
Archetypal Source Code Searches:

A Survey of Software Developers and Maintainers

Susan Elliott Sim Charles L.A. Clarke Richard C. Holt
Dept. of Computer Science Dept. of Elec. and Comp. Engineering Dept. of Computer Science

University of Toronto University of Toronto University of Waterloo
Toronto, Ontario, Toronto, Ontario Waterloo, Ontario,
Canada M5S 3G4 Canada M5S 3G4 Canada N2L 3G1

simsuz@cs.utoronto.ca clclarke@eecg.utoronto.ca holt@plg.uwaterloo.ca

Abstract

In this study, we conducted a survey to generate
archetypes of source code searching by programmers
across maintenance tasks. Using a questionnaire on a web
page, we obtained 69 responses from readers of 7
newsgroups. Respondents were asked about their source
code searching habits: what tools they used, why they
searched, and what they searched for. The four most
common search targets were function definitions, all uses
of a function, variable definitions, and all uses of a
variable. The most common search motivations were
defect repair, code reuse, program understanding, feature
addition, and impact analysis. Eleven archetypes were
generated from the anecdotes and results. The
implications and practical applications of these findings
and method are discussed.

1. Introduction

Searching source code is an essential part of many software
maintenance tasks. The structure of source code is not
conducive to being read in a linear fashion. Furthermore, it
is often infeasible to read the entire source code of many
large pieces of software. Consequently, programmers must
read selectively, which means identifying the parts of the
source relevant to the task at hand. When repairing a
defect, the location of the error must be found. When
reusing a function, its declaration must be found, so that it
can be invoked with the right parameters. When learning
about a program the flow of control needs to be followed,
which means jumping from one function definition to
another.

In the past, research in program comprehension has
focussed on a specific development or maintenance task.
These studies looked at the construction of mental models
in program understanding [3, 10, 14], program
maintenance [9], and defect repair strategies and behaviour
[5, 8]. Searching is an integral part of models of these

activities. Over several studies and different measures,
Singer et al. found that searching was the most common
activity for software engineers [12]. Aside from this work,
there has been little research solely on searching. In
contrast, one field of computing that has looked at
searching behaviour extensively is information retrieval.
Researchers in this area have developed detailed theories
and models of search strategies [1, 2].

With the accumulation of this body of research, it has
become apparent that a study specifically on searching
would yield results applicable in many areas of program
comprehension. Singer et al. have used their results to
inform their design and implementation of a source code
searching tool [12]. This study followed a similar line of
inquiry, but used a different approach which is reflected in
the method and level of analysis. In this study, we
conducted a questionnaire-based survey of software
developers and maintainers contacted using availability
sampling over the Internet.

The form of this study was based on one by Eisenstadt in
which the author posted to various online fora requesting
anecdotes of “particularly thorny bugs in LARGE pieces of
software,” so he could characterize why some bugs were
more difficult to repair than others [5]. Respondents from
a number of electronic conferences and USENET
newsgroups provided anecdotes of defects and the author
was able to find systematic trends in their responses. In
our study, we asked readers of various newsgroups to tell
us about their source code searching activities.

An implication of our approach was a shift in emphasis
from a particular maintenance task to a constituent activity.
Previous work tended to study a small number of subjects
intensively while doing a task. This study surveyed a large
number of respondents about their searching behaviour,
without delving into the cognitive aspects of the activity.
We investigated source code searching specifically, as it
occurred across maintenance activities.

Susan Sim
Proceedings of the Sixth International Workshop on Program Comprehension, pp. 180-187, Ischia, Italy, 24-26 June, 1998.

Susan Sim

1.1. Objectives

There were two objectives in this study. The primary
objective was to understand how and why programmers
searched source code. We asked about the tools they used
and situations in which they searched source code.
Qualitative and quantitative data from participants were
used to construct a model of searching behaviours.
Anecdotes of the situations were used to develop a series
of archetypes of source code searching.

An archetype is a concept from literary theory. It serves to
unify recurring images across literary works with a similar
structure [7]. In the context of source code searching, an
archetype is a theory to unify and integrate typical or
recurring searches. As with literature, a set of them will be
necessary to characterize the range of searching anecdotes.

The secondary objective was to determine the efficacy of
using a web-based questionnaire to survey programmers.
Surveying is a method often used in the social sciences to
collect data in a structured or systematic manner [4]. The
methods in this study were similar to those used in
Eisenstadt [7].

The method is further described in Section 2, and the
results are presented in Section 3. In Section 4, archetypal
and uncommon search situations are presented. The paper
concludes with summary of the results and an exploration
of future work in Section 5.

2. Method

Fields such as sociology, political science, and market
research use surveys to study a particular phenomenon.
Normally, a survey is used to collect primarily quantitative
data from a large number of respondents. Data gathering
techniques include face-to-face interviews, telephone
interviews, self-administered questionnaires, or archival
research [6]. Regardless of how data is gathered, there are
five steps in performing a survey, each corresponding to
subsections 2.1 to 2.5.

2.1. Formulate Research Questions

In this study, we wanted to understand how and why
programmers searched source code. The three questions
that we wanted to answer in this study were:

• What tools do programmers use to search code?

• What do they look for when searching source?

• Which tasks require them to perform a search?

The tools currently used for searching provide role models
for future tool development, and their shortcomings
suggest areas for improvement. The targets and
motivations for searches indicate some of the functionality

required in such a tool Answers to the last two questions
were given in anecdotes, so analysis of this data resulted in
a set of archetypes to further inform tool design.

2.2. Create a Data Gathering Instrument

A questionnaire was selected to be the data gathering
instrument because we wanted to collect information from
a large number of respondents, many of whom we would
not be able to contact personally.

The questionnaire consisted of two World Wide Web
pages. The first was an introductory page with an
explanation of the purpose of the survey and the rights of
the participants. A link at the bottom of the page led to the
actual survey. This two page format was used to
encourage respondents to read this preamble before
beginning the survey. The introduction had two parts, each
fulfilling a distinct aim: a purpose statement motivated
participants to give thoughtful responses to all the
questions; and the statement of participant rights informed
respondents of their rights according to standard ethics
procedures [4, 6].

The questions and their wordings were tested in a pilot
study of six respondents. These respondents were
contacted by personal email and they were later debriefed,
again by email. Our experiences from the pilot study are
reflected in the final text of the survey. Data from the pilot
study was not included in the analysis of the main survey.

The text of the survey is found in Appendix A. In the final
version, there were six multiple choice and two open-ended
questions. The remaining materials are available at:
http://www.turing.utoronto.ca/~simsuz/survey .

2.3. Define the Population and Sampling Method

The population of interest for the survey was loosely
defined, so a random sampling method could not be used.
The population was any programmer who had worked with
relatively large pieces of existing source code. Due to a
lack of demographic information it was difficult to
operationalize this definition. It was not possible to
enumerate the population and randomly select participants.
Consequently, availability sampling, also known as
convenience sampling, was chosen. Normally, this method
is used only in exploratory studies.

Availability sampling operates by publicly soliciting
volunteers to participate in the study. The main drawback
of this technique is that the sample does not represent the
population of interest, in this case developers of large
systems. However, had another sampling method been
used, it still would be difficult to generalize from the
results. Since the study was exploratory in nature and its
goal was to build a model of source code searching,

availability sampling was adequate for the task.

2.4. Administer the Survey

The pages were published on a web site and participants
were solicited from eight USENET newsgroups. Messages
were posted to:

comp.lang.c.moderated, comp.lang.c++.moderated,
comp.lang.java.programmer, comp.lang.smalltalk,
comp.lang.lisp, comp.lang.fortran, comp.software-
eng and comp.lang.cobol.

The same message was reposted one week later with an
additional paragraph at the beginning. There were no
participants from comp.lang.c++.moderated because
requests for participation were filtered out by the
moderator. All of the data were collected within a four
week period.

2.5. Analyze the Data

Coding is the process of assigning values to variables to
represent each respondent. In the analysis of the six
multiple choice questions, the variables were scalar, such
as counts and ratings. For the two free-form responses, the
variables were qualitative, meaning their “values” were
text descriptions or lists. These variables were analyzed by
grouping similar responses together. The anecdotes were
coded using qualitative data analysis techniques in several
iterations [11]. Coding of situations is described in greater
detail in Section 3.3.1. During this process, we used
grounded analysis; categorization of search situations was
driven by the data, rather than a theory of how a task is
performed [13].

3. Results

Sixty-nine respondents provided description of 111 search
scenarios and 207 suggestions for features. Overall, the
quality of the results was good; only a small number of
respondents did not answer every question on the
questionnaire. Most of the responses were in point form,
but their thoroughness often compensated for the lack of
formality, while others were long, spanning more than a
page. Some responses were humorous, for instance,
“‘Show me the location of the next error I should fix’ :-).”

The origin of the participants are discussed in Section 3.1
and the tools they used are in Section 3.2. The anecdotes
that they provided about their source code searches are
described in Section 3.3. Where results are presented the
data given in brackets are counts, except where noted.

3.1. Participants

The sixty-nine participants who submitted questionnaires
came from a variety of newsgroups and email domains.

Their origins by newsgroup are in Table 1.

Table 1: Origin of Participants By Newsgroup

Newsgroup Number of Respondents
comp.lang.c.moderated 28

comp.lang.lisp 12
comp.software-eng 7
comp.lang.fortran 7
comp.lang.cobol 5

comp.lang.java.programmer 4
comp.lang.smalltalk 3

unknown 3
Total 69

Forty-five respondents were willing to participate in future
studies and consequently gave their email addresses. Their
address domains indicated more than two-thirds of them
were from commercial and government domains. The
distribution of participants by domain name is in Table 2.

Table 2: Origin of Participants by Email Domain

Domain Number
com, gov, co.uk 26

net, org 5
edu, ac.uk 6

other 8
Total 45

3.2. Tools Used

There was a multiple choice question on the tools that
respondents used to search source code. The available
choices are shown in Table 3. In addition, a fill-in box was
provided for tools that fell into the “other” category.
Participants generally relied on standard tools. The utility
grep performs regular expression matching over files and
the category included its variants. The find tool, in basic
form, searches for file names. All but one respondent (68)
used either an editor or IDE (integrated development
environment) to search source code, yet a large number of
them used other tools as well.

Table 3: Tools Used

Tools Used Number
editor 57
grep 47

find or “File Find” 38
other 38
IDE 26

In the fill-in box for the “other” category, a total of
nineteen different tools were mentioned. The tools
mentioned are in Table 4. Some participants entered more
than one tool. If a tool was mentioned in the anecdotes that
was not on the list of “other” tools, then it was also added.

Table 4: "Other" tools used

Tool Number
tagging utilities 11

scripts 7
proprietary source browsers 6

language environments 5
xref 4

miscellaneous 10
Included in the category of “tagging utilities”, were
etags, ctags, and ftags. “Scripts” denotes any shell
scripts, Perl or awk programs, and batch files. “Proprietary
source browsers” included tools that were sold for the
purpose of source browsing, such as Cygnus Source
Navigator, SoftBench, and tools that were bundled with
third party libraries. Smalltalk and Lisp programming
environments were included in “language environments.”
These tools were included in this category rather than IDE
because they incorporate a number of elements that are
tightly integrated with the language and run-time
environment. The UNIX tool, xref, builds a cross-
referencing index of functions and variables. The last
category included Norton Text Search, javadoc, “the
compiler”, and “my brain”.

3.3. Situations

We received 111 anecdotes of search situations. All but
four(65) respondents provided an anecdote. They ranged
in length from a single line to more than a page. Figure 1
is a typical anecdote of a situation that required source
code to be searched. In this section, the results of
analyzing the anecdotes are presented. First, the search
targets and the motivations for searching are discussed. In
Section 4, the relationships between these two dimensions
are examined to formulate searching archetypes.

Figure 1: Example of Scenario Anecdote

3.3.1. Coding. Anecdotes were categorized along two
orthogonal dimensions: the specific search target and the
motivation for the search. Search targets tended to be quite
easy to categorize, whereas motivations required stricter
rules. Some responses had multiple search targets and
motivations. In Figure 1, the search targets were coded as

“function definition” and “all uses of a variable,” and the
motivation was coded as “program understanding”.

The program understanding and maintenance categories
were used as little as possible because it could be argued
that all searches were performed for that purpose. In the
example, a program understanding motivation was selected
because the respondent gave no other explanation for why
she was performing the search. The maintenance category
was also used in a similar manner. The most specific
motivation that was appropriate for the search was
selected, based on the statements by the participant.

3.3.2. Search Targets. Within the 111 scenarios, 154
search targets and 94 motivations were identified. The
four most common search targets were function definitions
(26), all uses of a function (23), all uses of a variable (23),
and variable definitions (19). Definitions are the portion of
the source code that implements a function body or
determines the type of a variable. Searches on functions,
variables, and classes are summarized in Table 5. Further
analysis of the searches on variables indicated that
respondents were more interested in locations where a
variable was written or assigned to (6) as opposed to
simply read or referenced (1). Clearly, a piece of code that
changes a variable has more potential problems than one
that only reads it .

Table 5: Summary of Common Searches: Numbers shown
on table are counts of occurrences. Top four values are in bold. There
were 154 total search targets in the data.

Function Variable Class row total

declaration 10 - - 10
definition 26 19 5 50

use 11 9 1 21
all uses 23 23 5 51

column total 70 51 11 132
Other common targets of searches were strings, either
those output by the program or those in comments (10);
and files where code was located (5). All searches for
output strings coincided with a defect repair.

3.3.3. Motivations for Searching. The motivations for
source code searching could be grouped into eleven
categories. The categories and names are straightforward,
with the exception of “clean-up”, and “naming conflicts”.
These two categories will be discussed in greater detail and
examples for each are provided.

Clean-up occurs before a program is frozen for release. A
programmer may hard-code some strings during
development, or leave notes to herself in the code. These
items are removed before the code is shipped. A naming
conflict occurs if a new function, variable, or class uses an
existing identifier. A developer searches the code to
ensure a proposed identifier is safe.

I needed to understand old spaghetti
code which used global variables for
everything. Say there was a variable
'foo' which stored a critical value.
I'd grep for reads and writes to this
variable, to see which functions were
involved in creating and using this
value. I'd also search for it(in
emacs) in a cross-reference listing
to make sure I didn't miss some
place.

Table 6: Summary of Motivations for Searching

Motivation Number
defect repair 19
code reuse 14

program understanding 13
impact analysis 12

maintenance 7
feature addition 7

clean-up 5
naming conflicts 4

porting 3
dead code elimination 3

other 7
Total 94

The four most common motives for searching source code
were defect repair (19), code reuse (14), program
understanding (13), and impact analysis (12). The results
of this analysis should be compared with those from
question three of the survey. It asked, “How useful is it to
search source code when…” along with a list of ten
activities from the software development cycle, and asked
respondents to give a rating on a scale of one (low) to five
(high). It was found that the tasks in which searching was
most useful (median rating 5) were repairing bugs or
defects, understanding old code, and adding a new feature
to old software. The distribution of the ratings is presented
in Figure 2. Further analysis yields some relationships
between the motives for searching and the search targets.

4. Searching Archetypes

Archetypes were generated by examining the search targets
and motivations presented in the previous section for
patterns. Common or frequently-occurring relationships

between targets and motivations were identified as a
pattern. Eleven archetypes are presented in this section,
beginning with the strongest ones. Also presented in this
section are uncommon searches because they complement
the archetypes by capturing the additional variability.

4.1. Common Searches

The pattern that emerged in the impact analysis category is
the most definite.

1. During impact analysis, developers often looked for all
uses of a variable or function.

Of the twelve searches with this motivation, nine were for
all uses of a function or variable. Impact analysis is
usually done to evaluate a change to the software. The
developer wants to make sure that she has not broken
anything inadvertently, therefore checks all uses of the
modified component. This relationship is credible not only
because the underlying explanation is plausible, but also
because the numbers in this category are consequential.

In the program understanding category there were two
main patterns of searching.

2. Searches motivated by program understanding
sometimes sought function and variable definitions.

3. At other times, the search targets were a use of a
function, variable or object.

Of the thirteen searches performed for this purpose, five
were looking for definitions of functions or variables, and
five were looking for function or variable or object use. In
the case of definitions, the maintainer was trying to
determine the effect of a particular function call or the data
type of a variable. In the case of the latter, she understood

0

10

20

30

40

50

60

70

80

Design New
code

Testing PU Repair Feature Perf.
Imp.

Inspect Write
doc

Maint.
docDevelopment Task

P
er

ce
n

ta
g

e
NR
1
2
3
4
5

Figure 2: Usefulness of Searching Source Code by Task: This histogram shows the distribution of ratings for each development
task. A bar shows the percentage of respondents giving that rating for a task. The tasks are low-level design, writing new code, testing, program
understanding, repairing a defect, adding a new feature, improving performance, code inspection, writing documentation and maintaining
documentation.

the object, variable, or function, but wanted to know how it
fit with the rest of the program.

The code reuse category revealed two patterns of searches.

4. To reuse code, a programmer searched for function
signatures to call it correctly.

5. Alternatively, a programmer searched for functionality
that was known to exist, but the name may not have
been known.

Of the fourteen searches undertaken for the purpose of
reusing code, seven were for function definitions and three
for function declarations. When reusing code, one of two
scenarios may occur: the developer knew the name of the
function but needed to check the parameters in the
declaration or definition; or the developer knew that code
to perform a certain procedure existed, but was unsure of
its name, so she performed a search.

In the bug repair category, there were a large number of
examples (19) with a variety of search targets.

6. Maintainers tackled bugs by identifying the function
that was misbehaving.

7. Another approach was to track usage of a variable.

8. An output string served as the starting point for a bug-
hunt.

The three most common targets were function definitions
(4), all uses of a variable (3), and output strings (3). The
first pattern corresponds to a situation where a programmer
knew that something was going wrong and was looking for
the function responsible. Consequently, she looked at a lot
of function implementations or definitions. The second
archetype corresponds to a scenario where a maintainer
knew a variable was set incorrectly during execution. In
such a case, she looked at all uses of that variable to find
the error. In the case of the third pattern, the programmer
has received a bug report containing an error message.
The search for the faulty code began by tracing how the
message came to be printed. This pattern was particularly
strong because all instances of searches for output strings
were motivated by bug repairs.

In the porting, feature addition, and dead code elimination
categories, relationships were found, but due to the small
number of anecdotes it is difficult to know how significant
they are.

9. To eliminate dead code, a maintainer needed to find
all uses of the entity being removed.

In all of the dead code elimination searches(3), the targets
were all uses of either a function (1) or a variable (2). In
order to eliminate a variable or function, the maintainer has
to make sure that it is either not used at all or used only in

functions that will never be called. Therefore, she needs to
be able to account for every use of that function or
variable. This relationship is more credible than the others
that have a small number of examples because its
underlying explanation was present in the anecdotes and is
highly plausible.

10. When porting code, developers often examined
variables.

In all of the porting examples (3), the respondent was
looking for information about variables. In two cases, it
was all uses of a variable, and in the third it was the
variable definition.

11. When adding features, developers sometimes examine
functions.

In four of seven feature addition searches, the respondents
were looking for information about functions. There were
no clear patterns found among the searches in the clean-up,
naming conflicts, and maintenance categories.

4.2. Uncommon Searches

In this section, we present some of the unique situations
described in the survey. These anecdotes are noteworthy
because they illustrate issues that software maintainers deal
with, but are not captured by the archetypes. We look at
searches performed for preventative maintenance, code
reuse, and testing.

Although preventative maintenance is generally agreed to
be a good idea, many software shops don’t have time to do
it. In the study, we received two anecdotes that described
searches that were performed for that purpose on a small
scale. Respondent 17 recalls an occasion when she
discovered a variable had been used unsafely, she went
through the source to verify that other uses of a variable
were correct.

Upon noting an unchecked strcpy()
into a global char *, needing to
locate the declaration for the
variable to discover it's size and
locate references to that variable to
see if bounds checking was performed
explicitly.

Another application of preventative maintenance searching
was described by respondent 66. She would look through
the code for:

mundane spell correction: how many
ways did i spell one variable name by
accident

If an identifier is used only once, then it is likely an error.
An unused variable can be caught by a compiler or
interpreter if warning levels are set appropriately, but these

discrepancies can be a problem in languages that do not
require variables to be declared before they are used.

Respondent 23 adds the following example of searching in
order to reuse code:

It has also helped in the design
phase to be able to find another
program that was used for the same
purpose and this helps others to
develop their applications quicker.

Rather than reusing code only during the implementation
phase, her team builds this into the design. Here, the code
is searched to make further development easier. It’s not
clear how the respondent performs these searches, but the
possibilities are intriguing.

The usefulness of searching during testing had a low
ranking (fifth out of ten maintenance tasks), but a high
rating (median of 4). An anecdote also from respondent 66
illustrates this finding:

how many ifdef? where are they? used
to figure out relevant test cases for
ported code

Hence, searching is probably not used during the actual
testing of code itself, but in generating test cases.

5. Conclusion

The primary purpose of this study was to characterize the
source code searching behaviour for the purpose of
constructing a tool to assist programmers. An
understanding of the situations in which searching was
performed can be used to determine the functionality of a
search tool. The archetypes can be used to improve
usability during design and tool validation. During the
design phase, the tool can be applied to the situations
described by the archetypes. During validation, the
archetypes can be used to guide selection of tasks for
usability testing. A set of uncommon searches was also
identified to complement the archetypes in the model.

Searching is an important part of many software
maintenance tasks. We found that the tasks in which
searching was most important were defect repair, code
reuse, program understanding, feature addition, and impact
analysis. The most common search targets were function
definitions, all uses of a function, all uses of a variable, and
variable definitions.

The archetypes presented in this paper are preliminary in
nature. They are the fruits of an exploratory study and still
need to be validated. More needs to be known about the
population of software developers and maintainers and the
products they support in order to develop robust models.
Much work remains to be done in the collection of

demographic information about software engineering.

The secondary purpose of this study was to determine the
efficacy of our research method. We were able to obtain
responses from respondents in different organizations from
around the world, without the drawbacks of travelling. In
many ways, web-based questionnaires are superior to their
paper-based counterparts: the logistics of dealing with
paper are eliminated; the researcher has greater control
over the format and administration of the questionnaires;
and the respondent submits the data in electronic form,
which removes the need for transcription. We used
availability sampling to obtain participants, a method that
proved to be adequate for our goals.

We plan to use the results of this study in two ways. In the
development of a lightweight source code searching tool,
we will use them to guide our design decisions. In future
empirical studies, this study will serve as an example of
how survey methods can be applied to software
engineering. By expanding this knowledge, we can
construct a body of knowledge about the population of
software developers and maintainers, and thus increase the
validity of our work.

6. Acknowledgments

This research was generously supported by CSER
(Consortium for Software Engineering Research) and
CITO (Communication and Information Technology
Ontario).

7. References

[1] M.J. Bates. The Berry-picking Search: User Interface
Design. in Interfaces for Information Retrieval and
Online Search: The State of the Art edited by M.
Dillon, Chapter 4, pages 55-61, Greenwood Press,
(1991).

[2] N.J. Belkin, C. Cool, A. Stein, and U. Thiel. Cases,
Scripts, and Information-Seeking Strategies: On the
Design of Interactive Information Retrieval Systems.
Expert Systems With Applications, 9(3):379-395,
(1995).

[3] R. Brooks. Towards a Theory of the Comprehension
of Computer Programs. International Journal of
Man-Machine Studies, 18: 543-554, (1993).

[4] D.A. deVaus. Surveys in Social Research, Fourth
Edition. UCL Press, London, 1996.

[5] M. Eisenstadt. My Hairiest Bug War Stories.
Communications of the ACM, 40(4): 30-37, (1997).

[6] W. Foddy Constructing Questions for Interviews and
Questionnaires: Theory and Practice in Social

Research. Cambridge University Press, Cambridge,
1993.

[7] N. Frye. Anatomy of Criticism: Four Essays.
Princeton University Press, Princeton, 1957.

[8] I.R. Katz and J.R. Anderson. Debugging: An Analysis
of Bug-Location Strategies. Human-Computer
Interaction, 3: 351-399, (1987-1988).

[9] A. Lakhotia. Understanding Someone Else’s Code:
Analysis of Experiences. Journal of Systems
Software, 23:269-275, (1993).

[10] D.C Littman, J. Pinto, S. Letovsky, and E. Soloway.
Mental Models and Software Maintenance.
Empirical Studies of Programmers, First Workshop,
pages 80-98, Washington DC, USA,1986.

[11] M.B. Miles and A.M. Huberman. Qualitative Data
Analysis: An Expanded Sourcebook, Second Edition.
Sage Publications, Thousand Oaks, 1994.

[12] J. Singer, T. Lethbridge, N. Vinson, and N. Anquetil.
An Examination of Software Engineering Work
Practices. In Proceedings of CASCON ’97, pages
209-223, Toronto, Canada, 1997.

[13] A. Strauss and J. Corbin. Basics of Qualitative
Research: Grounded Theory Procedures and
Techniques, Sage Publications, Thousand Oaks, 1990.

[14] A. von Mayrhauser and A.M. Vans. From Code
Understanding Needs to Reverse Engineering Tool
Capabilities. Proceedings of the 6th International
Workshop on Computer Aided Software Engineering,
pages 230-239, Piscataway, USA, 1993.

APPENDIX A: Text of the Survey

Question 1: Tools Used
What tools do you use to search source code? Check all
that apply.

grep, fgrep, etc. []
find or "File Find" []

editor []
e.g. vi, emacs, edit

integrated development environment []
e.g. MSDS

other []
Please specify: ______________

Question 2: Program Analysis Tools
Do you use an integrated software analysis and exploration
tool? Two examples are SNiFF+ and CIA.

Yes []
No []

Question 3: Development Activities Requiring Searching

How useful is it to search source code when:

Not at all useful Very useful
doing low-level design? 1 2 3 4 5
writing new code? 1 2 3 4 5
testing? 1 2 3 4 5
understanding old code? 1 2 3 4 5
repairing bugs/defects? 1 2 3 4 5
adding a new feature to old software? 1 2 3 4 5
improving performance? 1 2 3 4 5
inspecting and reviewing code? 1 2 3 4 5
writing documentation? 1 2 3 4 5
maintaining documentation? 1 2 3 4 5

Question 4: Typical Usage Situations
Describe one or more situations when you needed to search
source code. What did you use to find it? What were you
trying to find? Why did you need to find it?

Question 5: Wish List
What types of searches would you like to be able to
perform?

Question 6: Primary Responsibilities
What are your primary job responsibilities? Check all that
apply.

Research []
Consulting []
Developing software for a customer []
Maintaining software for a customer []
Developing a software product []
Maintaining a software product []
Developing in-house software []
Maintaining in-house software []

Question 7: Time With Source Code Written By Others

Of your total time spent working with source code, what
percentage of that time is spent working on source code
written by other people?

0-20% []
21-40% []
41-60% []
61-80% []
81-100% []

Question 8: Participation
Where did you hear about this survey? (Please give the
name of the newsgroup or email sender.)

Question 9: Future Studies
Would you be willing to participate in future user studies
of source code searching?
 No []
 Yes []
 If yes, please provide your email address.
 Email:_________________

