To create
a final concern map, the members from the initial set
of fragments are validated, merged and expanded
using a call graph. Members of the final concern map
members are also ranked to guide developers to more
relevant sections of the code.

1. Introduction

When professional developers work on maintenance

tasks, they want to pay attention only at the code
related to their task. An accurate concern map that
links a concern to its implementation in the code can
help programmers to find all and only the parts of the
code relevant to their work. However, it is rare to have
an accurate and complete concern maps for all
concerns in the software. Like other kinds of
documentation, developer effort is required to create
and maintain concern maps. As well, details may be
left out of the concern maps, intentionally or
inadvertently, resulting in only partial concern maps, or
concern fragments. Moreover, it is not possible to
anticipate the need for a particular concern maps in the
future, so we will often encounter situations where no
concern map is available. Therefore, instead of relying
on availability of a complete concern map, we aim to
create it in an ad hoc manner for a particular task.

Previous work addressed this issue by reverse
engineering concern maps using information retrieval
{{Marcus,Andrian 2003;}}, machine learning {{261
Zimmermann,Thomas 2004;}}, and program analysis
techniques {{ 264 Zhao,Wei 2006; }} to find

relationships between code and sections of high-level
documents, such as requirement specifications.
However, difficulties in using these techniques include
the need for reliable documentation and insufficient
control over which concern maps are created.

We draw on this previous work to create an
approach that builds on their strengths while
minimizing their weaknesses. Our approach aims to
interactively re-construct a concern map using
available secondary work artifacts such as commit
transactions, task context and defect reports. We can
obtain concern fragments from the secondary artifacts
as they link together high-level description and source
code. A concern map for a novel task can be created by
combining members of relevant concern fragments.

To use concern fragments to locate sections of code
relevant to a task, we need to address the following
three challenges. One, there needs to be a mechanism
for finding concern fragments that are relevant to the
programmers’ task. Two, there needs to be a
mechanism to locate concern members that are
relevant, but missing from the concern fragments.
Three, there needs to be a mechanism to identify the
most relevant concern members, so these can be
investigated first.

2. Creating Task-Based Concern Maps

We use secondary artifacts because they are

commonly produced as a part of existing work
practices. Therefore, require no additional effort to
create and maintain. In addition, they contain
conceptual-level information that is difficult to find in
the source code, such as feature descriptions, task
descriptions, and links to related code. For example,
revision control systems record high-level comments
with what have been changes; bug tracking systems
record changesets that are associated with a specific
bug and bug description; context management tools,
such as Mylyn, record which parts of code are
examined during a task. Using this information, we can

obtain a concern map from theses secondary artifacts.
But concern maps from these tools are often
incomplete, in another word they are concern
fragments. For example, a concern fragment obtained
from commit transaction may miss program units that
were indirectly related to the task, but not modified or
may contain only a facet of the concern that was
touched by the task. To obtain a more accurate concern
map, instead of using only one concern fragments, our
approach combine a group of concern fragments that
are conceptually related to a programmer’s task to
create a final concern map for the task.

We combine techniques from Information Retrieval
(IR), program analysis, and data mining version
histories to address the challenges in reconstructing
concern maps using concern fragments. Our approach
is shown in Figure 1.

Merged
Concern Map

Commit
Transactions

Defect
Reports

Task
Contexts

Concern
Fragments

Concern
Fragments

Index

Source
Code

Keywords

Analyzing & Indexing
Concern Fragments

Extending with Call
Graph and Merging

Conceptually Related
Concern Fragments

Figure 1: Approach to Re-constructing Concern

Fragments
We populate the concern fragment repository with

concern map fragments inferred from repositories of
secondary artifacts. We represent concern maps by
explicitly listing their members, because this
extensional representation makes it easier to combine
fragments from different tools. The smallest unit of
concern members in our representation is unique
identifier such as fields and methods for Java code and
files for non-Java artifacts.

To enable a programmer to search for concern
fragments, we created a repository with concern
fragments and their metadata. The information that we
indexed in the repository is: conceptual description of
the concern, author, creation date, and program
elements that are members of the concern fragments.
Users can retrieve an initial set of relevant concern
fragments in an ad hoc manger by querying with both
program elements and domain-level vocabularies as
keywords.

To improve the ad hoc concern map, we validate,
extend, and combine the members of concern

fragments that are in this initial set. When using
concern fragments from historical records, we may
encounter elements that no longer exist. Therefore, we
validate whether a member exists in the current version
of the code, before performing further analysis. We
deal with the problem of under-reporting of concern
members using a static call graph to discover members
missing from a concern fragments. This technique
reduces false negatives, by extending a concern
fragment with program elements that are in the same
sub-tree of the call graph or are used by the current
members of the concern fragment. Lastly, all the
existing and inferred members of concern fragments
are combined to construct a concern map.

To deal with the problem of knowing which
concern members are more important to the task, we
rank members of a final concern map using a relevance
metric. This metric is based on whether the concern
member was actual or inferred, how frequently a
concern member appeared in the merged fragment, and
whether the user had shown interest in the returned
fragments. This technique reduces the impact of false
positives. Later, to fine tune the concern map, it is
possible to add or remove concern fragments from the
set.

3. Future Work

We have already implemented our approach in a

prototype Eclipse plug-in, called Kayley. Our future
work includes improving the precision and recall of the
returned concern fragments. We also plan to improve
the tool’s ability to infer the relevance of a concern
fragment during the initial search. As well, we need to
improve our metric for ranking; currently, some
marginally relevant members such as utility methods
are currently receiving high score, because they are
used frequently. Lastly, we need to evaluate the
performance of this approach with comparable
industrial software.

4. References
[1] A. Lakhotia, "Understanding Someone Else's Code:

