Proceedings of the Tenth International Workshop on Program Comprehension, pp. 114-123, Paris, France,

27-29 June 2002.

On Using a Benchmark to Evaluate C++ Extractors

Susan Elli ott Sim
Dept. of Computer Science
University of Toronto
simsuz@cs.utoronto.ca

Abstract

In this paper, we take the concept of benchmarking as used
extensively in computing and apply it to evaluating C++ fact
extractors. We demonstrated the efficacy of this approach by
developing a prototype benchmark, CppETS 1.0 (C++
Extractor Test Suite, pronounced see-pets) and collecting
feedback in a workshop setting. The CppETS benchmark
characterises C++ extractors along two dimensions:
Accuracy and Robustness. It consists of a series of test
buckets that contain small C++ programs and related
guestions that pose different challenges to the extractors. As
with other research areas, benchmarks are best developed
through technical work and consultation with a community,
so we invited researchersto apply CppETSto their extractors
and report on their results in a workshop. Four teams
participated in this effort, evaluating Ccia, cppx, the Rigi
C++ parser, and TkSee/SN. They found that CppETS gave
results that were consistent with their experience with these
tools and therefore had good external validity. Workshop
participants agreed that CppETS was an important
contribution to fact extractor development and testing.
Further efforts to make CppETS a widey-accepted
benchmark will involve technical improvements and
collaboration with the broader community.

1. Introduction

Fad extradion from source ®de is a fundamental adivity
for reverse engineaing and program comprehension toals,
becaise dl subsequent adivities depend on the data
produced. As a result, it is important to produce the fads
required, acairately and reliably. Creaing such an extrador
isa dallenging engineaing problem, espedally for complex
sourcelangueges sich as C++ [5, 6].

Consequently, it would be useful to have a @nvenient means
to evaluate afad extrador. In this paper, we report on our
experiences designing and using a benchmark for this
purpocse. We have prototyped a benchmark for C++
extradors, cdled CppETS (C++ Extrador Test Suite,
pronounced seepets). We chose adifficult source language
becaise benefits can be redised quickly and the lessons
transferred to other source languages. The benchmark
consists of a series of test cases eath with a set of related
guestions.

Richard C. Holt
Dept. of Computer Science
University of Waterloo
hat@plg.uwaterlooca

Steve Easterbrook
Dept. of Computer Science
University of Toronto
sme@cs.utoronto.ca

This benchmark has been well-recaved by al who have used
or reviewed it. It has been used by four teams of program
comprehension reseachers to evaluate Ccia, cppx, Rigi C++
parser, and TkSedSN. The results were presented and
discussed at a workshop at CASCON 2001in November of
last year [15]. Despite being a prototype, the CppETS
worked very effedively. The teams used the benchmark
primarily to test their extradors, whil e we used the workshop
to evaluate the benchmark. The participants generally felt
that the test cases were representative of reverse engineaing
problems and the ratings of their extradors were fair.
Foll owing the workshop, developers from IBM and Sun have
downloaded the benchmark and are using it as part of their
internal test proceses. All the materials for CppETS are
available online [15]. We plan to refine the prototype into a
widely-acceoted benchmark, by applying it to additional
tools and soli citing feedbadk from the community.

Before discussng the CppETS itself, we review
benchmarking and previous work on evaluating source @de
extradors.

1.1 Benchmarks

A benchmark is a @nvenient way to encgpsulate the
materials and procedure for an empiricd study and can be
used to answer a wide variety of questions. Walter Tichy
defines a benchmark, as “...a task domain sample exeauted
by a computer or by a human and computer. During
exeadtion, the human or computer records well-defined
performance measurements. [19, p. 36]” Extending Tichy's
definition, a benchmark has three @mponents: a motivating
comparison, a task domain sample, and performance
measures.

1. Motivating Comparison. The design of the benchmark
is motivated by a particular comparison that its users
would like to make. This comparison is made for a
purpose, such as, making a purchase or engneeing a
too (or technique or technology) to med a goal. A
particular tod can be compared against itself over time,
e.g. during development. Or, different tools can be
compared against ead other.

2. Task Domain Sample. The tests in the benchmark
should be arepresentative sample of the tasks that the
tool is expeded to solve in adual pradice

Susan Sim
Proceedings of the Tenth International Workshop on Program Comprehension, pp. 114-123, Paris, France, 27-29 June 2002.

3. Performance Measures. These measurements can be
made by a @mputer or by a human, and can be
guantitative or qualitative. Performanceis not an innate
charaderistic of the todl, but is the relationship between
the tod and how it is used. As such, performance is a
measure of fitnessfor purpose.

The motivating comparison drives the seledion of task

domain sample, which in turn drives the seledion of the

performance measures.

Benchmarks, like standards, are aeaed througha processof
community consultation and technicd refinement. The
composition of ead component neels to be scrutinised,
what tasks dould be included and what measures dould be
used. AsTichy wrote,
The most subjedive and therefore weekest part of a
benchmark test is the benchmark’s compaosition.
Everything else, if properly documented, can be
chedked by the skeptic. Hence, benchmark compasition
is aways hotly debated. [19, p. 36]
This debate can be mntentious in reseach areas where
innovative tools may not have awell-defined task domain or
performance aiteria These ae often determined
progressvely through investigation and pee review. The
motivating comparison is controversial, becaise it is
symbadlic of the goal of areseach area

Controversy and the esuing discussons are highly
beneficial for a research community, particularly when they
read consensus on the three @mponents of abenchmark. A
standard benchmark translates into agreement on the goals of
the discipline and how to measure progressin the field by
setting well-defined obedives and a foundation for
subsequent work. Quoting Tichy again, “...a benchmark can
quickly eliminate unpromising approaches and exaggerated
claims’ and “benchmarks can cause a1 area to blossom
suddenly because they make it easy to identify promising
approaches and discard poa ones. [19, p. 36]”

Two well-known benchmarks are TPC-A for databases and
SPEC CPU2000for computer systems. Their development
paths illustrate the amount of community involvement
required to creae a widely-acceted and widely-used
benchmark. Both of these were developed with extensive
collaboration between industry and reseach, as well as
consultation with the broader user community. The
Transadion Procesing Performance Council’'s TPC
Benchmark™ A, more briefly TPC-A, was first published in
1989 and had evolved over several generations from a
benchmark DebitCredit first described in a paper in 1984
[7]. (This paper had so many contributors from various
organisations that the aithor was given as “Anon et al.”)
Developing TPC-A required nealy 1200 person-days of
effort contributed by 35 database vendors who were
members of the consortium.

SPEC (Standard Performance Evaluation Corporation) is
also a mnsortium with different committees responsible for
creging different benchmarks. The @mmittees have
representatives from all the major hardware vendors as well
as reseachers from universities [8]. Requirements, test
cases, and votes on benchmark compasition are solicited
from committee members and the genera public through
SPEC's web site. The committee uses “benchathons’ to
refine the benchmark. John Henning explained:
The point of a benchathon is to gather as many as
possble of the projed lealers, platforms, and
benchmarks in one place ad have them work
colledively to resolve technicd isaies involving
multi ple stakeholders: At a benchathon, it is common to
see enployees from different companies looking at the
same screen, helping ead other. [8, page 30]

It is useful to keep these two examples of mature
benchmarks in mind when considering our prototype,
CppETS.

1.2 Evaluating Extractors

A number of studies have evaluated source @de extradorsin
the ontext of examining static cdl graph extracors 14],
architedural extradors [3], and program comprehension
tools [16]. All of these studies found that extradors varied
significantly in terms of acairacy, reliability, richness of
fads emitted, usability, and fedures. Our work draws
conceptualy on the study by Murphy et a. [12] and
methoddogicdly on the studies by Armstrong and Trudeau
[3], and by Sim and Storey [16].
Murphy et al.’s gudy found that a set of nine cdl graph
extradors al produced false positives and false negatives at
different rates for ead of three subjed systems. In other
words, no extrador made the erors consistently aaoss the
threeprograms. In their conclusion, they wrote:
It may be possble to enginea tods that guarantee
certain behavioral properties... Or, it may be sufficient
to more dfedively communicate the design dedsions
that spedfic extradors have made... Another possible
approach is to develop new tools and techniques for
helping an engineer assess the kind of call graph
extracted. [12, p. 182, itali cs added]
While CppETS does not help an enginee determine the kind
of cdl graph extraded, it does develop a technique (and
results) to help atool designer or tod user seled an extrador
that is appropriate for the tasks they wish to undertake.

For their study, Armstrong and Trudeau creaed a small C
program, cdled degen, that contained a number of feaures
that are problematic for source mde extradors. They tested
five extradors using degen, and none of them were ale to
handle dl the feaures. Our benchmark borrows sgnificantly
from degen, in that we tested extradtors using small source
code examples and examined how they handled spedfic
feaures.

The benchmark approach also builds on work started with
the structured demonstration approach used by Sim and
Storey [16]. Similar to that study, we put source code and
tasks together in a package that researchers and developers
could use with their own tools. Results were also shared and
discussed in aworkshop setting.

1.3 Overview

The remainder of this paper is organised as follows. In
Section 2, we describe the collection of testsin CppETS and
the approach used to select them. Our experience and results
from using the benchmark with four extractors are presented
in Section 3. Lessons learned and their implications for
refining the benchmark are discussed in Section 4. The
paper concludes with Section 5, where we discuss future
work and reflect on the evolution of benchmarks.

2. Composition of the Benchmark

In this section, we describe the design of the CppETS. Our
work began with the motivating comparison. From there, we
selected the task domain sample, or test buckets, and the
performance measures.

2.1 Motivating Comparison

We reviewed the extractors evaluated in the studies
discussed in Section 1.2, in order to characterise the design
space for these tools. It appeared that these extractors traded
accuracy for robustness.

1 | Y&full analysis
PAe

Yxlexical

matching

Accuracy

0 Robustness 1
Figure 1: Initial Conceptualisation of
Design Space for Extractors

Some etradors used a mpiler-based approach and
performed a full analysis of the source to produce fads.
While these extradors tended to be highly acarate, they
could not handle mnstructs from outside their grammar.
Examples of these tods are Acada [4] and rigiparse [11].
Others used more gproximate gproadies, such a lexicd
matching, and these could handle unexpeded constructs
more ealy. SNiFF+ [3] and LSME [12] are examples of
this seoond approach. Their philosophy can be summed up
as, "it's not perfed, but somethingis better than nothing."

We used acarracy and robustness as the two dmensions for
evaluation in CppETS, seeFigure 1. (The data points have
been included for ill ustrative purpaoses and do not represent

any existing extradors.) Full analysis approaches would be
situated in the top left corner of graph, with high acaracy
but low robustness Lexicd matching approaces would be
situated in the bottom right corner, with low acaracgy but
high robustness The ided extrador would have baoth high
acarracy and highly robustness As we will seein Sedion 4
on lesons leaned, this charaderisation has me
shortcomings, both in the dimensions sleded and the
relationship between them.

2.2 Task Domain Sample

Having seleded a motivating comparison, we neealed to
crede a orresponding task domain sample. For a C++ fad
extrador, this would be a ©lledion of source ®de or test
cases that were representative of the problems the extrador
would have to ded with in adual pradice We began by
enumerating mundane ad problematic C++ language
feaures, analysis problems, and reverse engineaing issues.
Thislist was then used to crede aseries of test buckets.

The source mde for the test buckets came from a variety of
sources. Some were spedally written for the benchmark.
Others were donated by IBM and by Michad Godfrey.
Some were taken from bodks and web sites. These test cases
were small, typicdly lessthan 100 lines of code, and none
more than 1000lines. We mnsidered using C++ compil er
test suites such as the one distributed with GNU g++ [18]
and the commercia C++ validation suites products from
Perennial [13] and Plum Hall [14]. However, these suites
test the minutiae of the C++ language using thousands or
tens of thousands of test cases, typicdly using an automated
testing herness Unfortunately, there ae too many test cases
with too much detail to include awy suite ompletely in
CppETS.

We aeaed two caegories of test buckets, Accuracy and
Robustness corresponding to the two dmensions of our
motivating comparison. CppETS 1.0 contains 25 test
buckets, 14 in the Accuracy caegory and 11 in the
Robustness caegory. These test buckets and the rationale
for them will be discussed in the remainder of this sdion.

2.2.1 Accuracy Category

Figure 2 lists the groups and test buckets in the Accuracy
caegory. All of the test buckets in this category used only
ANS| standard C++ syntax. However, not al of them
followed modern (i.e. post-ANSI standard) C++ idiom.

The preprocesor diredives present their own class of
difficulties, so they were given their own test group(#1-3).
The purpose of the Preprocessor group is to determine
whether the extrador analyses the source @de before or
after preprocessng and the correadnessof the fads produced.
An extrador that analyses the source mde before
preprocessng often does not extrad the mrred information
about the resulting source mde. For example, preprocesor
diredives may re-define a keyword or maaos can be

combined to create source code. An extractor that analyses
the source code after preprocessing does not get information
about preprocessor directives such as macros.

Preprocessing
1. Macros
2. Conditional Compilation
3. Pragmas
C++ Syntax
Data Structures
4. array
5. enum
6. union
7. struct
8. Variables
9. Functions
10. Templates
11. Operators
12. Exceptions
13. Inheritance
14. Namespaces

Figure2: Test Bucketsin Accuracy Category

The second group (#4-14) is concerned with C++ language
features. The purpose of this group is to test identification of
language features and resolution of references, mainly calls
to functions and uses of variables. These test buckets
include many of the potential extractor problems identified
by Armstrong and Trudeau [3], such as an implicit call to a
function using a pointer, array traversal using indices and
pointer arithmetic, multiple variables with the same name,
and usage of data structure elements.

Incomplete Information
15. Missing source
16. Missing header
17. Missing library
Dialects
18. GNU g++
19. MSVisua C+
20. IBM VisualAge C++
Heterogeneous Source
21. Cand Fortran
22. Embeded SQL
Generated Code
23. lexlyacc
24. GUI Builder
25. Stateflow

Figure 3: Test Bucketsin Robustness Category
2.2.2 Robustness Category

Figure 3 lists the test buckets in the Robustness category.
These test buckets are intended to represent the kinds of
problems encountered in reverse engineering.

The Incomplete Information test buckets (#15-17) are
standard C++ source code, but with a file missing. On a

reverse engineering project, the client may have neglected to
provide a file, or worse, may not be able to provide a file.
The test buckets in the Dialects group (#18-20) contain
compiler extensions. These tests can be considered to be
C++ with extra keywords. These test buckets are
representative of those situations where the legacy source
code was developed using a compiler that has a dightly
different grammar than the extractor.

The Heterogenous Source tests (#21-22) are C++ (or C)
together with statements from another source language.
Programming languages are often combined to perform
special purpose tasks, for example embedded SQL for
interfacing with databases and FORTRAN for scientific
computing. The non-C++ code is normaly handled by
another tool, such as a preprocessor for embedded SQL and
another compiler for FORTRAN. Unfortunately, appropriate
tools for fact extraction are rarely available.

The Generated Code (#23-25) tests contain files that were
not C++ at al, but contain descriptions used to generate
C++. These descriptions may be grammars, state charts, or
resources, and they are the maintenance artifacts, not the
generate source code. Consequently, they view the inputs to
the code generator as the maintenance artifacts. Often, the
appropriate tool is not available to generate the source code
or analyse theinitial descriptions.

2.3 Performance Measures

Having chosen the test buckets, our next step was to find a
method for measuring the performance of the extractors.
Taking an arbitrary extractor and examining its output for
completeness and correctness is not a ssimple problem. The
facts produced could be stored in memory, in a binary-
encoded database, or in a human-readable intermediate
format, such as GXL [9]. The output schema of the
extractors could also vary significantly, ranging from the
abstract syntax tree level to the architectural level [9].
Writing a tool to check the accuracy of facts as specified by
a schema can be as difficult as writing an extractor itself.

We handled this challenge by making two simplifying

assumptions.

1. The output of the extractors must be stored in a text file
that was human-readable. Alternatively, the extractor
could be accompanied by a tool that alowed users to
query the factbase. This assumption excluded tools that
store the facts in memory, such as integrated
development environments, from using the benchmark.

2. Operators/users of the extractors would be involved in
assessing the output to simplify the problem of
comparing output with different schemas and formats.

Using these two assumptions, we devised the following

performance measures for the tests in the benchmark. Along

with the source code in each test bucket, there was a text file
containing questions about the program. The answers to the
guestions are also provided and it is the responsibility of the

#i ncl ude <stdi o. h>

"Friday", "Saturday" };

for (day = SUN, day <= SAT; day++)
printf("%l%l1s\n", day, dayNane[day]);

return O;

enum days { SUN = 1, MON, TUES, WED, THURS, FRI, SAT };
mai n()
/1 enum days day;
i nt day;
char *dayName[SAT + 1] = {"", "Sunday", "Monday", "Tuesday", "Wdnesday", "Thursday",

Figure 4: Source Code from enumTest Bucket

person operating the etrador to demonstrate that these
answers can be found in the parser output.

The questions covered a variety of topics, including simple
recognition and resolution of language nstructs and their
attributes. For the recognition questions, we aked the
extrador operator to show the output for a spedfied feaure,
such as atemplate or exceptions. Sometimes we asked for a
comparison of related feaures, such as a dassand a struct.
In terms of resolution, we asked questions to determine
whether the extrador corredly linked a reference with its
dedaration or definition. In terms of attributes, we asked for
locaion information in varying combination, file name, start,
end, line, charader on a ling, and byte offset from start of
file. The questions covered awide range of functionality and
data models, so we could test a variety of extradors with the
same material. Consequently, no singe etrador was
expeded to be aleto correaly answer al of the questions.

We used two marking schemes: a quick one that awarded
non-numeric grades and a detailed one that gave numericd
scores. Both of these marking schemes are explained in
detail i n the next sedion, but we give brief descriptions here.
There ae two reasons for having two marking schemes. One,
the quick analysis was used as a “sanity ched” to determine
whether it would be reasonable to continue to the detail ed
analysis. These ratings were validated externaly against the
evaluators and developers a priori knowledge of the
extradors. Two, they give different insights into the results.
The quick analysis was concened with the overall
performance of the etradors, while the detailed analysis
sought to provide explanations for the performance

Portions of the enum test bucket will be given here & an
ill ustrative example. Figure 4 is the source @de and Figure
5 is an excerpt from the question file. The source ®de
defines a global enumeration type cdled days, and iterates
throughit in the main function, printing out the strings from
a aorresponding dayName aray.

Benchmark users were expeded to use their extrador on the
source @de and answer the questions using output from the

extradors. This can be done by submitting the extrador
output and providing a mncordance, e.g. alist of the relevant
source lines, nodes, or edges. Alternatively, the user could
describe the tools and procedure used to oltain the answer
from the fadbase. Since the questions in Figure 5 (and all
the other test buckets) could be awswered by simply
inspeding the source @de, responding “yes’ or repeaing the
answers given, would not earn full marks.

2. What is the fourth enuneration constant
in enum days?

Answer : VEED

3. \What is the (integer) value of the
enuneration constant MON?

Answer: 2

Figure5: Excerpt of questionsfor enumtest bucket

3. Application and Results

CppETS 1.0 was distributed to four teams and they were
asked to submit their solutions one week in advance of the
workshop held a8 CASCON2001 in November of that yea
[15]. At the workshop, the teans presented the results and
the workshop aganisers presented our anaysis of their
results and the benchmark. In this sdion, we report on this
application of the benchmark and the results of the teams.

The four extradors evaluated were:

» Ccig, AT&T [4]

e cppX, University of Waterloo and Quear's

University [2, 5]

* Rigi C++ parser, University of Victoria[11]

e TkSedSN, University of Ottawa [2]
Table 1 lists the extradors and tean members. With the
exception of Ccia, the teans consisted of individuas
involved in the development of the extradors. Two teams,
cppx and TKSEE/SN, used the benchmark as a source of
additional tests for their development work. The teams for

Tool Description Team Members
Ccia, * Part of Acadatod suite Mike Godfrey—UofWaterloo faaulty
AT&T «Built using front end from Edison Design Group Andrew Trevors—UofWaterloo graduate

be used with rest of Acada

*Runson IRIX, Solaris, SunOS, and LINUX
« Emits database acording to internal format; intended to

student

cppx, «Built using GNU g++ asafront end
U. of Waterloo

and Queen's U. Solarisand LINUX

*Emits TA, GXL, VCG

*Runs on same platforms as GCC, binaries avail able for

lan Bull—UofW graduate student
lan Davis—UofW reseach asciate
Andrew Malton—UofW faaulty

Rigi C++ «Built using Visual Age C++ asfront end Holger Kienle—Uvic graduate student
parser, *Runson AlX, NT, OS/2; need to purchase VAC++ Johannes Martin—UVic graduate student
U. of Victoria separately
* Emits RSF
TkSedSN, *Built using Cynus Source Navigator as front with Tim Lethbridge—Uof O faaulty
U. of Ottawa additional extradion scripts Sergei Marchenko—UofO reseach

¢ Emits TA++ and GXL

*Runs on UNIX; web service available &
http://kbre9.site.uottawa.caparser_online/

associate

Table 1: Characteristics of Tool Teams

Ccia ad the Rigi C++ parser were interested in further
exploring the caabiliti es of those extradors.

The two and a half hour workshop kegan with the organisers
giving a short introduction to the problem and the benchmark
[15].. Each tean had 25 minutes to give an introduction to
their extrador and a qualitative overview of their solutions to
give the audience an impresson of how well their extrador
performed. The organisers then reported on the quick
analysis of the solutions and lesons leaned from the
workshop.

Both the workshop and the evaluation were asuccess There
was broad acceptance by both the teams and workshop
attendees of the benchmarking approach and CppETS. The
teams thougtt the gpproach was und and were enthusiastic
about using the test buckets. This excitement climaxed with
the unweiling of the results from the quick analysis. All in
attendance aproved of the final standings and agreed that
they were ansistent with their impressons and expedations,
based on the presentations by the teams.

3.1 Quick Analysis

For the quick analysis, the results were scored as foll ows.
The 25 test buckets contained a total of 93 questions. The
solutions to ead question was given a grade: Full Answer,
Partial Answer, and No Answer. A Full Answer was
awarded when the question was answered corredly in its
entirety. A Partial Answer was awarded when the answer
was not totally corred or complete. A No Answer grade was
given when the extrador failed to provide ay solution. This

occurred when the extrador crashed and failed to parse or if
it was not designed to output the fads requested.

For the workshop, the solutions were scored generously and
when in doubt the higher of two passhle grades was
awarded. The performance of the extradors were described
using stacked bar graphs that showed the number of Full,
Partial, and No Answers on ead test buckets. By using
green, yellow, and red for the different grades on the bars,
the graphs provided a Gestalt view of the results. They also
aff orded easy comparison of the extradors at the level of test
buckets. These graphs cannot be reproduced here
effedively, so the interested realer isinvited to seethem on
the workshop web site [15].

Results were produced by summing the scores from the
various test cases. Aggregating the scores from test buckets
that evaluate different languege feaures gives an effedive
overview of performance In this analysis, al test buckets
were equally weighted. In a spedal-purpose evaluation,
weightings could be adgned to refled the relative
importance for language fedures for particular downstrean
task. Finaly, we were @&le to aggregate scores from
Accuragy and Robustness test cases because this operation
preserved the measurement scde (i.e. absolute) and external
validity of the scores.

The final standings (shown in Table 2) were based on the
sum of the number of Full and Partial answers. The extradtor
with the highest score was TkSedSN with 51. They were
followed by the Rigi C++ parser with 45, Ccia with 41, and
cppx with 17. It was clea that cppx had alow score because
it was dill in development and many feaures were not yet

implemented. The other three extractors had scores that
were very close to each other. This finding was consistent
with the presentations by the teams during the workshop.

Full Partial No Full +

Answer | Answer | Answer Partial
Ccia 32 9 52 41
CppX 7 10 76 17
Rigi C++ 26 19 48 45
TkSee/SN 33 18 42 51

Table 2: Results of Quick Analysis
3.2 Detailed Analysis

Since the results of the concise analysis were considered to
be externally valid, we continued with a detailed analysis.
While this analysis is richer, the final standings of the tools
were the same.

For detailed analysis, we used a marking scheme that
awarded marks for each request for a fact that was satisfied.
The questions from the test buckets were re-grouped to
correspond more closely to single language features and each
guestion was labelled as direct (i.e. relevant to feature being
tested) or indirect (i.e. relevant to other aspects of the parse.)
Under this re-division, there were 106 questions and 444
available marks.

For each question, each mark was categorised into one of
three classifications: Correct, Incorrect, or Not Available.
Marks were awarded in the Not Available category when the
extractor did not have that information available in its data
model. In other words, the extractor was never intended to
answer such aquestion. The Correct category meant that the
mark was earned for a full, correct answer. The remainder
were marked as | ncorrect.

For each question, a score was caculated as
#Correct

follows: . The Not Available marks were

#Correct+# Incorrect
removed, so each extractor was only evaluated on the facts
that it was designed to output. The scores were normalised,
s0 each question and then each test bucket was equally
weighted. Each test bucket had a score out of one, so the
maximum possible Accuracy score was 14 and for
Robustness the maximum was 11.

Figure 6 shows a plot of the Correct scores on the Accuracy
category vs. the Robustness category. This simple graph
shows some very intriguing relationships among the
extractors and hints at the trade-offs we had hypothesised.
From this graph, we can see that Cciais the most accurate on
the straightforward C++ test buckets and TkSee/SN is best
able to handle non-standard source code. The standings
from Table 2 are essentially the sum of the Correct scores
from both the Accuracy and Robustness categories.
TkSee/SN came ahead of Ccia on overall because its

Robustness score more than covered the difference in
Accuracy.

14
12 1
10 1
> .
2 o @ Ccia
s 8 @ TkSee/SN
3
2 6
4 @ rigiparse
2
@ cppx
0
0 2 4 6 8 10
Robustness

Figure 6: Accuracy vs. Robustness of Four Extractors
4. LessonsLearned

Fundamentally, the CppETS 1.0 was a success. The basic
approach of using test cases to evaluate an extractor was
good, because it allowed us to query the extractors directly
about their functionality. In some cases, the tools were the
only reliable authority about their capabilities and the
developers were not able to reliably tell us whether their tool
could handle a particular feature without a test program. It is
noteworthy that we were able to uncover bugs in al of the
extractors.

Developing CppETS and validating it in a workshop was
very enlightening. The lessons learned from this experience
fell into two categories. those that relate to the devel opment
a benchmark and those that relate to the problem of fact
extraction in general. These lessons will be the focus of this
section.

4.1 Benchmarking C++ Extractors

CppETS 1.0 proved to be a good genera-purpose
benchmark for C++ extractors. There are some minor
problems, such as typographical errors and mistakes in the
canonical answers, that can be addressed with a 1.1 release,
without re-designing the entire benchmarks. While the
design decisions we made initially have been borne out
through implementation and usage, we still need to consider
the alternatives. In this examination, we re-visit the
components of a benchmark: a motivating comparison, a
domain task sample, and performance measures.

4.1.1 Motivating Comparison

Recall from Section 2.1 that our characterisation situates the
extractors along two dimensions, accuracy and
robustness(see Figures 1 and 6). The problem with this
characterisation is that it would be possible for a poor
extractor to be highly accurate and highly robust. For
example, an extractor that accepted any input and emitted no

fads would be both highly robust and highly acairate (it
output everything corredly acording to its empty schema.)
A more gpropriate charaderisation would define robustness
as acalracy in the presence of noisy data, as fown in Figure
7.

lexical matching

Accuracy

full analysis

Noise in Code

Figure 7: Re-conceptualisation of Robustness

Examples of noise in source @de include syntax errors,
missng information, compiler extensions, and heterogeneous
source langueges. The graph postulates that extradors that
use full parsing and analysis will be more acarate than
extradors that use gproximate matching on source ®de
with no noise. But their relative performances will change &
the amount of noise incresses. Extradors that use full
analysis approaches are more sensitive to noise and their
performance will degrade faster. In contrast, extradors that
use gproximate gproaches are more resistant to noise, so
their performancewill degrade more slowly.

Our motivating comparison is tightly focused on the data
output by the extradors. There ae other requirements and
aspeds of performance that users consider when seleding an
extrador. Performance daraderistics sich as ged,
memory requirements, and size of fadbase ae fadors that
become important when working with larger programs. A
user may have other requirements beyond the schema of the
extrador, such as sppated patforms, reseach and
commercial avail ability, cost, ease of use, interoperability,
technicd suppat, and quality of documentation. While
these feaures that are difficult to test with a benchmark, this
information can be wlleded as part of the evaluation
process

4.1.2 Task Domain Sample

The task domain sample for CppETS 1.0 is a series of test
buckets with small pieces of source @de. In genera, the
size was appropriate for the gproach that we used, but they
were both too kig and too small for different reasons.

In the prototype, results were sometimes conflated becaise a
singe test attempted to measure different things at the same
time. This problem would be solved by using smaller test
cases that separate the tasks of identifying a language
feaure, resolving references to it, and recognising its

attributes. These three steps have aaogues in the
compilation domain: compiling, linking, and code
generation. These smaller test cases would alow similar
tests with different levels of difficulty within a single test

bucket.

Whil e the problems paosed by the test cases are representative
of problems for an extracor, the test cases are far too small
to be representative of program comprehension or reverse
engineaing problems. We had plans for a third caegory
(Acauragy-and-Robustnesy, but no suitable scoring
mecdhanism could easily be found, so these plans were
abandoned. We had hoped to evaluate the acaracy of the
extradors on extant programs, such as those used in previous
structured demonstrations (xfig 3.2.1 [16] and SORTIE
[17]). But with even these moderate sized programs, it is
non-trivial to oktain a cmplete set of corred answers. The
answers could be aeaed using painstakingy manual
methods or we culd use atrusted orade to tell us the right
answers. Unfortunately, no such orade eists, for if it did,
we would not be working to improve the extradors that we
have.

4.1.3 Performance Measures

The performance measures in CppETS were simple, but
were &le to give a rich description of the ectradors
cgpabiliti es. The question that arises regarding performance
iswhether we ae measuring the right thing.

Recdl from Sedion 1.1 that performanceis an indication of
fitness for purpose. While the stated purpose of these
extradors is “reverse engineging’ or “program
comprehension,” these cdegories are so hroad that it is
difficult to formulate dea performance measures. The
solution isto narrow the purpose of the evaluation, but at the
same time keeg it sufficiently genera that it is dill
worthwhile to construct a benchmark. One option is to
define the evaluation relative to a downstrean application,
for example, dicing, architedure rewmvery, or code
migration. Another posshility is to define the benchmark
relative to a standard schema, such as the Dagstuhl Middle
Model [1] or the forthcoming C++ abstrad syntax tree
schema [6]. The feaures examined and the questions posed
can be seleded from the schema.

A seoond problem is that the dharaderisation treds acaracy
as a binary charaderistic, in other words, can it handle a
particular languege fedure? As Murphy et a. found,
extradors do not operate acording to their spedfication all
the time. They sometimes mis-analyse alanguege feaure
idiosyncraticdly. One of their many examples is the
following:

Field, when run on mapmaker, mised the cdl

(main;banner), apparently becaise main is not defined

with areturn type. Editing the definition of main to add

a return type dlows Field to extrad the cdl. Not all

functions, however, need to be dedared with a return

type for Field to extract calls. For example, a small test
case of defining a function without a return type did not
result in afalse negative [12, page 172].
The benchmark should also consider accuracy statistically
over alarge code base. Information retrieval statistics such
as precision and recall could be used.

The final problem with our performance measures is more
fundamental. One assumption of the evaluation is that
extractors could be evaluated separately from other reverse
engineering and program comprehension tools. In practice,
it was difficult to isolate the extractor both in terms of usage
and designing the evaluation criteria. The quality of the
solutions were influenced by i) how experienced the team
members were with extractor output and ii) the tools
available for querying the factbase. It is not clear how this
problem can be addressed. One possibility is to accept it as
a shortcoming in the design of the evaluation. Ancther isto
include a downstream analysis tool in the evaluation. This
modification would permit the participation of IDEs, but
would make it more difficult to verify the submitted
solutions.

4.2 Fact Extraction

After placing the four extractors side-by-side and comparing
them, interesting lessons emerge regarding their design,
implementation, and shortcomings. All of the extractors that
participated in the workshop use COTS (commercia off-the-
shelf) components as front ends. The extractor with best
score, TkSee/SN, used Cynus Source Navigator as a front
end plus some home-grown scripts to augment the factbase.
Source Navigator is a code browser, o it is intended to be
used to extract and display information about source code
rather than compile it. The remainder relied on the
intermediate representations from a compiler: Ccia used a
front end from Edison Design Group; cppx used GNU gcc;
and Rigiparse used VisuaAge C++. Consequently, the
capabilities of these extractors are quite similar.

This transfer of features from compiler intermediate
representations would be fine if parsing and analysis for
compilation were the same as parsing and analysis for
reverse engineering, but they are not. There are many other
examples of technologies that do not transfer from one
domain from the other. Reverse engineers needed to create
their own intermediate formats, for example GXL, TA, and
RSF, rather than adopting a compiler intermediate format
wholesale, such as SUIF [9, 10]. The cppx extractor
transforms GNU g++ interna data suitable for compilation
into one more suitable for reverse engineering [5]. As
mentioned in Section 2.3, we could not use compiler test
suites in their entirety for this benchmark because the they
were too fine-grained and focused on language syntax.

Fact extractors for reverse engineering and compiler front
ends attempt to solve related problems, but they have
different problem domains and thus are intended to meet

different requirements. The tendency to use compilers as
front ends can be attributed to familiarity: A course on
compilers is standard in undergraduate computer science
curricula and many researchers in this field have a
background in compiler research. As reverse engineering
matures, these differences emerge so we need to distinguish
ourselves as afield. Consequently, we need to articulate our
requirements for an extractor more clearly. Work is under
way to create a standard schema for C++ at the AST level [6]
and for a middle-level schema [1]. These efforts will
advance the state of fact extraction and help us to articulate
our contributions to improving software engineering.

5. FutureWork

CppETS 1.0 has proven to be a simple and effective
benchmark for evaluating C++ fact extractors. It has been
used to evaluate four extractors and been discussed in a
workshop. The participating team members and interested
audience members agreed that CppETS was well-designed
and made an important contribution to the problem of
implementing C++ fact extractors. It was found to give valid
characterisation of their Accuracy and Robustness.

We are encouraged by this success and plan to continue this
research. This experience could easily be generalised to
other source languages such as C (and the corresponding
benchmark called CETS), Java (JETS), and even Cobol
(CoETS). Future work for CppETS will take a two-pronged
approach: improving the design of the benchmark and
consultation with the broader community to gain acceptance.

The three components of a benchmark (a motivating
comparison, a task domain sample, performance measures)
are best sdected and refined through community
involvement and debate, not through insular technical work.
The benchmarks from TPC and SPEC are widely respected
and this stature was attained in part through collaborative
work by stakeholders from multiple ingtitutions with
different perspectives.
A benchmark needs to be continually criticised and matured.
Onthisissue Tichy wrote,
Constructing a benchmark is usually intense work, but
several laboratories can share the burden. Once
defined, a benchmark can be executed repeatedly at
moderate cost. In practice, it is necessary to evolve
benchmarks to prevent overfitting. [19, p. 36]
A benchmark needs to be maintained and renewed to reflect
that state of the art in a discipline. The SPEC CPU 95
benchmark was superseded by SPEC CPU 2000 to better
reflect the workloads of modern computer systems and new
knowledge about measuring systems performance [8]. A
benchmark should be retired when it no longer pushes a field
to improve on previous work or when a field reaches a
sufficiently high level of performance that further research
would bring only minimal returns.

CppETS is a prototype and has already made antributions
to improving the development and evaluation of fad
extradors. The refinement of CppETS promises further
gains in these aeas and improved fad extradors. We look
forward to the day when C++ fad extradion is a solved
problem and CppETS can be retired.

6. Acknowledgments

We would like to thank the participants in the CASCON
workshop: Holger Kienle, Johannes Martin, Tim Lethbridge,
Sergei Marchenko, Andrew Malton, lan Bull, lan Davis,
Mike Godfrey, and Andrew Trevors. Marin Litoiu and Paul
Smith were suppative CASCON workshop coordinators.
Jeff Elli ott, Mike Godfrey, and Catherine Morton helped out
with the C++ test cases. Spedal thanks go to Holger Kienle
for the insightful comments and the suggesting method used
for the quick analysis. This reseach was sippated by
NSERC, CSER and IBM.

7. References

[1] “Model for program entity level information,”
http://scgwiki.iam.unibe.ch:8080Exchange/2, last
accessd 8 January 2002

[2] “CIC++ Parser with TA++ and GXL Output,”
http://www.site.uottawa.ca4333dmnv, last
accesxd 8 January 2002

[3] Matthew N. Armstrong and Chris Trudeay,
“Evaluating Architedural Extradors,” presented at
Working Conference on Reverse Engineeing,
Honolulu, HI, pp. 30-39, October 12-14, 1998

[4] Yih-Farn Chen, Emden R. Gansner, and Eleftherios
Koutsofios, “A C++ Data Mode to Suppat
Readability Analysis and Dead Code Detedion,”
IEEE Transactions on Software Engineering, vol.
24, no. 9, pp. 682693 1998

[5] Thomas R. Dean, Andrew J. Malton, and Ric Holt,
“Union Schemas as a Basis for a C++ Extrador,”
presented a Eighth Working Conference on
Reverse Engineeing, Stuttgart, Germany, pp. 59
67, 2-5 October 2001

[6] Rudalf Ferenc, Susan Elliott Sim, Richard C. Holt,
Rainer Koschke, and Tibor Gyimaéthy, “Towards a
Standard Schema for C/C++,” presented at Eighth
Working Conference on Reverse Engineding,
Stuttgart, Germany, pp. 49-58, 2-5 October 2001

[7] Jm Gray, “The Benchmark Handbod: For
Database and Transadion Processng Systems,” .
San Mateo, CA: Morgan Kaufman Publishers, Inc.,
1991

[8] John L. Henning, “SPEC CPU200Q Measuring
CPU Performance in the New Millennium,” |EEE
Computer, no. July, pp. 28-35, 2000

(9]

[10]

(11

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

Richard C. Holt, Andreas Winter, and Andy Schrr,
“GXL: Toward a Standard Exchange Format,”
presented at Seventh Working Conference on
Reverse Engineaing, Brisbane, Queensand,
Audtrdlia, pp. 162171, 23-25 November 200Q

Holger Kienle, Jorg Czeranski, and Thomas
Eisenbarth, “Exchange Format Bibliography,”
presented at Workshop o Standard Exchange
Format (WoSEF): An ICSE 2000 Workshop,
Limerick, Ireland, pp. 2-9, .

Haus A. Miuller and Karl Klashinsky, “Rigi- A
System for programming-in-the-large,” presented at
Tenth International Conference on Software
Engineaing, Singapore, pp. 80-86, April 11-15,
1988

Gall C. Murphy, David Notkin, Wiliam G.
Griswold, and EricaS. Lan, “An Empiricd Study of
Static Call Graph Extradors,” ACM Transactions
on Software Engineering and Methodology, val. 7,
no. 2, pp. 158191, 1998

Perenniadl Inc. “C++ Vadidation Suite”
http://mwww.peren.com/pages/cppvs.htm, last
accesxd 8 January 2002

Plum Hall Inc. “C and C++ Vadlidation Test Suites,”
http://mww.plumhall .com/suites.html, last accessed
8 January 2002

Susan Elliott Sim. “C++ Parser-Analysers for
Reverse Engineging: Trade-offs and Benchmarks,”
http://mwww.cs.utoronto.cal~simsuz/cascon2001, last
accesxd 7 January 2002

Susan Elli ott Sim and Margaret-Anne D. Storey, “A
Structured Demonstration of Program
Comprehension Toodls,” presented at Seventh
Working Conference on Reverse Engineeing,
Brisbane, Queensland, Australia, pp. 184193 23
25 November 2000

Margaret-Anne D. Storey, Susan Elliott Sim, and
Ken Wong, “A Collaborative Demonstration of
Reverse Engineging Todls,” Applied Computing
Reviews, forthcoming, 2002

The GCC Team. “GCC Home Page- GNU Projed-
Free Software Foundation,” http://gcc.gnuorg/, last
accessd 8 January 2002

Walter F. Tichy, “Should Computer Scientists
Experiment More?,” |EEE Computer, no. May, pp.
32-40,1998

