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Abstract

In this paper, we take the concept of benchmarking as used
extensively in computing and apply it to evaluating C++ fact
extractors.  We demonstrated the efficacy of this approach by
developing a prototype benchmark, CppETS 1.0 (C++
Extractor Test Suite, pronounced see-pets) and collecting
feedback in a workshop setting.  The CppETS benchmark
characterises C++ extractors along two dimensions:
Accuracy and Robustness.  It consists of a series of test
buckets that contain small C++ programs and related
questions that pose different challenges to the extractors.  As
with other research areas, benchmarks are best developed
through technical work and consultation with a community,
so we invited researchers to apply CppETS to their extractors
and report on their results in a workshop.  Four teams
participated in this effort, evaluating Ccia, cppx, the Rigi
C++ parser, and TkSee/SN.  They found that CppETS gave
results that were consistent with their experience with these
tools and therefore had good external validity.  Workshop
participants agreed that CppETS was an important
contribution to fact extractor development and testing.
Further efforts to make CppETS a widely-accepted
benchmark will involve technical improvements and
collaboration with the broader community.

1. Introduction
Fact extraction from source code is a fundamental activity
for reverse engineering and program comprehension tools,
because all subsequent activities depend on the data
produced.  As a result, it is important to produce the facts
required, accurately and reliably.  Creating such an extractor
is a challenging engineering problem, especially for complex
source languages such as C++ [5, 6].

Consequently, it would be useful to have a convenient means
to evaluate a fact extractor.  In this paper, we report on our
experiences designing and using a benchmark for this
purpose.  We have prototyped a benchmark for C++
extractors, called CppETS (C++ Extractor Test Suite,
pronounced see-pets).  We chose a diff icult source language
because benefits can be realised quickly and the lessons
transferred to other source languages.  The benchmark
consists of a series of test cases each with a set of related
questions.

This benchmark has been well -received by all who have used
or reviewed it.  It has been used by four teams of program
comprehension researchers to evaluate Ccia, cppx, Rigi C++
parser, and TkSee/SN.  The results were presented and
discussed at a workshop at CASCON 2001 in November of
last year [15].  Despite being a prototype, the CppETS
worked very effectively.  The teams used the benchmark
primarily to test their extractors, while we used the workshop
to evaluate the benchmark.  The participants generally felt
that the test cases were representative of reverse engineering
problems and the ratings of their extractors were fair.
Following the workshop, developers from IBM and Sun have
downloaded the benchmark and are using it as part of their
internal test processes. All the materials for CppETS are
available online [15].  We plan to refine the prototype into a
widely-accepted benchmark, by applying it to additional
tools and soliciting feedback from the community.

Before discussing the CppETS itself, we review
benchmarking and previous work on evaluating source code
extractors.

1.1 Benchmarks
A benchmark is a convenient way to encapsulate the
materials and procedure for an empirical study and can be
used to answer a wide variety of questions.  Walter Tichy
defines a benchmark, as “…a task domain sample executed
by a computer or by a human and computer.  During
execution, the human or computer records well -defined
performance measurements. [19, p. 36]”  Extending Tichy’s
definition, a benchmark has three components: a motivating
comparison, a task domain sample, and performance
measures.
1. Motivating Comparison. The design of the benchmark

is motivated by a particular comparison that its users
would like to make.  This comparison is made for a
purpose, such as, making a purchase or engineering a
tool (or technique or technology) to meet a goal.  A
particular tool can be compared against itself over time,
e.g. during development.  Or, different tools can be
compared against each other.

2. Task Domain Sample. The tests in the benchmark
should be a representative sample of the tasks that the
tool is expected to solve in actual practice.
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3. Performance Measures.  These measurements can be
made by a computer or by a human, and can be
quantitative or qualitative.  Performance is not an innate
characteristic of the tool, but is the relationship between
the tool and how it is used. As such, performance is a
measure of fitness for purpose.

The motivating comparison drives the selection of task
domain sample, which in turn drives the selection of the
performance measures.

Benchmarks, like standards, are created through a process of
community consultation and technical refinement.  The
composition of each component needs to be scrutinised;
what tasks should be included and what measures should be
used.  As Tichy wrote,

The most subjective and therefore weakest part of a
benchmark test is the benchmark’s composition.
Everything else, if properly documented, can be
checked by the skeptic.  Hence, benchmark composition
is always hotly debated. [19, p. 36]

This debate can be contentious in research areas where
innovative tools may not have a well -defined task domain or
performance criteria.  These are often determined
progressively through investigation and peer review.  The
motivating comparison is controversial, because it is
symbolic of the goal of a research area

Controversy and the ensuing discussions are highly
beneficial for a research community, particularly when they
reach consensus on the three components of a benchmark.  A
standard benchmark translates into agreement on the goals of
the discipline and how to measure progress in the field by
setting well -defined objectives and a foundation for
subsequent work.  Quoting Tichy again, “…a benchmark can
quickly eliminate unpromising approaches and exaggerated
claims” and “benchmarks can cause an area to blossom
suddenly because they make it easy to identify promising
approaches and discard poor ones. [19, p. 36]”

Two well -known benchmarks are TPC-A for databases and
SPEC CPU2000 for computer systems.  Their development
paths ill ustrate the amount of community involvement
required to create a widely-accepted and widely-used
benchmark.  Both of these were developed with extensive
collaboration between industry and research, as well as
consultation with the broader user community. The
Transaction Processing Performance Council ’s TPC
Benchmark™ A, more briefly TPC-A, was first published in
1989 and had evolved over several generations from a
benchmark DebitCredit first described in a paper in 1984
[7].  (This paper had so many contributors from various
organisations that the author was given as “Anon et al.” )
Developing TPC-A required nearly 1200 person-days of
effort contributed by 35 database vendors who were
members of the consortium.

SPEC (Standard Performance Evaluation Corporation) is
also a consortium with different committees responsible for
creating different benchmarks.  The committees have
representatives from all the major hardware vendors as well
as researchers from universities [8].  Requirements, test
cases, and votes on benchmark composition are solicited
from committee members and the general public through
SPEC’s web site.  The committee uses “benchathons” to
refine the benchmark.  John Henning explained:

The point of a benchathon is to gather as many as
possible of the project leaders, platforms, and
benchmarks in one place and have them work
collectively to resolve technical issues involving
multiple stakeholders: At a benchathon, it is common to
see employees from different companies looking at the
same screen, helping each other. [8, page 30]

It is useful to keep these two examples of mature
benchmarks in mind when considering our prototype,
CppETS.

1.2 Evaluating Extractors
A number of studies have evaluated source code extractors in
the context of examining static call graph extractors 14],
architectural extractors [3], and program comprehension
tools [16].  All of these studies found that extractors varied
significantly in terms of accuracy, reliabilit y, richness of
facts emitted, usabilit y, and features. Our work draws
conceptually on the study by Murphy et al. [12] and
methodologically on the studies by Armstrong and Trudeau
[3], and by Sim and Storey [16].

Murphy et al.’s study found that a set of nine call graph
extractors all produced false positives and false negatives at
different rates for each of three subject systems.  In other
words, no extractor made the errors consistently across the
three programs.  In their conclusion, they wrote:

It may be possible to engineer tools that guarantee
certain behavioral properties…  Or, it may be suff icient
to more effectively communicate the design decisions
that specific extractors have made…  Another possible
approach is to develop new tools and techniques for
helping an engineer assess the kind of call graph
extracted. [12, p. 182, italics added]

While CppETS does not help an engineer determine the kind
of call graph extracted, it does develop a technique (and
results) to help a tool designer or tool user select an extractor
that is appropriate for the tasks they wish to undertake.

For their study, Armstrong and Trudeau created a small C
program, called degen, that contained a number of features
that are problematic for source code extractors.  They tested
five extractors using degen, and none of them were able to
handle all the features.  Our benchmark borrows significantly
from degen, in that we tested extractors using small source
code examples and examined how they handled specific
features.



The benchmark approach also builds on work started with
the structured demonstration approach used by Sim and
Storey [16].  Similar to that study, we put source code and
tasks together in a package that researchers and developers
could use with their own tools.  Results were also shared and
discussed in a workshop setting.

1.3 Overview
The remainder of this paper is organised as follows.  In
Section 2, we describe the collection of tests in CppETS and
the approach used to select them.  Our experience and results
from using the benchmark with four extractors are presented
in Section 3.  Lessons learned and their implications for
refining the benchmark are discussed in Section 4.  The
paper concludes with Section 5, where we discuss future
work and reflect on the evolution of benchmarks.

2. Composition of the Benchmark
In this section, we describe the design of the CppETS.  Our
work began with the motivating comparison.  From there, we
selected the task domain sample, or test buckets, and the
performance measures.

2.1 Motivating Comparison
We reviewed the extractors evaluated in the studies
discussed in Section 1.2, in order to characterise the design
space for these tools.  It appeared that these extractors traded
accuracy for robustness.
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Figure 1: Initial Conceptualisation of
Design Space for Extractors

Some extractors used a compiler-based approach and
performed a full analysis of the source to produce facts.
While these extractors tended to be highly accurate, they
could not handle constructs from outside their grammar.
Examples of these tools are Acacia [4] and rigiparse [11].
Others used more approximate approaches, such a lexical
matching, and these could handle unexpected constructs
more easily.  SNiFF+ [3] and LSME [12] are examples of
this second approach.  Their philosophy can be summed up
as, "it's not perfect, but something is better than nothing."

We used accuracy and robustness as the two dimensions for
evaluation in CppETS, see Figure 1.  (The data points have
been included for ill ustrative purposes and do not represent

any existing extractors.)  Full analysis approaches would be
situated in the top left corner of graph, with high accuracy
but low robustness.  Lexical matching approaches would be
situated in the bottom right corner, with low accuracy but
high robustness.  The ideal extractor would have both high
accuracy and highly robustness.  As we will see in Section 4
on lessons learned, this characterisation has some
shortcomings, both in the dimensions selected and the
relationship between them.

2.2 Task Domain Sample
Having selected a motivating comparison, we needed to
create a corresponding task domain sample.  For a C++ fact
extractor, this would be a collection of source code or test
cases that were representative of the problems the extractor
would have to deal with in actual practice.  We began by
enumerating mundane and problematic C++ language
features, analysis problems, and reverse engineering issues.
This list was then used to create a series of test buckets.

The source code for the test buckets came from a variety of
sources.  Some were specially written for the benchmark.
Others were donated by IBM and by Michael Godfrey.
Some were taken from books and web sites. These test cases
were small , typically less than 100 lines of code, and none
more than 1000 lines.  We considered using C++ compiler
test suites such as the one distributed with GNU g++ [18]
and the commercial C++ validation suites products from
Perennial [13] and Plum Hall [14].  However, these suites
test the minutiae of the C++ language using thousands or
tens of thousands of test cases, typically using an automated
testing harness.  Unfortunately, there are too many test cases
with too much detail to include any suite completely in
CppETS.

We created two categories of test buckets, Accuracy and
Robustness, corresponding to the two dimensions of our
motivating comparison. CppETS 1.0 contains 25 test
buckets, 14 in the Accuracy category and 11 in the
Robustness category.  These test buckets and the rationale
for them will be discussed in the remainder of this section.

2.2.1 Accuracy Category

Figure 2 lists the groups and test buckets in the Accuracy
category.  All of the test buckets in this category used only
ANSI standard C++ syntax.  However, not all of them
followed modern (i.e. post-ANSI standard) C++ idiom.

The preprocessor directives present their own class of
diff iculties, so they were given their own test group(#1-3).
The purpose of the Preprocessor group is to determine
whether the extractor analyses the source code before or
after preprocessing and the correctness of the facts produced.
An extractor that analyses the source code before
preprocessing often does not extract the correct information
about the resulting source code.  For example, preprocessor
directives may re-define a keyword or macros can be



combined to create source code.  An extractor that analyses
the source code after preprocessing does not get information
about preprocessor directives such as macros.

Preprocessing
1. Macros
2. Conditional Compilation
3. Pragmas

C++ Syntax
Data Structures

4. array
5. enum
6. union
7. struct

8. Variables
9. Functions
10. Templates
11. Operators
12. Exceptions
13. Inheritance
14. Namespaces

Figure 2: Test Buckets in Accuracy Category

The second group (#4-14) is concerned with C++ language
features.  The purpose of this group is to test identification of
language features and resolution of references, mainly calls
to functions and uses of variables.  These test buckets
include many of the potential extractor problems identified
by Armstrong and Trudeau [3], such as an implicit call to a
function using a pointer, array traversal using indices and
pointer arithmetic, multiple variables with the same name,
and usage of data structure elements.

Incomplete Information
15. Missing source
16. Missing header
17. Missing library

Dialects
18. GNU g++
19. MS Visual C+
20. IBM VisualAge C++

Heterogeneous Source
21. C and Fortran
22. Embeded SQL

Generated Code
23. lex/yacc
24. GUI Builder
25. Stateflow

Figure 3: Test Buckets in Robustness Category

2.2.2 Robustness Category

Figure 3 lists the test buckets in the Robustness category.
These test buckets are intended to represent the kinds of
problems encountered in reverse engineering.

The Incomplete Information test buckets (#15-17) are
standard C++ source code, but with a file missing.  On a

reverse engineering project, the client may have neglected to
provide a file, or worse, may not be able to provide a file.
The test buckets in the Dialects group (#18-20) contain
compiler extensions.  These tests can be considered to be
C++ with extra keywords.  These test buckets are
representative of those situations where the legacy source
code was developed using a compiler that has a slightly
different grammar than the extractor.

The Heterogenous Source tests (#21-22) are C++ (or C)
together with statements from another source language.
Programming languages are often combined to perform
special purpose tasks, for example embedded SQL for
interfacing with databases and FORTRAN for scientific
computing.  The non-C++ code is normally handled by
another tool, such as a preprocessor for embedded SQL and
another compiler for FORTRAN.  Unfortunately, appropriate
tools for fact extraction are rarely available.

The Generated Code (#23-25) tests contain files that were
not C++ at all, but contain descriptions used to generate
C++.  These descriptions may be grammars, state charts, or
resources, and they are the maintenance artifacts, not the
generate source code.  Consequently, they view the inputs to
the code generator as the maintenance artifacts.  Often, the
appropriate tool is not available to generate the source code
or analyse the initial descriptions.

2.3 Performance Measures
Having chosen the test buckets, our next step was to find a
method for measuring the performance of the extractors.
Taking an arbitrary extractor and examining its output for
completeness and correctness is not a simple problem.  The
facts produced could be stored in memory, in a binary-
encoded database, or in a human-readable intermediate
format, such as GXL [9].  The output schema of the
extractors could also vary significantly, ranging from the
abstract syntax tree level to the architectural level [9].
Writing a tool to check the accuracy of facts as specified by
a schema can be as difficult as writing an extractor itself.

We handled this challenge by making two simplifying
assumptions.
1. The output of the extractors must be stored in a text file

that was human-readable.  Alternatively, the extractor
could be accompanied by a tool that allowed users to
query the factbase.  This assumption excluded tools that
store the facts in memory, such as integrated
development environments, from using the benchmark.

2. Operators/users of the extractors would be involved in
assessing the output to simplify the problem of
comparing output with different schemas and formats.

Using these two assumptions, we devised the following
performance measures for the tests in the benchmark.  Along
with the source code in each test bucket, there was a text file
containing questions about the program.  The answers to the
questions are also provided and it is the responsibility of the



Figure 4: Source Code from enum Test Bucket

#include <stdio.h>
enum days { SUN = 1, MON, TUES, WED, THURS, FRI, SAT };

main()
{
   // enum days day;
   int day;
   char *dayName[SAT + 1] = {"", "Sunday", "Monday", "Tuesday", "Wednesday", "Thursday",
"Friday", "Saturday" };

   for (day = SUN; day <= SAT; day++)
     printf("%d%11s\n", day, dayName[day]);

   return 0;
}

person operating the extractor to demonstrate that these
answers can be found in the parser output.

The questions covered a variety of topics, including simple
recognition and resolution of language constructs and their
attributes.  For the recognition questions, we asked the
extractor operator to show the output for a specified feature,
such as a template or exceptions.  Sometimes we asked for a
comparison of related features, such as a class and a struct.
In terms of resolution, we asked questions to determine
whether the extractor correctly linked a reference with its
declaration or definition.  In terms of attributes, we asked for
location information in varying combination, file name, start,
end, line, character on a line, and byte offset from start of
file.  The questions covered a wide range of functionality and
data models, so we could test a variety of extractors with the
same material.  Consequently, no single extractor was
expected to be able to correctly answer all of the questions.

We used two marking schemes: a quick one that awarded
non-numeric grades and a detailed one that gave numerical
scores.  Both of these marking schemes are explained in
detail i n the next section, but we give brief descriptions here.
There are two reasons for having two marking schemes. One,
the quick analysis was used as a “sanity check” to determine
whether it would be reasonable to continue to the detailed
analysis.  These ratings were validated externally against the
evaluators’ and developers’ a priori knowledge of the
extractors.  Two, they give different insights into the results.
The quick analysis was concerned with the overall
performance of the extractors, while the detailed analysis
sought to provide explanations for the performance.

Portions of the enum test bucket will be given here as an
ill ustrative example.  Figure 4 is the source code and Figure
5 is an excerpt from the question file.  The source code
defines a global enumeration type called days, and iterates
through it in the main function, printing out the strings from
a corresponding dayName array.

Benchmark users were expected to use their extractor on the
source code and answer the questions using output from the

extractors.  This can be done by submitting the extractor
output and providing a concordance, e.g. a list of the relevant
source lines, nodes, or edges.  Alternatively, the user could
describe the tools and procedure used to obtain the answer
from the factbase.  Since the questions in Figure 5 (and all
the other test buckets) could be answered by simply
inspecting the source code, responding “yes” or repeating the
answers given, would not earn full marks.
2.  What is the fourth enumeration constant
in enum days?

Answer: WED

3.  What is the (integer) value of the
enumeration constant MON?

Answer: 2

Figure 5: Excerpt of questions for enum test bucket

3. Application and Results
CppETS 1.0 was distributed to four teams and they were
asked to submit their solutions one week in advance of the
workshop held at CASCON2001 in November of that year
[15].  At the workshop, the teams presented the results and
the workshop organisers presented our analysis of their
results and the benchmark.  In this section, we report on this
application of the benchmark and the results of the teams.

The four extractors evaluated were:
• Ccia, AT&T [4]
• cppx, University of Waterloo and Queen’s

University [2, 5]
• Rigi C++ parser, University of Victoria [11]
• TkSee/SN, University of Ottawa [2]

Table 1 lists the extractors and team members.  With the
exception of Ccia, the teams consisted of individuals
involved in the development of the extractors.  Two teams,
cppx and TkSEE/SN, used the benchmark as a source of
additional tests for their development work.  The teams for



Table 1: Characteristics of Tool Teams

Tool Description Team Members

Ccia,
AT&T

• Part of Acacia tool suite
• Built using front end from Edison Design Group
• Runs on IRIX, Solaris, SunOS, and LINUX
• Emits database according to internal format; intended to

be used with rest of Acacia

Mike Godfrey—UofWaterloo faculty
Andrew Trevors—UofWaterloo graduate
student

cppx,
U. of Waterloo
and Queen’s U.

• Built using GNU g++ as a front end
• Runs on same platforms as GCC, binaries available for

Solaris and LINUX
• Emits TA, GXL, VCG

Ian Bull—UofW graduate student
Ian Davis—UofW research associate
Andrew Malton—UofW faculty

Rigi C++
parser,

U. of Victoria

• Built using Visual Age C++ as front end
• Runs on AIX, NT, OS/2; need to purchase VAC++

separately
• Emits RSF

Holger Kienle—Uvic graduate student
Johannes Martin—UVic graduate student

TkSee/SN,
U. of Ottawa

• Built using Cynus Source Navigator as front with
additional extraction scripts

• Runs on UNIX; web service available at
http://kbre9.site.uottawa.ca/parser_online/

• Emits TA++ and GXL

Tim Lethbridge—UofO faculty
Sergei Marchenko—UofO research
associate

Ccia and the Rigi C++ parser were interested in further
exploring the capabiliti es of those extractors.

The two and a half hour workshop began with the organisers
giving a short introduction to the problem and the benchmark
[15]..  Each team had 25 minutes to give an introduction to
their extractor and a qualitative overview of their solutions to
give the audience an impression of how well their extractor
performed.  The organisers then reported on the quick
analysis of the solutions and lessons learned from the
workshop.

Both the workshop and the evaluation were a success.  There
was broad acceptance by both the teams and workshop
attendees of the benchmarking approach and CppETS.  The
teams thought the approach was sound and were enthusiastic
about using the test buckets.  This excitement climaxed with
the unveili ng of the results from the quick analysis.  All i n
attendance approved of the final standings and agreed that
they were consistent with their impressions and expectations,
based on the presentations by the teams.

3.1 Quick Analysis
For the quick analysis, the results were scored as follows.
The 25 test buckets contained a total of 93 questions.  The
solutions to each question was given a grade: Full Answer,
Partial Answer, and No Answer.  A Full Answer was
awarded when the question was answered correctly in its
entirety.  A Partial Answer was awarded when the answer
was not totally correct or complete.  A No Answer grade was
given when the extractor failed to provide any solution.  This

occurred when the extractor crashed and failed to parse or if
it was not designed to output the facts requested.

For the workshop, the solutions were scored generously and
when in doubt the higher of two possible grades was
awarded.  The performance of the extractors were described
using stacked bar graphs that showed the number of Full ,
Partial, and No Answers on each test buckets.  By using
green, yellow, and red for the different grades on the bars,
the graphs provided a Gestalt view of the results.  They also
afforded easy comparison of the extractors at the level of test
buckets.  These graphs cannot be reproduced here
effectively, so the interested reader is invited to see them on
the workshop web site [15].

Results were produced by summing the scores from the
various test cases.  Aggregating the scores from test buckets
that evaluate different language features gives an effective
overview of performance.  In this analysis, all test buckets
were equally weighted.  In a special-purpose evaluation,
weightings could be assigned to reflect the relative
importance for language features for particular downstream
task.  Finally, we were able to aggregate scores from
Accuracy and Robustness test cases because this operation
preserved the measurement scale (i.e. absolute) and external
validity of the scores.

The final standings (shown in Table 2) were based on the
sum of the number of Full and Partial answers. The extractor
with the highest score was TkSee/SN with 51.  They were
followed by the Rigi C++ parser with 45, Ccia with 41, and
cppx with 17.  It was clear that cppx had a low score because
it was still i n development and many features were not yet



implemented.  The other three extractors had scores that
were very close to each other.  This finding was consistent
with the presentations by the teams during the workshop.

Full
Answer

Partial
Answer

No
Answer

Full +
Partial

Ccia 32 9 52 41
cppx 7 10 76 17
Rigi C++ 26 19 48 45
TkSee/SN 33 18 42 51

Table 2: Results of Quick Analysis
3.2 Detailed Analysis
Since the results of the concise analysis were considered to
be externally valid, we continued with a detailed analysis.
While this analysis is richer, the final standings of the tools
were the same.

For detailed analysis, we used a marking scheme that
awarded marks for each request for a fact that was satisfied.
The questions from the test buckets were re-grouped to
correspond more closely to single language features and each
question was labelled as direct (i.e. relevant to feature being
tested) or indirect (i.e. relevant to other aspects of the parse.)
Under this re-division, there were 106 questions and 444
available marks.

For each question, each mark was categorised into one of
three classifications: Correct, Incorrect, or Not Available.
Marks were awarded in the Not Available category when the
extractor did not have that information available in its data
model.  In other words, the extractor was never intended to
answer such a question.  The Correct category meant that the
mark was earned for a full, correct answer.  The remainder
were marked as Incorrect.

For each question, a score was calculated as

follows:
IncorrectCorrect

Correct

##

#

+
.  The Not Available marks were

removed, so each extractor was only evaluated on the facts
that it was designed to output.  The scores were normalised,
so each question and then each test bucket was equally
weighted.  Each test bucket had a score out of one, so the
maximum possible Accuracy score was 14 and for
Robustness the maximum was 11.

Figure 6 shows a plot of the Correct scores on the Accuracy
category vs. the Robustness category.  This simple graph
shows some very intriguing relationships among the
extractors and hints at the trade-offs we had hypothesised.
From this graph, we can see that Ccia is the most accurate on
the straightforward C++ test buckets and TkSee/SN is best
able to handle non-standard source code.  The standings
from Table 2 are essentially the sum of the Correct scores
from both the Accuracy and Robustness categories.
TkSee/SN came ahead of Ccia on overall because its

Robustness score more than covered the difference in
Accuracy.
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Figure 6: Accuracy vs. Robustness of Four Extractors

4. Lessons Learned
Fundamentally, the CppETS 1.0 was a success. The basic
approach of using test cases to evaluate an extractor was
good, because it allowed us to query the extractors directly
about their functionality.  In some cases, the tools were the
only reliable authority about their capabilities and the
developers were not able to reliably tell us whether their tool
could handle a particular feature without a test program.  It is
noteworthy that we were able to uncover bugs in all of the
extractors.

Developing CppETS and validating it in a workshop was
very enlightening.  The lessons learned from this experience
fell into two categories: those that relate to the development
a benchmark and those that relate to the problem of fact
extraction in general.  These lessons will be the focus of this
section.

4.1 Benchmarking C++ Extractors
CppETS 1.0 proved to be a good general-purpose
benchmark for C++ extractors.  There are some minor
problems, such as typographical errors and mistakes in the
canonical answers, that can be addressed with a 1.1 release,
without re-designing the entire benchmarks. While the
design decisions we made initially have been borne out
through implementation and usage, we still need to consider
the alternatives.  In this examination, we re-visit the
components of a benchmark: a motivating comparison, a
domain task sample, and performance measures.

4.1.1 Motivating Comparison

Recall from Section 2.1 that our characterisation situates the
extractors along two dimensions, accuracy and
robustness(see Figures 1 and 6).  The problem with this
characterisation is that it would be possible for a poor
extractor to be highly accurate and highly robust.  For
example, an extractor that accepted any input and emitted no



facts would be both highly robust and highly accurate (it
output everything correctly according to its empty schema.)
A more appropriate characterisation would define robustness
as accuracy in the presence of noisy data, as shown in Figure
7.

Noise in  Code
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lexical  matching

Figure 7: Re-conceptualisation of Robustness

Examples of noise in source code include syntax errors,
missing information, compiler extensions, and heterogeneous
source languages.  The graph postulates that extractors that
use full parsing and analysis will be more accurate than
extractors that use approximate matching on source code
with no noise.  But their relative performances will change as
the amount of noise increases.  Extractors that use full
analysis approaches are more sensitive to noise and their
performance will degrade faster.  In contrast, extractors that
use approximate approaches are more resistant to noise, so
their performance will degrade more slowly.

Our motivating comparison is tightly focused on the data
output by the extractors.  There are other requirements  and
aspects of performance that users consider when selecting an
extractor.  Performance characteristics such as speed,
memory requirements, and size of factbase are factors that
become important when working with larger programs.  A
user may have other requirements beyond the schema of the
extractor, such as supported platforms, research and
commercial availabilit y, cost, ease of use, interoperabilit y,
technical support, and quality of documentation.  While
these features that are diff icult to test with a benchmark, this
information can be collected as part of the evaluation
process.

4.1.2 Task Domain Sample

The task domain sample for CppETS 1.0 is a series of test
buckets with small pieces of source code.  In general, the
size was appropriate for the approach that we used, but they
were both too big and too small for different reasons.

In the prototype, results were sometimes conflated because a
single test attempted to measure different things at the same
time.  This problem would be solved by using smaller test
cases that separate the tasks of identifying a language
feature, resolving references to it, and recognising its

attributes.  These three steps have analogues in the
compilation domain: compili ng, linking, and code
generation.  These smaller test cases would allow similar
tests with different levels of diff iculty within a single test
bucket.

While the problems posed by the test cases are representative
of problems for an extractor, the test cases are far too small
to be representative of program comprehension or reverse
engineering problems.  We had plans for a third category
(Accuracy-and-Robustness), but no suitable scoring
mechanism could easily be found, so these plans were
abandoned.  We had hoped to evaluate the accuracy of the
extractors on extant programs, such as those used in previous
structured demonstrations (xfig 3.2.1 [16] and SORTIE
[17]).  But with even these moderate sized programs, it is
non-trivial to obtain a complete set of correct answers.  The
answers could be created using painstakingly manual
methods or we could use a trusted oracle to tell us the right
answers.  Unfortunately, no such oracle exists, for if it did,
we would not be working to improve the extractors that we
have.

4.1.3 Performance Measures

The performance measures in CppETS were simple, but
were able to give a rich description of the extractors’
capabiliti es.  The question that arises regarding performance
is whether we are measuring the right thing.

Recall from Section 1.1 that performance is an indication of
fitness for purpose.  While the stated purpose of these
extractors is “ reverse engineering” or “program
comprehension,” these categories are so broad that it is
diff icult to formulate clear performance measures.  The
solution is to narrow the purpose of the evaluation, but at the
same time keep it suff iciently general that it is still
worthwhile to construct a benchmark.  One option is to
define the evaluation relative to a downstream application,
for example, slicing, architecture recovery, or code
migration.  Another possibilit y is to define the benchmark
relative to a standard schema, such as the Dagstuhl Middle
Model [1] or the forthcoming C++ abstract syntax tree
schema [6].  The features examined and the questions posed
can be selected from the schema.

A second problem is that the characterisation treats accuracy
as a binary characteristic, in other words, can it handle a
particular language feature?  As Murphy et al. found,
extractors do not operate according to their specification all
the time.  They sometimes mis-analyse a language feature
idiosyncratically.  One of their many examples is the
following:

Field, when run on mapmaker, missed the call
(main;banner), apparently because main is not defined
with a return type.  Editing the definition of main to add
a return type allows Field to extract the call .  Not all
functions, however, need to be declared with a return



type for Field to extract calls.  For example, a small test
case of defining a function without a return type did not
result in a false negative [12, page 172].

The benchmark should also consider accuracy statistically
over a large code base.  Information retrieval statistics such
as precision and recall could be used.

The final problem with our performance measures is more
fundamental.  One assumption of the evaluation is that
extractors could be evaluated separately from other reverse
engineering and program comprehension tools.  In practice,
it was difficult to isolate the extractor both in terms of usage
and designing the evaluation criteria.  The quality of the
solutions were influenced by i) how experienced the team
members were with extractor output and ii) the tools
available for querying the factbase.  It is not clear how this
problem can be addressed.  One possibility is to accept it as
a shortcoming in the design of the evaluation.  Another is to
include a downstream analysis tool in the evaluation.  This
modification would permit the participation of IDEs, but
would make it more difficult to verify the submitted
solutions.

4.2 Fact Extraction
After placing the four extractors side-by-side and comparing
them, interesting lessons emerge regarding their design,
implementation, and shortcomings.  All of the extractors that
participated in the workshop use COTS (commercial off-the-
shelf) components as front ends.  The extractor with best
score, TkSee/SN, used Cynus Source Navigator as a front
end plus some home-grown scripts to augment the factbase.
Source Navigator is a code browser, so it is intended to be
used to extract and display information about source code
rather than compile it.  The remainder relied on the
intermediate representations from a compiler: Ccia used a
front end from Edison Design Group; cppx used GNU gcc;
and Rigiparse used VisualAge C++.  Consequently, the
capabilities of these extractors are quite similar.

This transfer of features from compiler intermediate
representations would be fine if parsing and analysis for
compilation were the same as parsing and analysis for
reverse engineering, but they are not.  There are many other
examples of technologies that do not transfer from one
domain from the other.  Reverse engineers needed to create
their own intermediate formats, for example GXL, TA, and
RSF, rather than adopting a compiler intermediate format
wholesale, such as SUIF [9, 10].  The cppx extractor
transforms GNU g++ internal data suitable for compilation
into one more suitable for reverse engineering [5].  As
mentioned in Section 2.3, we could not use compiler test
suites in their entirety for this benchmark because the they
were too fine-grained and focused on language syntax.

Fact extractors for reverse engineering and compiler front
ends attempt to solve related problems, but they have
different problem domains and thus are intended to meet

different requirements.  The tendency to use compilers as
front ends can be attributed to familiarity: A course on
compilers is standard in undergraduate computer science
curricula and many researchers in this field have a
background in compiler research.  As reverse engineering
matures, these differences emerge so we need to distinguish
ourselves as a field.  Consequently, we need to articulate our
requirements for an extractor more clearly.  Work is under
way to create a standard schema for C++ at the AST level [6]
and for a middle-level schema [1].  These efforts will
advance the state of fact extraction and help us to articulate
our contributions to improving software engineering.

5. Future Work
CppETS 1.0 has proven to be a simple and effective
benchmark for evaluating C++ fact extractors.  It has been
used to evaluate four extractors and been discussed in a
workshop.  The participating team members and interested
audience members agreed that CppETS was well-designed
and made an important contribution to the problem of
implementing C++ fact extractors.  It was found to give valid
characterisation of their Accuracy and Robustness.

We are encouraged by this success and plan to continue this
research.  This experience could easily be generalised to
other source languages such as C (and the corresponding
benchmark called CETS), Java (JETS), and even Cobol
(CoETS).  Future work for CppETS will take a two-pronged
approach: improving the design of the benchmark and
consultation with the broader community to gain acceptance.

The three components of a benchmark (a motivating
comparison, a task domain sample, performance measures)
are best selected and refined through community
involvement and debate, not through insular technical work.
The benchmarks from TPC and SPEC are widely respected
and this stature was attained in part through collaborative
work by stakeholders from multiple institutions with
different perspectives.

A benchmark needs to be continually criticised and matured.
On this issue Tichy wrote,

Constructing a benchmark is usually intense work, but
several laboratories can share the burden.  Once
defined, a benchmark can be executed repeatedly at
moderate cost.  In practice, it is necessary to evolve
benchmarks to prevent overfitting. [19, p. 36]

A benchmark needs to be maintained and renewed to reflect
that state of the art in a discipline.  The SPEC CPU 95
benchmark was superseded by SPEC CPU 2000 to better
reflect the workloads of modern computer systems and new
knowledge about measuring systems performance [8].  A
benchmark should be retired when it no longer pushes a field
to improve on previous work or when a field reaches a
sufficiently high level of performance that further research
would bring only minimal returns.



CppETS is a prototype and has already made contributions
to improving the development and evaluation of fact
extractors.  The refinement of CppETS promises further
gains in these areas and improved fact extractors.  We look
forward to the day when C++ fact extraction is a solved
problem and CppETS can be retired.
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