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Abstract—  

Research on feature location that apply information retrieval 
techniques have experimented the kinds of inputs to the corpus 
and the algorithms that could be used. At first, only source 
code was used. Later extraction techniques were improved, 
and data from other software tools and analyses were used to 
expand or augment the repository. But, does having more 
diverse data in the repository always produce better results? In 
this paper, we report on an empirical study to examine the 
effect of increasing data diversity to improve feature location 
through search. In particular, we looked at the effect of 
including: i) change sets from revision control system, ii) 
tickets from issue trackers, and iii) elements from a Static 
Dependency Graph (SDG). We searched for three features of 
Jajuk, an open source Java jukebox, and two features of jEdit, 
an open source Java text editor. We used four different 
corpuses built with a combination of the above data. We used 
Eclipse’s code search and an index built with source code as 
baseline conditions. We found that it is not always better to 
have more diverse data. Adding SDG data to changesets 
increased recall, but drove down precision. Adding data from 
issue trackers had little effect and in one case lowered recall. 
We also found that large-scale refactoring of the code 
decreases the effectiveness using changesets for feature 
location. 
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I.  INTRODUCTION 

Software developers frequently perform searches on 
source code to help them find where a feature is located [20]. 
Unfortunately, there is a large gap between the problem 
description (which uses vocabulary from the problem 
domain) and the strings in source code (which uses 
vocabulary from the solution domain) [2, 9, 14]. Much work 
has been done in the area of feature location to address this 
problem. Feature location tools help developers to find 
where a feature is located in the source code.  

A number of feature location techniques have been 
created. Many of them leverage techniques from information 
retrieval (IR), which deals with how to retrieve unorganized 
diverse data effectively and efficiently [5].These techniques 
are valuable, because feature location involves locating 
relevant information from a large body of source code. 
Research on feature location that apply IR techniques have 

varied both the kinds of inputs to the corpus and the 
algorithms used. 

The kinds of data in the repositories for feature location 
have changed over time. At first, only source code was used, 
but later extraction techniques were improved, and data from 
other software tools and analyses were used to expand or 
augment the repository. 

A number of approaches have been developed for turning 
source code and specifications into an indexed repository of 
documents [1, 12, 15]. More recently, changesets from 
revision control systems have been found to be helpful. A 
changeset contains information related to a commit made to 
a revision control system. It usually contains conceptual-
level information that is difficult to find in the source code. 
More importantly, it provides explicit links from the 
conceptual description of a task to the implementation. 
Building on earlier success with IR techniques, changeset 
data was input into the repository instead of source code. In 
addition, this type of corpus can be improved using 
information from other sources, such as issue trackers [6], 
either as documents or metadata to improve indexes. 

Results from static and dynamic analysis tools provide 
useful information about relationships among program 
elements [21]. For instance, relationships from a static 
dependency graph (SDG) can be used to expand search 
results with program units that are relevant, but are not part 
of a changeset. 

The trend to include more data in repositories suggests 
that having more information may produce better results. In 
this paper, we report on an empirical study to investigate 
whether this is the case. In other words, does increasing data 
diversity necessarily improve feature location?  

In our study, we built searchable repositories from 
different combinations of data sources: changesets, issue 
trackers and dependency graphs.  We chose features from 
two subject systems, Jajuk (three features) and jEdit (two 
features). To evaluate the search results, we studied the 
software closely and manually created a set of authoritative 
implementation locations for each feature. The independent 
variable in the experiment was the type or types of data in 
the repository. This variable had four levels, each with a 
different combination of data, plus two control conditions. 
The four combination of data are: i) only changesets, ii)  
changeset plus dependency graphs, iii) change set and 
information from a tracker and iv) all information including 



changesets, information from trackers and dependency 
graph. 

As our control conditions, we also performed the search 
for these features using Eclipse regular expression search and 
a searchable corpus built from source code. For our 
dependent variables, we used precision and recall. 

Compared with our baseline conditions, the results show 
that the repository built with changeset provides results with 
better precision, but lower recall. However, augmenting the 
repository with the SDG yields comparable recall rates but 
still have better precision than baseline.  

Among the various combinations of data sources, we 
found that adding information from trackers had little effect, 
and in one case lowered recall. The combination of the data 
sources that provided the best balance of the precision and 
recall was changesets with bug reports and feature requests. 
Adding information from the SDG on the other hand 
improved the recall at the cost of the precision. To use this 
type of information effectively, an accurate ranking 
mechanism is needed. We conclude that it is not always 
better to have more diverse data in a repository for feature 
location. 

Our results also indicated that although changesets are 
helpful for locating features, but large-scale refactoring of 
the code limits their effectiveness.  

The paper proceeds as follow: Section 2 reviews previous 
work in feature location on including various kinds of data in 
the repository. In Section 3, we give an overview of the 
approach used in our study. Section 4 presents our research 
questions. Section 5 describes the feature location platform 
that we used in our study. Sections 6 and 7 detail the study 
design and results, followed by discussion and threats to 
validity in Sections 8 and 9. Future work and conclusions are 
given in Section 10 and 11 respectively. 

II. IMPROVING FEATURE LOCATION WITH DIVERSE DATA 

To comprehend a program, developers need to know 
where features that they are interested are located in source 
code. A feature is sometimes scattered or tangled in source 
code [3, 7] so locating a feature is not easy but essential to 
understand source code. Searching source code with 
conceptual keywords only provides a limited support for 
locating program elements relevant to a feature. Vocabulary 
from the problem domain is not usually present in the source 
code [2, 9, 14]. Although the vocabulary sometimes appears 
in comments, they are not present in all relevant locations.  

A number of feature location techniques have been 
created using techniques from information retrieval (IR), 
which have been created to deal with the problem of 
retrieving information from large collections of unorganized 
data [5]. Initially, these repositories tended to be populated 
using only source code and the matches returned needed only 
to be lexically close to the terms in the search specification. 
Advances involved the creation of novel techniques for 
creating the search corpus from source code and 
specifications [12, 15]. 

Information from additional sources improved searching 
for features with conceptual keywords. We focus on data 
from two sources: software tools in use on the project and 

inferences from analysis tools. Leveraging data from 
software tools, such as issue trackers and revision control 
systems, is effective because this information is readily 
available and does not place a burden on the developers. In 
particular, we are interested in the following three data 
sources for improving feature location: changesets, data from 
an issue tracking system, and static dependency graphs. 

More recently, research found that using changesets from 
revision control systems has proven to be helpful. A 
changeset is the record from a single commit transaction to 
the revision control system, consisting of the names of the 
files that have been changed, the changes to the files, and a 
commit comment. Consequently, a changeset can be used to 
provide explicit links between domain concepts and lines of 
code [4], or links between program elements [16, 23]. These 
links can be effective for locating relevant program units. 
Several tools take advantage of commit comments in 
revision control systems so that software developers could 
look for source code using conceptual keywords. Some 
researchers used machine learning techniques to find patterns 
by mining change patterns from commit transaction and 
predict likely changes of relevant program elements [23]. 
Building on the success of IR approaches, changeset data can 
be used as documents for indexing instead of source code. In 
addition, this type of corpus can be improved using 
information from other sources. 

Data from issue trackers have also been used to help 
developers understand code. Many software projects adopt 
an issue tracking system to keep track of bugs or feature 
requests. The items in these tracker systems provide detailed 
description of features at the conceptual level as opposed to a 
short description commonly provided in the changesets. 
What makes this type of information useful is that 
developers often provide a link from a bug report or feature 
request to the changeset implementing it. Therefore, we can 
use this information to provide even more details to sections 
of code using a combination with changesets. Some tools 
that have utilized bug reports or feature requests to 
supplement their corpus for conceptual-level searching 
include Hipikat [6] and ConcernTagger [8]. Bug reports or 
feature requests have also been used to identify features that 
developers should be interested in and to create queries for 
searching [15, 17]. 

Finally, software analysis tools can provide information 
about program elements. While the previous two types of 
information are good sources of metadata, they do not 
increase the completeness of the matches returned. A 
changeset may miss program units that were related to the 
task, but were not modified or may contain only a facet of 
the feature that was touched by the task. We need a mean to 
extend program elements identified as relevant to other 
related program elements. A static dependency graph, 
containing program dependency information among program 
elements, can be used for this purpose. Program elements 
implementing the same feature are most likely to have 
relationships and depend on each other. Therefore, we 
should be able to discover missing program elements using 
their dependency relationship with the program elements that 
are already found. Previously, static analysis has been 



successfully combined with IR techniques for feature 
location. Examples of successful tools are: SNIAFL [22],  
JQuery [11], and JIRiSS [13]. 

III. RESEARCH QUESTIONS 

There are several assumptions made in the usage of 
information from data sources presented in the previous 
section to improve feature location. The main assumption is 
that information from these data sources would improve the 
connection between conceptual keywords and source code. 
Therefore, allow more relevant results to be returned when 
searched with conceptual keywords.  

To evaluate these assumptions, we performed an 
empirical study by searching different features using search 
corpuses enhanced with information from these data sources. 
The specific questions that we aim to investigate are as 
followed: 

 Does increasing data diversity improve feature 
location?  
Information from different data sources improves 
search mechanism in different aspects. Adding 
information from changesets and tracker items to the 
search corpus improves the possibility that the 
keyword will be matched to relevant members. 
Using static dependency graph, we can retrieve more 
relevant program elements using their relationships.  
Therefore, we expected that adding more types of 
information to enhance the search mechanism would 
result in more completed and relevant results 
returned when searching with conceptual keyword. 

 What combination of data provides better results? 
Because different data sources improve the search in 
different ways, the combination of them may yield 
different results. We aim to evaluate which 
combination of data source provides the best results 
when used together.  

IV. FEATURE LOCATION PLATFORM 

To perform the evaluation, we used a prototype search 
platform, Kayley, to search for various features in subject 
software systems. The two main features of Kayley are: 1) 
the ability to create a searchable repository from changesets; 
and 2) the ability to enhance the repository with diverse data 
from arbitrary sources. These features allow us to create 
search corpuses for a subject software system using different 
combinations of data sources. In this study, we incorporated 
the information from an issue tracker items and a static 
dependency graph to the searchable repository of changesets. 
The features of Kayley and its usages are discussed in detail 
below.  

A. Creating a searchable corpus of changesets 

The prototype retrieves changesets by importing the 
commit history of a software system from Subversion 
(SVN). To create a search corpus, instead of using a source 
file as a document, each changeset is treated as a document. 

We used Jakarta Lucene1, a high-performance, full-featured, 
Java-based text search engine, to index the changesets. 
Although the changesets associates concepts to lines, Kayley 
returns the enclosing program element. The index of the 
corpus is built using the following information: comments of 
each changeset, author, creation date, and signatures of 
associated program elements. The indexed information is 
tokenized in lower case, and reduced to the word root before 
being indexed.  

B.  Adding diverse information to the  search corpus 

Kayley can incorporate various combinations of data 
from diverse providers. In this study, we included two types 
of data: information from a tracker tool and a static 
dependency graph. 

Kayley uses information from trackers as additional 
domain level vocabulary. The additional, longer description 
can help improve the accuracy of the index. Information 
from the tracker is input as an XML file, and where possible 
Kayley will match the track identification number with the 
commit comment in the changesets. When a match is found, 
the description of the tracker item will be added to the 
changeset and indexed along with other metadata. 

The static dependency graph can be used to expand the 
set of relevant program elements. Kayley checks each 
method in a changeset, and only expands the ones that exist 
in the current version of the code. For each of these filtered 
methods, a static dependency graph is used to discover the 
following program elements.  

 All callee methods in the subtree of the dependency 
graph rooted at the method being checked. Callee 
methods from binary files are excluded as they 
usually come from libraries. 

 Definition of public fields that are used by each 
method identified.   

The indexed changesets are then extended to associate with 
these program elements. 

C. Using the Platform   

The first step is to create a search corpus of changesets 
by providing a SVN repository path of the project to Kayley. 
When creating a search corpus, a user can specify additional 
data to be incorporated as discussed above. 

Kayley is intended to be used interactively. The user can 
query Kayley using keywords describing the feature. Kayley 
will present the user with the top 50 changesets that match 
the keyword. At this point, the user needs to examine the 
returned changesets and select a set of relevant ones. The 
program elements associated to the selected changesets will 
be validated for their existence in the code. The program 
elements existing in the current version of the code will be 
returned as search results.  

V. DESIGN OF THE EXPERIMENTS 

This section discusses the design of our experiment to 
investigate whether increasing data diversity in a searchable 
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repository improves feature location. We performed feature 
location for three features of Jajuk and two features of jEdit 
using indexes built with four combinations of data sources. 
The methodology of our study is described in subsection A. 
The subject systems and features that we are interested in are 
presented in subsection B.  

A. Method 

1) Treatment and Baseline Conditions 
In our experiment, we used six treatment conditions to 

assess which condition produced the best result. There are 
four combinations of data sources and two other tools used 
as baseline conditions. 

 Changesets (C1)  
In this condition, the index that we used was built 
with only changesets. For each subject system, we 
created an index using changesets from their 
respective version histories using Kayley.  

 Changesets + SDG (C2) 
We augmented the index from C1 with the static 
dependency graph so that program elements that do 
not appear in the change sets will also be returned.  

 Change sets + bug reports + feature requests (C3) 
We used a crawler to gather bug reports and feature 
requests from the issue trackers and added these to 
the repository from C1.  

 Change sets + bug reports + feature requests + 
SDG (C4) 
This condition includes every data source used 
previously.  

 Regular expression search using Eclipse IDE (C5) 
This is our first baseline condition. Text search is the 
most common way that developers search source 
code. We conducted the search using regular 
expression search in Eclipse IDE.  

 Source Code Only (C6)  
This is our second baseline condition. A number of 
previous approaches have built the repository using 
source code rather than change sets. We used the 
FLAT3 platform 2  by Savage et al. [17] for these 
searches.  

2) Performing the Searches:  
A search for every feature was performed under every 

condition. We input into Kayley the same search 
specification for a particular feature. From the changesets 
that were returned, the two first authors agreed on which 
were the relevant ones. These changesets were then used to 
retrieve program elements that implemented the desired 
feature. 

In C5, the search specification was entered into Eclipse. 
This search returned results at the line level, so we recorded 
the enclosing program elements. 

In C6, search specification was entered into the FLAT3 
platform and all the returned program elements were 
recorded. 

                                                           
2 http://www.cs.wm.edu/semeru/flat3/index.html 

B. Subject Systems  

For our evaluation, we chose two subject systems, Jajuk 
and jEdit. We chose them because they were moderate sized 
Java projects, with revision control histories and feature 
tracking data. They have also been used previously in 
empirical studies.  

Jajuk3 is an open-source music player, which consists of 
471 classes, 1,346 methods and 53,097 LOC in total. The 
version that we used is 1.8.3 with the revision number 5571. 
Robillard et al. previously conducted an experimental study 
using Jajuk and created features (concerns) and their 
mappings using ConcernMapper [16]. We used their study 
and their features as a guideline for ours.  

jEdit4 was selected to compare results with Jajuk. jEdit is 
an open-source text editor, which consists of 836 classes, 
5,154 methods and 98,662 LOC in total. We used version 
4.3.1, revision 17000. jEdit has been frequently used as a 
subject system due to its size, popularity, and active 
community. We chose two of the features that Revelle and 
Poshyvanyk [14] investigated.  

C. Features Included in the Study 

1) Jajuk Features  
We selected three features of Jajuk: Add a song, Shuffle 

mode and Sort collection. These features were previously 
examined in a study performed by Robillard [16]. The 
descriptions of these features are as followed  

a) Add a song (F1) 
There are several ways to add a song in Jajuk. For our 

study, we only focused on adding by dragging and dropping. 
After some experimentation, we decided to specify the 
search as “drag drop playlist.”  Initially, we tried “add song,” 
but this retuned too many results Our final search 
specification provided a more manageable number of results. 
For Eclipse regular expression search, we used the regular 
expression keyword, “drag*drop*playlist.” 

b) Shuffle mode (F2) 
In shuffle mode, the songs are played in a random order. 

There are three ways to turn on this feature: selecting the 
Shuffle Mode option from the menu, pressing the Shuffle 
mode icon, or using Ctrl-h shortcut. We chose “shuffle 
mode” as keywords for the search. For the Eclipse regular 
expression search, “shuffle*mode” was used. 

c) Sort collection (F3) 
 This feature allows users to sort their entire music 

collection according to different parameters, such as Album, 
Genre, Artists, Year, Discovery date, Rate, and Hits. A user 
can access this feature by using a “sort by” dropdown list in 
the Track Tree panel. We chose “sort collection” as the 
search specification.  For the Eclipse condition, we used 
“sort*collection”.  

A summary of our keywords for the features of Jajuk is 
presented in Table I.  

 

                                                           
3 http://www.jajuk.info/index.php/Main_Page 
4 http://www.jedit.org/ 



TABLE I.  FEATURES AND KEYWORDS FOR JAJUK 

Feature Description Keywords 

F1 Add a song 
drag drop playlist / 
drag*drop*playlist 

F2 Shuffle mode 
shuffle mode / 
shuffle*mode  

F3 Sort collection 
sort collection / 
sort*collection 

 

2) jEdit Features 
We selected two features from jEdit: Thick Caret and 

Edit History. Similar to the features of Jajuk, these were used 
in a previous study performed by  Revelle and Poshyvanyk 
[14].  

a) Thick Caret (F4) 
This feature allows a user to enable a thicker caret (or 

cursor) in the text area. We defined the scope of this feature 
limits to an option to enable thick caret and the operation to 
paint thick caret in the content area of jEdit. Although the 
term “thick cursor” was more familiar to us, we used the 
keyword “thick caret” for this feature to follow the idiom 
used by developers on the project. Under C5, we used a 
regular expression “thick*caret” for Eclipse regular 
expression search. 

b) Edit History (F5) 
This feature allows users to edit the history of previous 

searches in “Find” dialog box. We limit our scope of the 
feature to the history popup and actions to load and display 
the history list. We did not include the ability to save a 
search history as part of this feature. The keyword for 
searching for F5 is “edit history” for conditions C1 through 
C4 and “edit*history” for C5. 

TABLE II.  FEATURES AND KEYWORDS FOR JEDIT 

Feature Description Keywords 

F4 Thick caret 
thick caret / 
thick*caret 

F5 Edit history 
edit history / 
edit*history 

 

D. Oracles 

We needed an oracle so that we could evaluate the 
experimental results and to calculate precision and recall of 
each result. Two researchers studied the software closely and 
manually created a set of authoritative implementation 
locations for each feature.  

The first two authors individually studied the subject 
systems and determined relevant program elements for each 

feature. Subsequently, they reconciled their solutions and 
came to a consensus on the gold standard. This gold standard, 
the list of program elements, is used as an oracle to 
determine the relevancy of retrieved results. The total 
number of relevant program elements per features in this 
authoritative list is presented in Table III. 

TABLE III.  THE NUMBER OF PROGRAM ELEMENTS OF EACH FEATURE 

 F1 F2 F3 F4 F5 

Oracle 7 17 18 13 20 

 
When creating the oracle, we did not limit ourselves to a 

specific number of relevant program elements for each 
feature. However, the number of relevant program element 
per feature is relatively small because we limited them to 
ones that are considered necessary. Also, both researchers 
needed to agree to put a program element on the list. The two 
solutions initially had an inter-rater reliability score of 
Cohen’s  =  0.99. 

E. Variables and measures 

Independent variables of our study are the conditions (C1 
to C6). The conditions represent different combination of 
data sources.  

The dependent variables are precision and recall, two 
metrics from IR, to provide a high level characterization of 
performance. Precision is the proportion of the total number 
of elements retrieved that are also relevant. Recall is the 
proportion of relevant elements that are also retrieved. 
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VI. RESULTS 

We found that using different data sources for building 
search index led to different characteristic of returned results. 
Table IV and Table V present the precision and recall of 
each condition of Jajuk and jEdit respectively. For conditions 
C1 to C4, performance on jEdit was much higher than 
performance on Jajuk. Further inspection revealed that 
diminished performance on Jajuk could be attributed to a 
refactoring that was applied to the source code. We will 
discuss this issue in detail in the discussion section. 



Compared with our baseline conditions, the results show 
that a repository using changesets can return better search 
results than regular expression search or a repository using 
source code in some cases. 

TABLE IV.  PRECISION AND RECALL OF JAJUK. 

F1 F2 F3 Average 
 

P R P R P R P R 

C1 N/A 0 0.1 0.18 0.5 0.33 0.29 0.17 

C2 N/A 0 0 0.47 0.04 0.72 0.03 0.4 

C3 0.29 0.29 0.7 0.12 0.46 0.33 0.47 0.25 

C4 0.02 0.71 0 0.35 0.04 0.72 0.03 0.59 

C5 0 0 0.4 0.41 0 0 0.13 0.14 

C6 0.01 0.7 0.05 0.77 0.05 0.78 0.03 0.75 

Note: P represents a rate of precision, and R represents a rate of recall. 

TABLE V.  PRECISION AND RECALL OF JEDIT 

F4 F5 Average 
 

P R P R P R 

C1 0.8 0.62 0.57 0.2 0.69 0.41 

C2 0.01 0.77 0.36 0.7 0.19 0.74 

C3 0.8 0.62 0.57 0.2 0.69 0.41 

C4 0.01 0.77 0.36 0.7 0.19 0.74 

C5 1 0.62 1 0.1 1 0.36 

C6 0.03 0.69 0.01 0.75 0.02 0.72 

  
The distribution of precision and recall for each condition, 

aggregated over all the features, are illustrated in Figure 1. 
The vertical boxes show the interquartile range of the metrics, 
while values outside this range are shown using vertical lines 

centered on the box. The horizontal line inside the box 
depicts the median.  

For C5, the results show that the effectiveness of regular 
expression search depends on the search terms that exist in 
the code. Regular expression search worked well with F4 
“Thick Caret,” but could not retrieve anything for F1 “Add 
Song” and F3 “Sort Collection,” because the keywords in the 
specified patterns do not exist in the code. The augmented 
corpuses in C3 and C4 are more effective than using regular 
expression search.  

In C6 (search using a repository of source code in 
FLAT3), recall is generally higher and the precision is lower, 
meaning that more of the relevant program elements are 
retrieved, but so are a lot of irrelevant ones. On average, the 
results from C2 and C4 have comparable recall values, but 
higher precision, meaning that they retrieve approximately 
the same proportion of the relevant program elements, but 
fewer irrelevant ones. This tendency is stronger for jEdit than 
for Jajuk. In contrast, C1 and C3 have much higher precision, 
but many program elements are missing. Finally, 
performance on C6 is more predictable, as indicated by the 
short boxes in the plot. 

Repositories populated with changesets can be 
augmented with data from other sources as well. We will 
now look the effect of including diverse data sources. 

C1 and C3 tended to return a small number of results, 
which led to lower recall, but higher precision than the other 
conditions. These two combinations were based primarily on 
the changesets, and did not include data from the SDG. 

Using SDGs helps in retrieving the missing members, as 
seen in the improvement of recall of C2 and C4 when 
compared with their counterparts C1 and C3. This result 
suggests that with a good ranking algorithm, this information 
can be very useful for augmenting a searchable repository.  

On the average, the information from the issue trackers 
yields small improvement in both the precision and recall of 
the results. In C3, we augmented the changeset index with 

 
Figure 1.  Boxplot of Precision and Recall of both Jajuk and jEdit. 



only information from tracker. This condition shows the best 
overall precision and recall, without retrieving a large 
number of program elements. Table VI shows the number of 
returned program elements, and the number of returned and 
relevant program elements for each search. 

TABLE VI.  EXPERIMENTAL RESULTS OF JAJUK AND JEDIT 

F1 F2 F3 F4 F5 
 

RE CO RE CO RE CO RE CO RE CO 

C1 0 0 41 3 12 6 10 8 7 4 

C2 0 0 329 8 306 13 1009 10 39 14 

C3 7 2 3 2 13 6 10 8 7 4 

C4 207 5 177 6 306 13 1009 10 39 14 

C5 2 0 18 7 2 0 8 8 2 2 

C6 376 5 273 13 285 14 334 9 2208 15 

Note: RE stands for Retrieved, and CO stands for Correct. 
 
The results show that using dependency graphs (C2 and 

C4) and source code (C6) in the repository consistently 
retrieved a large number of program elements. This occurred 
with both subject systems. Compared to the small number of 
elements in the oracle, the results from these conditions can 
be overwhelming and potentially unusable. Although they 
help to retrieve missing members, they also add the problem 
of sifting through the results to find the most relevant ones. 
This problem points to the need for accurate ranking 
algorithms to help bring attention to the relevant results.  

These results suggest an answer to our initial research 
question. Increasing data diversity in the searchable 
repository does not necessarily improve feature location. 
Sometimes, including additional data comes at a cost. When 
using SDGs, the improvement in recall values comes at the 
price of lower precision.  

VII. DISCUSSION  

In this section, we explore a number of unexpected 
effects in the data: the choice of keywords in searches, 
including data from issue trackers, and the effect of 
refactoring on using change sets for feature location. 

A. Searching with Alternate Keywords 

When a developer is not familiar with the vocabulary 
used on a software project, she might refer to the feature with 
other synonyms. In this study, we encountered this situation 
with F4, “Thick Caret.” Caret is used in jEdit to represent the 

blinking line marker that shows where the next character will 
be inserted in the text area. However, the term “cursor” is 
much more common when discussing such a marker. It is 
possible that a developer may use the keyword “cursor” to 
search for the feature instead of “caret”.  

We performed another search for F4 to examine how 
well the additional data help in the case that synonyms are 
used to search for the same feature. We used the term “thick 
cursor” in this search. The result is shown in Table VII. 

TABLE VII.  SEARCH RESULT OF F4 USING ALTERNATIVE KEYWORDS 

 “thick caret” “thick cursor” 
 Precision Recall Precision Recall 

C1 0.8 0.62 1 0.62 

C2 0.01 0.77 0.05 0.77 

C3 0.8 0.62 1 0.62 

C4 0.01 0.77 0.05 0.77 

C5 1 0.62 0 0 

C6 0.03 0.69 0.19 0.62 

 
The new search specification, “thick cursor”, improved 

the results from conditions C1 to C4. In contrast, regular 
expression search (C5) did not return any results, because the 
cursor was called caret throughout the code. Also, the term 
was not used near the term “thick” as we specified in the 
regular expression pattern. However, the term “cursor” was 
used when providing commit comments. This shows that one 
way additional data sources help with searches is by 
contributing alterative keywords that are not in the code.  

It is interesting that for the condition C6 (IR over source 
code), the performance using both sets of keywords was 
similar. Recall was slightly worse, but the precision was 
improved. Because the term “cursor” appears infrequently in 
the source code, the new query produced fewer results, while 
still retrieving relevant program elements containing the term 
“thick.” 

We find this result encouraging, because it suggests to us 
that using changesets in the repository is a promising 
approach. It allows users to search with familiar vocabulary 
from the problem domain, rather than limiting them to 
vocabulary from the solution domain. In other words, 
developers do not need to know exactly what they are 
looking for in order to search for it. 



B. Only Small Improvements from Tracker Information 

Overall, including information from issue trackers led to 
only small improvements in search performance.  

We had expected that including data from issue trackers 
would always return more results, meaning better recall. 
Because we used tracker information as additional metadata, 
searches in condition C3 would retrieve the same program 
elements as searches on C1 plus others. However, this was 
not the case, due to the high quality of commit comments.  

This lack of impact can be seen by comparing the results 
from the condition C1 to C3 and C2 to C4, as shown in 
Table IV. Here, we focus on comparing C1 and C3, because 
the other pair has similar properties. Further inspection of 
changesets returned by our queries in condition C1 versus C3 
showed that most of the relevant changesets are returned in 
both conditions. Therefore, the performances of both 
conditions are similar. The reason for this is that developers 
on both Jajuk and jEdit diligently comment their commit 
transactions. Although the comments provided are short, 
they describe the task and the feature touched by the tasks 
with the same keywords that we would use for searching for 
the feature. Therefore, any changeset with an associated 
work ticket number would be returned with or without the 
aid of additional metadata.  

Most of relevant changesets we selected from the query 
results for both conditions are the same. Kayley returns only 
the top 50 results, so some changesets that were returned in 
one condition were not present in the other.  However, these 
different changesets have little effect in improving or 
worsening the recall of results in both conditions. 

C. Effect of Large Scale Refactoring  

Refactoring is a known problem for program 
comprehension tools and the usefulness of the information 
that they provide. We had an opportunity to observe this 
problem in action with feature F1 “Add Song” from Jajuk. 

Not surprisingly, we found that refactoring has a negative 
impact on the effectiveness of using changeset information 
for feature location. In this case, refactoring modified the 
identifiers of program elements associated with the change 

set or removed program elements entirely. Consequently, 
these program elements were not returned by Kayley.  

 Searches for program elements implementing feature F1 
returned no results, as was shown in the Table VI. This result 
startled us, because the query returned several changesets 
with highly relevant description. For example, one of 
changesets returned was “Revision 233: Drag and drop in 
playlist editor and some methods renamed”. When 
examining the returned changesets, we also found that the 
program elements associated with them seemed relevant.  

Further inspection of the commit history shows that the 
class handling the drag and drop events for the F1 features 
were refactored in previous versions. The selected 
changesets were associated to the refactored program 
elements. Therefore, the links to these program elements 
were not useful because they do not exist anymore.  

To investigate how much refactoring affected the search 
results, we performed an additional experiment on Jajuk’s 
features using a version before the refactoring. The 
comparison of results between the two versions is shown in 
Table VIII.  We selected version 1.2, because it was used in 
a previous study by Robillard et al. [17]. Using the same 
procedure as before, we created search corpuses for 
conditions C1 and C2 using changesets up to version 1.2, 
and created new oracles for the features. Conditions C3 and 
C4 were omitted as they provided similar results. 

From the results shown in Figure 2, we can see that the 
precision and recall were worse in the version 1.8.3, the one 
used in the main study. We found that for all features, there 
were changesets with a highly relevant description, but 
contained relevant refactored program elements, especially 
F1 and F3. Therefore, searches on version 1.2 performed 
much better because these program elements still exist in that 
version of the code. The results for F2 in the two versions are 
comparable, because there was a changeset post refactoring 
that touched the implementation of the feature. This 
changeset provided links to the new set of relevant program 
elements. 

 
 
 

 
Figure 2.   Comparing Precision and Recall of Search Results at the Version 1.2 and the Version 1.8.3 



TABLE VIII.  COMPARING PRECISION AND RECALL OF SEARCH RESULTS 
AT THE VERSION 1.2 AND THE  VERSION 1.8.3 

  Version 1.2 Version 1.8.3 
  Precision Recall Precision Recall 

C1 0.27 0.23 0 0 
F1 

C2 0.02 0.54 0 0 

C1 0.5 0.2 0.07 0.18 
F2 

C2 0.01 0.47 0.02 0.47 

C1 0.28 0.92 0.5 0.33 
F3 

C2 0.12 0.92 0.04 0.72 

 
All three of our feature searches were affected by 

refactoring, which shows that refactoring to existing features 
is common, especially for older features. Refactoring usually 
affects many features, so the ensuing changeset touches too 
many parts of the code to be useful. In addition, when 
refactoring takes place, the comments specifying which 
features were touched tend not to be provided. If there is no 
task touching the feature after refactoring is done, the links 
to refactored program elements are usually lost. In order to 
use changeset information effectively, additional algorithms 
are needed to trace evolution and refactoring of program 
elements. 

VIII. THREATS TO VALIDITY 

Threats to the external validity of our study come from 
the characteristics of our subject systems and work practices 
of the developers on the projects. The ability to generalize 
the results depends on how representative are the subject 
systems, jEdit and Jajuk, of other software systems. 

Both jEdit and Jajuk are well-known open source 
software projects. Their characteristics and work practices 
are typical of active, popular, open source projects [19]. The 
size of software, frequency of commits, comments provided 
to each commit and usages of issues tracker are 
representative of open source projects. In addition, both 
projects have been frequently used in previous research in 
feature location [15, 17]. Using these systems allows us to 
compare our result to theirs.  

Threats to internal validity include how the features were 
selected and how oracle for each feature was created. The 
selection of feature could be biased in favor of searches 
using certain tools or combinations of data. To mitigate this 
threat, we selected features that have been used in previous 
studies. The researchers who conducted those studies could 
not have anticipated our study, so no bias is possible. Again, 
the advantage of using these concerns is that we can compare 
our result with existing data. 

 Lastly, the creation of oracle of relevant code for each 
feature can affect the result of our study because the 
relevancy of program element to a feature depends on expert 
judgment. To mitigate this threat, two researchers 
independently created oracles, and discussed them until they 
could agree on each member to be included or excluded. The 
researchers spent time studying the running system and 

source code, so that they could make an informed decision 
when judging relevance of program elements. We achieve a 
high rate of inter-rater reliability, indicating that the oracles 
are trustworthy. 

IX. FUTURE WORK  

Our results point to a number of directions for future 
work. We discuss three of them here. 

We would like to conduct further experiments with using 
various combinations of data. We obtain high recall and low 
precision when we use IR over source code, but when using 
changesets we obtain low recall and high precision. Perhaps 
we could find a way to use the results from searching on 
changesets to filter or reduce the matches provided by an 
index built with source code. 

Work is needed to find a more effective ranking 
algorithm for the matches that are returned by a search. 
Currently, we use the default Lucene ranking, which uses 
TF/IDF [10]. The results from including data from SDGs and 
issue trackers indicate that we can do better. 

Adding the data from issue trackers decreased recall in 
one case, because some good matches no longer appeared in 
the top 50. An SDG helps to locate more relevant program 
elements, but also tend to retrieve too many elements. Being 
able to rank returned elements accurately would help reduce 
the effort required by developers focus on the best ones.  

A good ranking algorithm would order search results so 
that more relevant and important program elements are 
placed higher in results. A known problem in ranking is that 
commonly used program elements are ranked higher. For 
example, library or utility modules, user interface classes, 
driver classes, or getter/setter methods appear high in the list 
because they are called frequently, not because they are more 
relevant. Providing weights for ranking and filtering is 
difficult, because each package or component is often 
tangled with a lot of different source code with different 
purposes. Further research on efficient ranking algorithm is 
so necessary that we can provide better results to developers. 

Work is also needed to both study and mitigate the 
effects of large scale refactoring. We found that large scale 
refactoring in Jajuk limited the effectiveness of searching 
over changesets. We would like to conduct further studies of 
refactoring effect to better understand the extent of this 
phenomenon. In other words, how many other projects are 
affected by large scale refactoring and by how much? How 
does this influence our ability to use changesets for feature 
location? Depending on the extent and severity of the 
problem, it may be necessary to develop additional tools and 
algorithms to automatically update the locations referred to 
by changesets.  

X. CONCLUSION 

A central idea in feature location is to minimize the gap 
between conceptual problem description and formal source 
code and to aid developers’ comprehension of a software 
system. In this paper, we report on an empirical study on the 
effect of including different combinations of diverse data 
sources for feature location. We attempted to locate five 
features from two subject systems, Jajuk and jEdit under six 



conditions using various data sources, such as changesets, 
bug reports, feature requests, and SDGs. Each feature under 
different condition was tested using our feature location 
platform. We used regular expression search and feature 
location using IR techniques on source code (via FLAT3) as 
baseline conditions for comparison. 

We found that using changesets to populate the 
repository tended to provide higher recall, but lower 
precision in comparison to using source code. We also found 
that precision and recall when searching on changesets was 
more consistent and flexible than regular expression search 
and IR on source code. 

Changesets are helpful for locating features by providing 
more conceptual-level information, but historical records on 
changesets tell us that large-scale refactoring of the code 
severely limits their effectiveness because a lot of refactored 
source codes do not exist in the current version of the source 
code, so developers cannot locate features. 

We learned that including more diverse data does not 
always result in better performance. Adding data from SDGs 
to changesets drives down precision, but increases recall. 
Adding data from issue trackers did little to improve 
performance and in one case actually lowered performance.  

We conclude that more data diversity is not always better 
and it is possible for a repository to runneth over. We plan to 
find ways to improve on algorithms for ranking matches, in 
order to find a happy balance between precision and recall. 

ACKNOWLEDGMENT 

Special thanks to Rosalva E. Gallardo-Valencia for her 
assistance in preparing this manuscript, to Phitchayaphong 
Tantikul for writing a web crawler, and to Roy Tiburcio, 
Derek Raycraft and Eugen Nistor for their valuable advice in 
implementation. 

REFERENCES 
[1] G. Antoniol, G. Canfora, G. Casazza, A. De Lucia, and E. 

Merlo, "Recovering traceability links between code and 
documentation," IEEE Transactions on Software Engineering, 
vol. 28, pp. 970-983, 2002. 

[2] T. J. Biggerstaff, B. G. Mitbander, and D. Webster, "The 
concept assignment problem in program understanding," in 
Proceedings of the 15th international conference on Software 
Engineering Baltimore, Maryland, 1993, pp. 482-498. 

[3] G. Canfora and L. Cerulo, "How Crosscutting Concerns Evolve 
in JHotDraw," in Proceedings of the 13th International 
Workshop on Software Technology and Engineering Practice, 
2005, pp. 65-73. 

[4] A. Chen, E. Chou, J. Wong, A. Y. Yao, Z. Qing, Z. Shao, and A. 
Michail, "CVSSearch: searching through source code using 
CVS comments," in Proceedings of IEEE International 
Conference on Software Maintenance, 2001, pp. 364-373. 

[5] B. Cleary, C. Exton, J. Buckley, and M. English, "An empirical 
analysis of information retrieval based concept location 
techniques in software comprehension," Empirical Software 
Engineering, vol. 14, pp. 93-130, 2009. 

[6] D. Cubranic and G. C. Murphy, "Hipikat: recommending 
pertinent software development artifacts," in Proceedings of the 
25th International Conference on Software Engineering 
Portland, Oregon, 2003, pp. 408-418. 

[7] M. Eaddy, A. Aho, and G. C. Murphy, "Identifying, Assigning, 
and Quantifying Crosscutting Concerns," in Proceedings of the 

First International Workshop on Assessment of Contemporary 
Modularization Techniques, 2007, p. 2. 

[8] M. Eaddy, T. Zimmermann, K. D. Sherwood, V. Garg, G. C. 
Murphy, N. Nagappan, and A. V. Aho, "Do Crosscutting 
Concerns Cause Defects?," IEEE Transactions on Software 
Engineering, vol. 34, pp. 497-515, 2008. 

[9] G. Fischer, S. Henninger, and D. Redmiles, "Cognitive tools for 
locating and comprehending software objects for reuse," in 
Proceedings of the 13th International Conference on Software 
Engineering Austin, Texas, 1991, pp. 318-328. 

[10] E. Hatcher and O. Gospodnetic, Lucene in Action: Manning 
Publications Co., 2004. 

[11] D. Janzen and K. D. Volder, "Navigating and querying code 
without getting lost," in Proceedings of the 2nd international 
conference on Aspect-oriented software development Boston, 
Massachusetts: ACM, 2003, pp. 178-187. 

[12] A. Marcus and J. I. Maletic, "Recovering documentation-to-
source-code traceability links using latent semantic indexing," 
in Proceedings of the 25th International Conference on 
Software Engineering Portland, Oregon, 2003, pp. 125-135. 

[13] D. Poshyvanyk, A. Marcus, and Y. Dong, "JIRiSS - an Eclipse 
plug-in for Source Code Exploration," in Proceedings of the 
14th IEEE International Conference on Program 
Comprehension, 2006, pp. 252-255. 

[14] V. Rajlich and N. Wilde, "The role of concepts in program 
comprehension," in Proceedings of the 10th International 
Workshop on Program Comprehension, 2002, pp. 271-278. 

[15] M. Revelle and D. Poshyvanyk, "An exploratory study on 
assessing feature location techniques," in Proceedings of the 
17th International Conference on Program Comprehension, 
2009, pp. 218-222. 

[16] M. P. Robillard, "Topology analysis of software dependencies," 
ACM Transactions on Software Engineering and Methodology, 
vol. 17, pp. 1-36, 2008. 

[17] M. P. Robillard, D. Shepherd, E. Hill, K. Vijay-Shanker, and L. 
Pollock, "An Empirical Study of the Concept Assignment 
Problem," McGill University SOCS-TR-2007.3, 2007. 

[18] T. Savage, M. Revelle, and D. Poshyvanyk, "FLAT3: Feature 
Location and Textual Tracing Tool," in Proceedings of the 32nd 
International Conference on Software Engineering, Cape Town, 
South Africa, 2010. 

[19] W. Scacchi, "Free and Open Source Development Practices in 
the Game Community," IEEE Softw., vol. 21, pp. 59-66, 2004. 

[20] J. Singer, T. Lethbridge, N. Vinson, and N. Anquetil, "An 
examination of software engineering work practices," in 
Proceedings of the 1997 conference of the Centre for Advanced 
Studies on Collaborative research Toronto, Ontario, Canada, 
1997, p. 21. 

[21] N. Wilde, M. Buckellew, H. Page, V. Rajlich, and L. Pounds, 
"A comparison of methods for locating features in legacy 
software," Journal of Systems and Software, vol. 65, pp. 105-
114, 2003. 

[22] W. Zhao, L. Zhang, Y. Liu, J. Sun, and F. Yang, "SNIAFL: 
Towards a static noninteractive approach to feature location," 
ACM Transactions on Software Engineering Methodology, vol. 
15, pp. 195-226, 2006. 

[23] T. Zimmermann, P. Weisgerber, S. Diehl, and A. Zeller, 
"Mining Version Histories to Guide Software Changes," in 
Proceedings of the 26th International Conference on Software 
Engineering, 2004, pp. 563-572. 

 

 


