
My Repository Runneth Over:
An Empirical Study on Diversifying Data Sources to Improve Feature Search

Sukanya Ratanotayanon Hye Jung Choi Susan Elliott Sim
Department of Informatics

University of California, Irvine
Irvine, USA

{sratanot, hchoi7, sesim}@uci.edu

Abstract—

Research on feature location that apply information retrieval
techniques have experimented the kinds of inputs to the corpus
and the algorithms that could be used. At first, only source
code was used. Later extraction techniques were improved,
and data from other software tools and analyses were used to
expand or augment the repository. But, does having more
diverse data in the repository always produce better results? In
this paper, we report on an empirical study to examine the
effect of increasing data diversity to improve feature location
through search. In particular, we looked at the effect of
including: i) change sets from revision control system, ii)
tickets from issue trackers, and iii) elements from a Static
Dependency Graph (SDG). We searched for three features of
Jajuk, an open source Java jukebox, and two features of jEdit,
an open source Java text editor. We used four different
corpuses built with a combination of the above data. We used
Eclipse’s code search and an index built with source code as
baseline conditions. We found that it is not always better to
have more diverse data. Adding SDG data to changesets
increased recall, but drove down precision. Adding data from
issue trackers had little effect and in one case lowered recall.
We also found that large-scale refactoring of the code
decreases the effectiveness using changesets for feature
location.

Keywords-component; feature location; code search;
program comprehension; change sets

I. INTRODUCTION

Software developers frequently perform searches on
source code to help them find where a feature is located [20].
Unfortunately, there is a large gap between the problem
description (which uses vocabulary from the problem
domain) and the strings in source code (which uses
vocabulary from the solution domain) [2, 9, 14]. Much work
has been done in the area of feature location to address this
problem. Feature location tools help developers to find
where a feature is located in the source code.

A number of feature location techniques have been
created. Many of them leverage techniques from information
retrieval (IR), which deals with how to retrieve unorganized
diverse data effectively and efficiently [5].These techniques
are valuable, because feature location involves locating
relevant information from a large body of source code.
Research on feature location that apply IR techniques have

varied both the kinds of inputs to the corpus and the
algorithms used.

The kinds of data in the repositories for feature location
have changed over time. At first, only source code was used,
but later extraction techniques were improved, and data from
other software tools and analyses were used to expand or
augment the repository.

A number of approaches have been developed for turning
source code and specifications into an indexed repository of
documents [1, 12, 15]. More recently, changesets from
revision control systems have been found to be helpful. A
changeset contains information related to a commit made to
a revision control system. It usually contains conceptual-
level information that is difficult to find in the source code.
More importantly, it provides explicit links from the
conceptual description of a task to the implementation.
Building on earlier success with IR techniques, changeset
data was input into the repository instead of source code. In
addition, this type of corpus can be improved using
information from other sources, such as issue trackers [6],
either as documents or metadata to improve indexes.

Results from static and dynamic analysis tools provide
useful information about relationships among program
elements [21]. For instance, relationships from a static
dependency graph (SDG) can be used to expand search
results with program units that are relevant, but are not part
of a changeset.

The trend to include more data in repositories suggests
that having more information may produce better results. In
this paper, we report on an empirical study to investigate
whether this is the case. In other words, does increasing data
diversity necessarily improve feature location?

In our study, we built searchable repositories from
different combinations of data sources: changesets, issue
trackers and dependency graphs. We chose features from
two subject systems, Jajuk (three features) and jEdit (two
features). To evaluate the search results, we studied the
software closely and manually created a set of authoritative
implementation locations for each feature. The independent
variable in the experiment was the type or types of data in
the repository. This variable had four levels, each with a
different combination of data, plus two control conditions.
The four combination of data are: i) only changesets, ii)
changeset plus dependency graphs, iii) change set and
information from a tracker and iv) all information including

changesets, information from trackers and dependency
graph.

As our control conditions, we also performed the search
for these features using Eclipse regular expression search and
a searchable corpus built from source code. For our
dependent variables, we used precision and recall.

Compared with our baseline conditions, the results show
that the repository built with changeset provides results with
better precision, but lower recall. However, augmenting the
repository with the SDG yields comparable recall rates but
still have better precision than baseline.

Among the various combinations of data sources, we
found that adding information from trackers had little effect,
and in one case lowered recall. The combination of the data
sources that provided the best balance of the precision and
recall was changesets with bug reports and feature requests.
Adding information from the SDG on the other hand
improved the recall at the cost of the precision. To use this
type of information effectively, an accurate ranking
mechanism is needed. We conclude that it is not always
better to have more diverse data in a repository for feature
location.

Our results also indicated that although changesets are
helpful for locating features, but large-scale refactoring of
the code limits their effectiveness.

The paper proceeds as follow: Section 2 reviews previous
work in feature location on including various kinds of data in
the repository. In Section 3, we give an overview of the
approach used in our study. Section 4 presents our research
questions. Section 5 describes the feature location platform
that we used in our study. Sections 6 and 7 detail the study
design and results, followed by discussion and threats to
validity in Sections 8 and 9. Future work and conclusions are
given in Section 10 and 11 respectively.

II. IMPROVING FEATURE LOCATION WITH DIVERSE DATA

To comprehend a program, developers need to know
where features that they are interested are located in source
code. A feature is sometimes scattered or tangled in source
code [3, 7] so locating a feature is not easy but essential to
understand source code. Searching source code with
conceptual keywords only provides a limited support for
locating program elements relevant to a feature. Vocabulary
from the problem domain is not usually present in the source
code [2, 9, 14]. Although the vocabulary sometimes appears
in comments, they are not present in all relevant locations.

A number of feature location techniques have been
created using techniques from information retrieval (IR),
which have been created to deal with the problem of
retrieving information from large collections of unorganized
data [5]. Initially, these repositories tended to be populated
using only source code and the matches returned needed only
to be lexically close to the terms in the search specification.
Advances involved the creation of novel techniques for
creating the search corpus from source code and
specifications [12, 15].

Information from additional sources improved searching
for features with conceptual keywords. We focus on data
from two sources: software tools in use on the project and

inferences from analysis tools. Leveraging data from
software tools, such as issue trackers and revision control
systems, is effective because this information is readily
available and does not place a burden on the developers. In
particular, we are interested in the following three data
sources for improving feature location: changesets, data from
an issue tracking system, and static dependency graphs.

More recently, research found that using changesets from
revision control systems has proven to be helpful. A
changeset is the record from a single commit transaction to
the revision control system, consisting of the names of the
files that have been changed, the changes to the files, and a
commit comment. Consequently, a changeset can be used to
provide explicit links between domain concepts and lines of
code [4], or links between program elements [16, 23]. These
links can be effective for locating relevant program units.
Several tools take advantage of commit comments in
revision control systems so that software developers could
look for source code using conceptual keywords. Some
researchers used machine learning techniques to find patterns
by mining change patterns from commit transaction and
predict likely changes of relevant program elements [23].
Building on the success of IR approaches, changeset data can
be used as documents for indexing instead of source code. In
addition, this type of corpus can be improved using
information from other sources.

Data from issue trackers have also been used to help
developers understand code. Many software projects adopt
an issue tracking system to keep track of bugs or feature
requests. The items in these tracker systems provide detailed
description of features at the conceptual level as opposed to a
short description commonly provided in the changesets.
What makes this type of information useful is that
developers often provide a link from a bug report or feature
request to the changeset implementing it. Therefore, we can
use this information to provide even more details to sections
of code using a combination with changesets. Some tools
that have utilized bug reports or feature requests to
supplement their corpus for conceptual-level searching
include Hipikat [6] and ConcernTagger [8]. Bug reports or
feature requests have also been used to identify features that
developers should be interested in and to create queries for
searching [15, 17].

Finally, software analysis tools can provide information
about program elements. While the previous two types of
information are good sources of metadata, they do not
increase the completeness of the matches returned. A
changeset may miss program units that were related to the
task, but were not modified or may contain only a facet of
the feature that was touched by the task. We need a mean to
extend program elements identified as relevant to other
related program elements. A static dependency graph,
containing program dependency information among program
elements, can be used for this purpose. Program elements
implementing the same feature are most likely to have
relationships and depend on each other. Therefore, we
should be able to discover missing program elements using
their dependency relationship with the program elements that
are already found. Previously, static analysis has been

successfully combined with IR techniques for feature
location. Examples of successful tools are: SNIAFL [22],
JQuery [11], and JIRiSS [13].

III. RESEARCH QUESTIONS

There are several assumptions made in the usage of
information from data sources presented in the previous
section to improve feature location. The main assumption is
that information from these data sources would improve the
connection between conceptual keywords and source code.
Therefore, allow more relevant results to be returned when
searched with conceptual keywords.

To evaluate these assumptions, we performed an
empirical study by searching different features using search
corpuses enhanced with information from these data sources.
The specific questions that we aim to investigate are as
followed:

 Does increasing data diversity improve feature
location?
Information from different data sources improves
search mechanism in different aspects. Adding
information from changesets and tracker items to the
search corpus improves the possibility that the
keyword will be matched to relevant members.
Using static dependency graph, we can retrieve more
relevant program elements using their relationships.
Therefore, we expected that adding more types of
information to enhance the search mechanism would
result in more completed and relevant results
returned when searching with conceptual keyword.

 What combination of data provides better results?
Because different data sources improve the search in
different ways, the combination of them may yield
different results. We aim to evaluate which
combination of data source provides the best results
when used together.

IV. FEATURE LOCATION PLATFORM

To perform the evaluation, we used a prototype search
platform, Kayley, to search for various features in subject
software systems. The two main features of Kayley are: 1)
the ability to create a searchable repository from changesets;
and 2) the ability to enhance the repository with diverse data
from arbitrary sources. These features allow us to create
search corpuses for a subject software system using different
combinations of data sources. In this study, we incorporated
the information from an issue tracker items and a static
dependency graph to the searchable repository of changesets.
The features of Kayley and its usages are discussed in detail
below.

A. Creating a searchable corpus of changesets

The prototype retrieves changesets by importing the
commit history of a software system from Subversion
(SVN). To create a search corpus, instead of using a source
file as a document, each changeset is treated as a document.

We used Jakarta Lucene1, a high-performance, full-featured,
Java-based text search engine, to index the changesets.
Although the changesets associates concepts to lines, Kayley
returns the enclosing program element. The index of the
corpus is built using the following information: comments of
each changeset, author, creation date, and signatures of
associated program elements. The indexed information is
tokenized in lower case, and reduced to the word root before
being indexed.

B. Adding diverse information to the search corpus

Kayley can incorporate various combinations of data
from diverse providers. In this study, we included two types
of data: information from a tracker tool and a static
dependency graph.

Kayley uses information from trackers as additional
domain level vocabulary. The additional, longer description
can help improve the accuracy of the index. Information
from the tracker is input as an XML file, and where possible
Kayley will match the track identification number with the
commit comment in the changesets. When a match is found,
the description of the tracker item will be added to the
changeset and indexed along with other metadata.

The static dependency graph can be used to expand the
set of relevant program elements. Kayley checks each
method in a changeset, and only expands the ones that exist
in the current version of the code. For each of these filtered
methods, a static dependency graph is used to discover the
following program elements.

 All callee methods in the subtree of the dependency
graph rooted at the method being checked. Callee
methods from binary files are excluded as they
usually come from libraries.

 Definition of public fields that are used by each
method identified.

The indexed changesets are then extended to associate with
these program elements.

C. Using the Platform

The first step is to create a search corpus of changesets
by providing a SVN repository path of the project to Kayley.
When creating a search corpus, a user can specify additional
data to be incorporated as discussed above.

Kayley is intended to be used interactively. The user can
query Kayley using keywords describing the feature. Kayley
will present the user with the top 50 changesets that match
the keyword. At this point, the user needs to examine the
returned changesets and select a set of relevant ones. The
program elements associated to the selected changesets will
be validated for their existence in the code. The program
elements existing in the current version of the code will be
returned as search results.

V. DESIGN OF THE EXPERIMENTS

This section discusses the design of our experiment to
investigate whether increasing data diversity in a searchable

1 http://lucene.apache.org/

repository improves feature location. We performed feature
location for three features of Jajuk and two features of jEdit
using indexes built with four combinations of data sources.
The methodology of our study is described in subsection A.
The subject systems and features that we are interested in are
presented in subsection B.

A. Method

1) Treatment and Baseline Conditions
In our experiment, we used six treatment conditions to

assess which condition produced the best result. There are
four combinations of data sources and two other tools used
as baseline conditions.

 Changesets (C1)
In this condition, the index that we used was built
with only changesets. For each subject system, we
created an index using changesets from their
respective version histories using Kayley.

 Changesets + SDG (C2)
We augmented the index from C1 with the static
dependency graph so that program elements that do
not appear in the change sets will also be returned.

 Change sets + bug reports + feature requests (C3)
We used a crawler to gather bug reports and feature
requests from the issue trackers and added these to
the repository from C1.

 Change sets + bug reports + feature requests +
SDG (C4)
This condition includes every data source used
previously.

 Regular expression search using Eclipse IDE (C5)
This is our first baseline condition. Text search is the
most common way that developers search source
code. We conducted the search using regular
expression search in Eclipse IDE.

 Source Code Only (C6)
This is our second baseline condition. A number of
previous approaches have built the repository using
source code rather than change sets. We used the
FLAT3 platform 2 by Savage et al. [17] for these
searches.

2) Performing the Searches:
A search for every feature was performed under every

condition. We input into Kayley the same search
specification for a particular feature. From the changesets
that were returned, the two first authors agreed on which
were the relevant ones. These changesets were then used to
retrieve program elements that implemented the desired
feature.

In C5, the search specification was entered into Eclipse.
This search returned results at the line level, so we recorded
the enclosing program elements.

In C6, search specification was entered into the FLAT3
platform and all the returned program elements were
recorded.

2 http://www.cs.wm.edu/semeru/flat3/index.html

B. Subject Systems

For our evaluation, we chose two subject systems, Jajuk
and jEdit. We chose them because they were moderate sized
Java projects, with revision control histories and feature
tracking data. They have also been used previously in
empirical studies.

Jajuk3 is an open-source music player, which consists of
471 classes, 1,346 methods and 53,097 LOC in total. The
version that we used is 1.8.3 with the revision number 5571.
Robillard et al. previously conducted an experimental study
using Jajuk and created features (concerns) and their
mappings using ConcernMapper [16]. We used their study
and their features as a guideline for ours.

jEdit4 was selected to compare results with Jajuk. jEdit is
an open-source text editor, which consists of 836 classes,
5,154 methods and 98,662 LOC in total. We used version
4.3.1, revision 17000. jEdit has been frequently used as a
subject system due to its size, popularity, and active
community. We chose two of the features that Revelle and
Poshyvanyk [14] investigated.

C. Features Included in the Study

1) Jajuk Features
We selected three features of Jajuk: Add a song, Shuffle

mode and Sort collection. These features were previously
examined in a study performed by Robillard [16]. The
descriptions of these features are as followed

a) Add a song (F1)
There are several ways to add a song in Jajuk. For our

study, we only focused on adding by dragging and dropping.
After some experimentation, we decided to specify the
search as “drag drop playlist.” Initially, we tried “add song,”
but this retuned too many results Our final search
specification provided a more manageable number of results.
For Eclipse regular expression search, we used the regular
expression keyword, “drag*drop*playlist.”

b) Shuffle mode (F2)
In shuffle mode, the songs are played in a random order.

There are three ways to turn on this feature: selecting the
Shuffle Mode option from the menu, pressing the Shuffle
mode icon, or using Ctrl-h shortcut. We chose “shuffle
mode” as keywords for the search. For the Eclipse regular
expression search, “shuffle*mode” was used.

c) Sort collection (F3)
 This feature allows users to sort their entire music

collection according to different parameters, such as Album,
Genre, Artists, Year, Discovery date, Rate, and Hits. A user
can access this feature by using a “sort by” dropdown list in
the Track Tree panel. We chose “sort collection” as the
search specification. For the Eclipse condition, we used
“sort*collection”.

A summary of our keywords for the features of Jajuk is
presented in Table I.

3 http://www.jajuk.info/index.php/Main_Page
4 http://www.jedit.org/

TABLE I. FEATURES AND KEYWORDS FOR JAJUK

Feature Description Keywords

F1 Add a song
drag drop playlist /
drag*drop*playlist

F2 Shuffle mode
shuffle mode /
shuffle*mode

F3 Sort collection
sort collection /
sort*collection

2) jEdit Features
We selected two features from jEdit: Thick Caret and

Edit History. Similar to the features of Jajuk, these were used
in a previous study performed by Revelle and Poshyvanyk
[14].

a) Thick Caret (F4)
This feature allows a user to enable a thicker caret (or

cursor) in the text area. We defined the scope of this feature
limits to an option to enable thick caret and the operation to
paint thick caret in the content area of jEdit. Although the
term “thick cursor” was more familiar to us, we used the
keyword “thick caret” for this feature to follow the idiom
used by developers on the project. Under C5, we used a
regular expression “thick*caret” for Eclipse regular
expression search.

b) Edit History (F5)
This feature allows users to edit the history of previous

searches in “Find” dialog box. We limit our scope of the
feature to the history popup and actions to load and display
the history list. We did not include the ability to save a
search history as part of this feature. The keyword for
searching for F5 is “edit history” for conditions C1 through
C4 and “edit*history” for C5.

TABLE II. FEATURES AND KEYWORDS FOR JEDIT

Feature Description Keywords

F4 Thick caret
thick caret /
thick*caret

F5 Edit history
edit history /
edit*history

D. Oracles

We needed an oracle so that we could evaluate the
experimental results and to calculate precision and recall of
each result. Two researchers studied the software closely and
manually created a set of authoritative implementation
locations for each feature.

The first two authors individually studied the subject
systems and determined relevant program elements for each

feature. Subsequently, they reconciled their solutions and
came to a consensus on the gold standard. This gold standard,
the list of program elements, is used as an oracle to
determine the relevancy of retrieved results. The total
number of relevant program elements per features in this
authoritative list is presented in Table III.

TABLE III. THE NUMBER OF PROGRAM ELEMENTS OF EACH FEATURE

 F1 F2 F3 F4 F5

Oracle 7 17 18 13 20

When creating the oracle, we did not limit ourselves to a

specific number of relevant program elements for each
feature. However, the number of relevant program element
per feature is relatively small because we limited them to
ones that are considered necessary. Also, both researchers
needed to agree to put a program element on the list. The two
solutions initially had an inter-rater reliability score of
Cohen’s = 0.99.

E. Variables and measures

Independent variables of our study are the conditions (C1
to C6). The conditions represent different combination of
data sources.

The dependent variables are precision and recall, two
metrics from IR, to provide a high level characterization of
performance. Precision is the proportion of the total number
of elements retrieved that are also relevant. Recall is the
proportion of relevant elements that are also retrieved.

|}_{|

|}_{}_{|

documentsretrieved

documentsretrieveddocumentsrelevant
precision

|}_{|

|}_{}_{|

documentsrelevant

documentsretrieveddocumentsrelevant
recall

VI. RESULTS

We found that using different data sources for building
search index led to different characteristic of returned results.
Table IV and Table V present the precision and recall of
each condition of Jajuk and jEdit respectively. For conditions
C1 to C4, performance on jEdit was much higher than
performance on Jajuk. Further inspection revealed that
diminished performance on Jajuk could be attributed to a
refactoring that was applied to the source code. We will
discuss this issue in detail in the discussion section.

Compared with our baseline conditions, the results show
that a repository using changesets can return better search
results than regular expression search or a repository using
source code in some cases.

TABLE IV. PRECISION AND RECALL OF JAJUK.

F1 F2 F3 Average

P R P R P R P R

C1 N/A 0 0.1 0.18 0.5 0.33 0.29 0.17

C2 N/A 0 0 0.47 0.04 0.72 0.03 0.4

C3 0.29 0.29 0.7 0.12 0.46 0.33 0.47 0.25

C4 0.02 0.71 0 0.35 0.04 0.72 0.03 0.59

C5 0 0 0.4 0.41 0 0 0.13 0.14

C6 0.01 0.7 0.05 0.77 0.05 0.78 0.03 0.75

Note: P represents a rate of precision, and R represents a rate of recall.

TABLE V. PRECISION AND RECALL OF JEDIT

F4 F5 Average

P R P R P R

C1 0.8 0.62 0.57 0.2 0.69 0.41

C2 0.01 0.77 0.36 0.7 0.19 0.74

C3 0.8 0.62 0.57 0.2 0.69 0.41

C4 0.01 0.77 0.36 0.7 0.19 0.74

C5 1 0.62 1 0.1 1 0.36

C6 0.03 0.69 0.01 0.75 0.02 0.72

The distribution of precision and recall for each condition,

aggregated over all the features, are illustrated in Figure 1.
The vertical boxes show the interquartile range of the metrics,
while values outside this range are shown using vertical lines

centered on the box. The horizontal line inside the box
depicts the median.

For C5, the results show that the effectiveness of regular
expression search depends on the search terms that exist in
the code. Regular expression search worked well with F4
“Thick Caret,” but could not retrieve anything for F1 “Add
Song” and F3 “Sort Collection,” because the keywords in the
specified patterns do not exist in the code. The augmented
corpuses in C3 and C4 are more effective than using regular
expression search.

In C6 (search using a repository of source code in
FLAT3), recall is generally higher and the precision is lower,
meaning that more of the relevant program elements are
retrieved, but so are a lot of irrelevant ones. On average, the
results from C2 and C4 have comparable recall values, but
higher precision, meaning that they retrieve approximately
the same proportion of the relevant program elements, but
fewer irrelevant ones. This tendency is stronger for jEdit than
for Jajuk. In contrast, C1 and C3 have much higher precision,
but many program elements are missing. Finally,
performance on C6 is more predictable, as indicated by the
short boxes in the plot.

Repositories populated with changesets can be
augmented with data from other sources as well. We will
now look the effect of including diverse data sources.

C1 and C3 tended to return a small number of results,
which led to lower recall, but higher precision than the other
conditions. These two combinations were based primarily on
the changesets, and did not include data from the SDG.

Using SDGs helps in retrieving the missing members, as
seen in the improvement of recall of C2 and C4 when
compared with their counterparts C1 and C3. This result
suggests that with a good ranking algorithm, this information
can be very useful for augmenting a searchable repository.

On the average, the information from the issue trackers
yields small improvement in both the precision and recall of
the results. In C3, we augmented the changeset index with

Figure 1. Boxplot of Precision and Recall of both Jajuk and jEdit.

only information from tracker. This condition shows the best
overall precision and recall, without retrieving a large
number of program elements. Table VI shows the number of
returned program elements, and the number of returned and
relevant program elements for each search.

TABLE VI. EXPERIMENTAL RESULTS OF JAJUK AND JEDIT

F1 F2 F3 F4 F5

RE CO RE CO RE CO RE CO RE CO

C1 0 0 41 3 12 6 10 8 7 4

C2 0 0 329 8 306 13 1009 10 39 14

C3 7 2 3 2 13 6 10 8 7 4

C4 207 5 177 6 306 13 1009 10 39 14

C5 2 0 18 7 2 0 8 8 2 2

C6 376 5 273 13 285 14 334 9 2208 15

Note: RE stands for Retrieved, and CO stands for Correct.

The results show that using dependency graphs (C2 and

C4) and source code (C6) in the repository consistently
retrieved a large number of program elements. This occurred
with both subject systems. Compared to the small number of
elements in the oracle, the results from these conditions can
be overwhelming and potentially unusable. Although they
help to retrieve missing members, they also add the problem
of sifting through the results to find the most relevant ones.
This problem points to the need for accurate ranking
algorithms to help bring attention to the relevant results.

These results suggest an answer to our initial research
question. Increasing data diversity in the searchable
repository does not necessarily improve feature location.
Sometimes, including additional data comes at a cost. When
using SDGs, the improvement in recall values comes at the
price of lower precision.

VII. DISCUSSION

In this section, we explore a number of unexpected
effects in the data: the choice of keywords in searches,
including data from issue trackers, and the effect of
refactoring on using change sets for feature location.

A. Searching with Alternate Keywords

When a developer is not familiar with the vocabulary
used on a software project, she might refer to the feature with
other synonyms. In this study, we encountered this situation
with F4, “Thick Caret.” Caret is used in jEdit to represent the

blinking line marker that shows where the next character will
be inserted in the text area. However, the term “cursor” is
much more common when discussing such a marker. It is
possible that a developer may use the keyword “cursor” to
search for the feature instead of “caret”.

We performed another search for F4 to examine how
well the additional data help in the case that synonyms are
used to search for the same feature. We used the term “thick
cursor” in this search. The result is shown in Table VII.

TABLE VII. SEARCH RESULT OF F4 USING ALTERNATIVE KEYWORDS

 “thick caret” “thick cursor”
 Precision Recall Precision Recall

C1 0.8 0.62 1 0.62

C2 0.01 0.77 0.05 0.77

C3 0.8 0.62 1 0.62

C4 0.01 0.77 0.05 0.77

C5 1 0.62 0 0

C6 0.03 0.69 0.19 0.62

The new search specification, “thick cursor”, improved

the results from conditions C1 to C4. In contrast, regular
expression search (C5) did not return any results, because the
cursor was called caret throughout the code. Also, the term
was not used near the term “thick” as we specified in the
regular expression pattern. However, the term “cursor” was
used when providing commit comments. This shows that one
way additional data sources help with searches is by
contributing alterative keywords that are not in the code.

It is interesting that for the condition C6 (IR over source
code), the performance using both sets of keywords was
similar. Recall was slightly worse, but the precision was
improved. Because the term “cursor” appears infrequently in
the source code, the new query produced fewer results, while
still retrieving relevant program elements containing the term
“thick.”

We find this result encouraging, because it suggests to us
that using changesets in the repository is a promising
approach. It allows users to search with familiar vocabulary
from the problem domain, rather than limiting them to
vocabulary from the solution domain. In other words,
developers do not need to know exactly what they are
looking for in order to search for it.

B. Only Small Improvements from Tracker Information

Overall, including information from issue trackers led to
only small improvements in search performance.

We had expected that including data from issue trackers
would always return more results, meaning better recall.
Because we used tracker information as additional metadata,
searches in condition C3 would retrieve the same program
elements as searches on C1 plus others. However, this was
not the case, due to the high quality of commit comments.

This lack of impact can be seen by comparing the results
from the condition C1 to C3 and C2 to C4, as shown in
Table IV. Here, we focus on comparing C1 and C3, because
the other pair has similar properties. Further inspection of
changesets returned by our queries in condition C1 versus C3
showed that most of the relevant changesets are returned in
both conditions. Therefore, the performances of both
conditions are similar. The reason for this is that developers
on both Jajuk and jEdit diligently comment their commit
transactions. Although the comments provided are short,
they describe the task and the feature touched by the tasks
with the same keywords that we would use for searching for
the feature. Therefore, any changeset with an associated
work ticket number would be returned with or without the
aid of additional metadata.

Most of relevant changesets we selected from the query
results for both conditions are the same. Kayley returns only
the top 50 results, so some changesets that were returned in
one condition were not present in the other. However, these
different changesets have little effect in improving or
worsening the recall of results in both conditions.

C. Effect of Large Scale Refactoring

Refactoring is a known problem for program
comprehension tools and the usefulness of the information
that they provide. We had an opportunity to observe this
problem in action with feature F1 “Add Song” from Jajuk.

Not surprisingly, we found that refactoring has a negative
impact on the effectiveness of using changeset information
for feature location. In this case, refactoring modified the
identifiers of program elements associated with the change

set or removed program elements entirely. Consequently,
these program elements were not returned by Kayley.

 Searches for program elements implementing feature F1
returned no results, as was shown in the Table VI. This result
startled us, because the query returned several changesets
with highly relevant description. For example, one of
changesets returned was “Revision 233: Drag and drop in
playlist editor and some methods renamed”. When
examining the returned changesets, we also found that the
program elements associated with them seemed relevant.

Further inspection of the commit history shows that the
class handling the drag and drop events for the F1 features
were refactored in previous versions. The selected
changesets were associated to the refactored program
elements. Therefore, the links to these program elements
were not useful because they do not exist anymore.

To investigate how much refactoring affected the search
results, we performed an additional experiment on Jajuk’s
features using a version before the refactoring. The
comparison of results between the two versions is shown in
Table VIII. We selected version 1.2, because it was used in
a previous study by Robillard et al. [17]. Using the same
procedure as before, we created search corpuses for
conditions C1 and C2 using changesets up to version 1.2,
and created new oracles for the features. Conditions C3 and
C4 were omitted as they provided similar results.

From the results shown in Figure 2, we can see that the
precision and recall were worse in the version 1.8.3, the one
used in the main study. We found that for all features, there
were changesets with a highly relevant description, but
contained relevant refactored program elements, especially
F1 and F3. Therefore, searches on version 1.2 performed
much better because these program elements still exist in that
version of the code. The results for F2 in the two versions are
comparable, because there was a changeset post refactoring
that touched the implementation of the feature. This
changeset provided links to the new set of relevant program
elements.

Figure 2. Comparing Precision and Recall of Search Results at the Version 1.2 and the Version 1.8.3

TABLE VIII. COMPARING PRECISION AND RECALL OF SEARCH RESULTS
AT THE VERSION 1.2 AND THE VERSION 1.8.3

 Version 1.2 Version 1.8.3
 Precision Recall Precision Recall

C1 0.27 0.23 0 0
F1

C2 0.02 0.54 0 0

C1 0.5 0.2 0.07 0.18
F2

C2 0.01 0.47 0.02 0.47

C1 0.28 0.92 0.5 0.33
F3

C2 0.12 0.92 0.04 0.72

All three of our feature searches were affected by

refactoring, which shows that refactoring to existing features
is common, especially for older features. Refactoring usually
affects many features, so the ensuing changeset touches too
many parts of the code to be useful. In addition, when
refactoring takes place, the comments specifying which
features were touched tend not to be provided. If there is no
task touching the feature after refactoring is done, the links
to refactored program elements are usually lost. In order to
use changeset information effectively, additional algorithms
are needed to trace evolution and refactoring of program
elements.

VIII. THREATS TO VALIDITY

Threats to the external validity of our study come from
the characteristics of our subject systems and work practices
of the developers on the projects. The ability to generalize
the results depends on how representative are the subject
systems, jEdit and Jajuk, of other software systems.

Both jEdit and Jajuk are well-known open source
software projects. Their characteristics and work practices
are typical of active, popular, open source projects [19]. The
size of software, frequency of commits, comments provided
to each commit and usages of issues tracker are
representative of open source projects. In addition, both
projects have been frequently used in previous research in
feature location [15, 17]. Using these systems allows us to
compare our result to theirs.

Threats to internal validity include how the features were
selected and how oracle for each feature was created. The
selection of feature could be biased in favor of searches
using certain tools or combinations of data. To mitigate this
threat, we selected features that have been used in previous
studies. The researchers who conducted those studies could
not have anticipated our study, so no bias is possible. Again,
the advantage of using these concerns is that we can compare
our result with existing data.

 Lastly, the creation of oracle of relevant code for each
feature can affect the result of our study because the
relevancy of program element to a feature depends on expert
judgment. To mitigate this threat, two researchers
independently created oracles, and discussed them until they
could agree on each member to be included or excluded. The
researchers spent time studying the running system and

source code, so that they could make an informed decision
when judging relevance of program elements. We achieve a
high rate of inter-rater reliability, indicating that the oracles
are trustworthy.

IX. FUTURE WORK

Our results point to a number of directions for future
work. We discuss three of them here.

We would like to conduct further experiments with using
various combinations of data. We obtain high recall and low
precision when we use IR over source code, but when using
changesets we obtain low recall and high precision. Perhaps
we could find a way to use the results from searching on
changesets to filter or reduce the matches provided by an
index built with source code.

Work is needed to find a more effective ranking
algorithm for the matches that are returned by a search.
Currently, we use the default Lucene ranking, which uses
TF/IDF [10]. The results from including data from SDGs and
issue trackers indicate that we can do better.

Adding the data from issue trackers decreased recall in
one case, because some good matches no longer appeared in
the top 50. An SDG helps to locate more relevant program
elements, but also tend to retrieve too many elements. Being
able to rank returned elements accurately would help reduce
the effort required by developers focus on the best ones.

A good ranking algorithm would order search results so
that more relevant and important program elements are
placed higher in results. A known problem in ranking is that
commonly used program elements are ranked higher. For
example, library or utility modules, user interface classes,
driver classes, or getter/setter methods appear high in the list
because they are called frequently, not because they are more
relevant. Providing weights for ranking and filtering is
difficult, because each package or component is often
tangled with a lot of different source code with different
purposes. Further research on efficient ranking algorithm is
so necessary that we can provide better results to developers.

Work is also needed to both study and mitigate the
effects of large scale refactoring. We found that large scale
refactoring in Jajuk limited the effectiveness of searching
over changesets. We would like to conduct further studies of
refactoring effect to better understand the extent of this
phenomenon. In other words, how many other projects are
affected by large scale refactoring and by how much? How
does this influence our ability to use changesets for feature
location? Depending on the extent and severity of the
problem, it may be necessary to develop additional tools and
algorithms to automatically update the locations referred to
by changesets.

X. CONCLUSION

A central idea in feature location is to minimize the gap
between conceptual problem description and formal source
code and to aid developers’ comprehension of a software
system. In this paper, we report on an empirical study on the
effect of including different combinations of diverse data
sources for feature location. We attempted to locate five
features from two subject systems, Jajuk and jEdit under six

conditions using various data sources, such as changesets,
bug reports, feature requests, and SDGs. Each feature under
different condition was tested using our feature location
platform. We used regular expression search and feature
location using IR techniques on source code (via FLAT3) as
baseline conditions for comparison.

We found that using changesets to populate the
repository tended to provide higher recall, but lower
precision in comparison to using source code. We also found
that precision and recall when searching on changesets was
more consistent and flexible than regular expression search
and IR on source code.

Changesets are helpful for locating features by providing
more conceptual-level information, but historical records on
changesets tell us that large-scale refactoring of the code
severely limits their effectiveness because a lot of refactored
source codes do not exist in the current version of the source
code, so developers cannot locate features.

We learned that including more diverse data does not
always result in better performance. Adding data from SDGs
to changesets drives down precision, but increases recall.
Adding data from issue trackers did little to improve
performance and in one case actually lowered performance.

We conclude that more data diversity is not always better
and it is possible for a repository to runneth over. We plan to
find ways to improve on algorithms for ranking matches, in
order to find a happy balance between precision and recall.

ACKNOWLEDGMENT

Special thanks to Rosalva E. Gallardo-Valencia for her
assistance in preparing this manuscript, to Phitchayaphong
Tantikul for writing a web crawler, and to Roy Tiburcio,
Derek Raycraft and Eugen Nistor for their valuable advice in
implementation.

REFERENCES
[1] G. Antoniol, G. Canfora, G. Casazza, A. De Lucia, and E.

Merlo, "Recovering traceability links between code and
documentation," IEEE Transactions on Software Engineering,
vol. 28, pp. 970-983, 2002.

[2] T. J. Biggerstaff, B. G. Mitbander, and D. Webster, "The
concept assignment problem in program understanding," in
Proceedings of the 15th international conference on Software
Engineering Baltimore, Maryland, 1993, pp. 482-498.

[3] G. Canfora and L. Cerulo, "How Crosscutting Concerns Evolve
in JHotDraw," in Proceedings of the 13th International
Workshop on Software Technology and Engineering Practice,
2005, pp. 65-73.

[4] A. Chen, E. Chou, J. Wong, A. Y. Yao, Z. Qing, Z. Shao, and A.
Michail, "CVSSearch: searching through source code using
CVS comments," in Proceedings of IEEE International
Conference on Software Maintenance, 2001, pp. 364-373.

[5] B. Cleary, C. Exton, J. Buckley, and M. English, "An empirical
analysis of information retrieval based concept location
techniques in software comprehension," Empirical Software
Engineering, vol. 14, pp. 93-130, 2009.

[6] D. Cubranic and G. C. Murphy, "Hipikat: recommending
pertinent software development artifacts," in Proceedings of the
25th International Conference on Software Engineering
Portland, Oregon, 2003, pp. 408-418.

[7] M. Eaddy, A. Aho, and G. C. Murphy, "Identifying, Assigning,
and Quantifying Crosscutting Concerns," in Proceedings of the

First International Workshop on Assessment of Contemporary
Modularization Techniques, 2007, p. 2.

[8] M. Eaddy, T. Zimmermann, K. D. Sherwood, V. Garg, G. C.
Murphy, N. Nagappan, and A. V. Aho, "Do Crosscutting
Concerns Cause Defects?," IEEE Transactions on Software
Engineering, vol. 34, pp. 497-515, 2008.

[9] G. Fischer, S. Henninger, and D. Redmiles, "Cognitive tools for
locating and comprehending software objects for reuse," in
Proceedings of the 13th International Conference on Software
Engineering Austin, Texas, 1991, pp. 318-328.

[10] E. Hatcher and O. Gospodnetic, Lucene in Action: Manning
Publications Co., 2004.

[11] D. Janzen and K. D. Volder, "Navigating and querying code
without getting lost," in Proceedings of the 2nd international
conference on Aspect-oriented software development Boston,
Massachusetts: ACM, 2003, pp. 178-187.

[12] A. Marcus and J. I. Maletic, "Recovering documentation-to-
source-code traceability links using latent semantic indexing,"
in Proceedings of the 25th International Conference on
Software Engineering Portland, Oregon, 2003, pp. 125-135.

[13] D. Poshyvanyk, A. Marcus, and Y. Dong, "JIRiSS - an Eclipse
plug-in for Source Code Exploration," in Proceedings of the
14th IEEE International Conference on Program
Comprehension, 2006, pp. 252-255.

[14] V. Rajlich and N. Wilde, "The role of concepts in program
comprehension," in Proceedings of the 10th International
Workshop on Program Comprehension, 2002, pp. 271-278.

[15] M. Revelle and D. Poshyvanyk, "An exploratory study on
assessing feature location techniques," in Proceedings of the
17th International Conference on Program Comprehension,
2009, pp. 218-222.

[16] M. P. Robillard, "Topology analysis of software dependencies,"
ACM Transactions on Software Engineering and Methodology,
vol. 17, pp. 1-36, 2008.

[17] M. P. Robillard, D. Shepherd, E. Hill, K. Vijay-Shanker, and L.
Pollock, "An Empirical Study of the Concept Assignment
Problem," McGill University SOCS-TR-2007.3, 2007.

[18] T. Savage, M. Revelle, and D. Poshyvanyk, "FLAT3: Feature
Location and Textual Tracing Tool," in Proceedings of the 32nd
International Conference on Software Engineering, Cape Town,
South Africa, 2010.

[19] W. Scacchi, "Free and Open Source Development Practices in
the Game Community," IEEE Softw., vol. 21, pp. 59-66, 2004.

[20] J. Singer, T. Lethbridge, N. Vinson, and N. Anquetil, "An
examination of software engineering work practices," in
Proceedings of the 1997 conference of the Centre for Advanced
Studies on Collaborative research Toronto, Ontario, Canada,
1997, p. 21.

[21] N. Wilde, M. Buckellew, H. Page, V. Rajlich, and L. Pounds,
"A comparison of methods for locating features in legacy
software," Journal of Systems and Software, vol. 65, pp. 105-
114, 2003.

[22] W. Zhao, L. Zhang, Y. Liu, J. Sun, and F. Yang, "SNIAFL:
Towards a static noninteractive approach to feature location,"
ACM Transactions on Software Engineering Methodology, vol.
15, pp. 195-226, 2006.

[23] T. Zimmermann, P. Weisgerber, S. Diehl, and A. Zeller,
"Mining Version Histories to Guide Software Changes," in
Proceedings of the 26th International Conference on Software
Engineering, 2004, pp. 563-572.

