Applying Madine Leaning to Software Clustering

Susan Elli ott Sim
901270630

CSC 2541F

Prof. G. Karakoulas



1 Introduction

Severa branches of software engineering, such as reverse engineering, and software architedure,
need to recover adesign level view of a software system using the program code & the primary
information source. There ae many ways of representing such a decompasition @ctorialy, bu
typicdly ahigh-level view of a system usually consists of boxes representing comporents and
edges depicting relations between these ammporents. A comporent can be asourcefile, or a set
of sourcefiles. Figure 1 isthe decomposition d asmall regular expresson uility. The system
itself is represented by the level-0 nade, “regex”. There aretwo baxes at level-1, each
correspondng to asubsystem. The led nodes correspondto the filesin the system. Note that in

general, the led nodes do nd all occur at the same level.

regex

stdClib resolver

stdlib.h parser.c seach.c

Table 1: System Decomposition



Obtaining a high-level view automaticdly is more important in large systems, such as those with
hundeds of thousands or milli ons of lines of source code. In many cases, the software is has
been aroundfor along time, has changed significantly sinceit was first implemented, what littl e
documentation that existsis out of date, and the original designers are nolonger avail able for
consultation. Asaresult, the program code itself isthe only reliable and complete source of
information abou the system. Furthermore, it is extremely time consuming for these
decompasitionsto be aeaed manually. To recover these high-level views, the source @deis
anayzed using fact extractors. These fads are normally variable use and function cdl relations
between files. Factsarein turn analyzed to cluster the sourcefil esinto subsystems. This

clustering represents a hierarchicd decompasition o the software system into comporents.*

A gred deal of research has been dane on developing automatic software dustering algorithms.
Thiswork has drawn onfields such as graph theory, mathematicd concept analysis, data mining,
and microchip design and layout. These dgorithms tend to rely on structural information found
in the mdeitself. For example, variable uses and function cdl s are treated as relations between
different files within a software system. Mnemonics, code and data binding can also be used in
clustering. Algorithms use measures of cohesion, couding, complexity, and interface size to
construct and evaluate decompasitions. Wiggerts [10] and Tzerpos[9] provide good surveys of

clustering tedhniques.

1 Seehttp://www.cs.toronto.edu/~vitzer/papers’hybrid.ps and

http://plg.uwaterloo.ca 80/~itbowman/papers/linuxcase.html for more information on the processused by our the

Holt reseach group to recover the design of a system.



Madine learning algorithms are anong those that have been applied to the problem of creating
clusters. Merlo, McAdam, and De Mori [5] have used artificial neural networks (ANNS) to
reagnize dusters. By using comments and identifier namesin source wde ainpus, the
problem becme very simil ar to attributing articles to newsgroups. Greater successwas met by
Schwanke and Hanson [8] who trained ANNSs to grouptogether similar (according to dstance
measure) filesinto clusters. Mancoridiset a. [4] used traditional hill -climbing and genetic

algorithms to creae dusters with promising results.

Thesetods are till experimental and have met with varying degrees of success Thereisno
genera-purpose dustering algorithm that will work with any system. Eadh clustering algorithm
works well with a particular programming paradigm or the achitedural style of the system.
These todls function best as an aid to a human constructing a dustering. Intheir current state,
they are not be used to cluster alarge system independently. Aswith many other knowledge-
intensive tasks, there is no good substitute for a person with agrea dea of knowledge of the

software system.

Although, madine leaning has been appli ed to clustering as an unsupervised learning problem,
it has not yet been attempted as a supervised leaning problem. With thisreformulation, a
leaner would be asked to lean a dassfication,i.e. the decompasition, from a number of
examples. The goal of in thistask isto reducethe anourt of human inpu required, rather than
eliminate it entirely. The time required for such atask can be cnsiderable, when a software
system has on the order of 500 000l nes of code in 1000files. It would save agrea ded of

effort if someone were only required to categorize asubset of these fil es.



There ae anumber of advantages of taking this approad. One, the problem takes onthe
structure of a dassc machine learning problem: learning a cncept inductively and generali zing
this knowledge to ather examples. Two, this approach fits with ores currently in usein reverse
engineeging. Human experts are usually consulted extensively when credaing a dustering. With
madhine learning, the number of labels required can be reduced. Three, the programmers who
use these decompositions are more likely to trust them if they were involved in the creding

them.

This paper reports on some experiments undertaken using two leaners, Naive Bayes and Nearest
Neighbaur, onthree software systems, the C488 compil er used in CSC 488 undrgraduate
course, the Linux Operating System Kernel, and an optimizing back-end from IBM. The best
results were foundwith the Nearest Neighbou |learner onthe Linux kernel and IBM system, with
acaracy rates of 96.0% and 93.9%6 respectively. Further experiments were conducted to

evaluate the performance of thisleanersin greater detail .

2 Software Clustering as a Supervised Machine Learning Problem

As mentioned in the previous fdion, the goa of applying macdine leaning to the software
clustering isto reducethe effort required from domain experts to recover the high-level design of
software system. This can be accomplished by training aleaner on a set of examples and have
the leaner to generali ze that learning to ather cases. The examples are the fil esin the system.

The oncept to be leaned is the decompasition d the software system, which means the



clasgficdionisthe subsystem containing the example. So, given afile wewould like the leaner

to tell uswhat subsystem it belongsin.

Clustering presents a number of unusual chall enges as a supervised machine learning problem.

These dharacteristics neal to be taken into consideration when designing aleaning system.

* Theuniverse of casesis avail able and requires classfication.

Unlike typical madcine learning problems all of the instances that need to be recognized are
avail able to the learner. Asaresult, probabiliti es and dstributions can be calculated ower true
values, rather sample estimates. Furthermore, all of these instances are avail able & the start of

leaning.

* The st of obtaining labelsis high, relative to oltaining values and features.
Labels neal to be generated by adomain expert. In contrast, adding features and values can be
dore by using analysis programs and scripts. Although, some features and values also need to be

generated by hand, they may nat be necessary for successul learning.

* The dustering is hierarchical.
Asill ustrated in Figure 1, the decompasition d asystem is hierarchicd. For example, thefile
parser.c belongsin bah the resolver subsystem and the regex subsystem. Consequently, a

completely learned concept would need to take this gructure into consideration.



» Some dasgficdions and features can be sparse.

At the lower levels of the decomposition treg a subsystem may contain a small number of files.
As aresult, the number of examplesfor agiven classfication can be relatively small. Similarly,
some of the nominal feaures will have alarge number of distinct values, ead occurring a

relatively small number of times. The feduresto be used will be discussed in the next sedion.

* The st of being wrong is greder than the st of failing to provide aclassficaion.
When the leaner provides a dasdficaion, it shoud doso with arelatively high degreeof
cetainty. It ismoredifficult to deted that afileisin the wrong cluster and corred it, than it isto

provide alabel for afile when prompted by the learner.

For the purposes of this projed, asimplifying assumption will be made: the learner need only
provide the level-1 subsystem as a dasdfication for afile. Thisdedsionwas made for two
reasons. Oncethistoplevel caegorization hes been made, the lower level ones can be
performed recursively. Furthermore, these subsystems have alarge number of instances within

them, thusimproving the likelihood d a rrect classficaion.

2.1 Software Systems

The Holt research group hes analyzed the achitedure of a number of software systems. Three
software systems were used in the experiments. We have had fair amourt of experiencewith
these systems and their decompasitions are well understood. As aresult, thereisthere ae both

structural and mnemonic fads can easily be onwerted into feauresfor leaners. These systems



present a broad spectrum of structural and mnemonic characteristics, and will serve to test the

performance of the learners under different condtions.

2.1.1 C488 Compiler

The C488 compil er isatoy program written in C and wsed in the CSC 488 unargraduate course
in compilers. There ae 37 filesin the system and 11level-1 subsystems. Thedistribution d

thesefiles are given in the table below.

Subsystem Number of Files Percentage of Files
stdCLib.ss 11 29.72
parser.ss 6 16.22
codegen.ss 4 10.81
semantics.ss 4 10.81
madine.ss 3 8.11
shared.ss 3 8.11
scanner.ss 3 8.11
symbal.ss 2 541
main.ss 1 2.70

Table 2 : Distribution of Filesin C488

The Standard C Library subsystem has the largest number of fil es, meaning of the learner simply
guessed this answer, it would be crred abou 30% of thetime. It shoud be noted that the files
in this subsystem are easily reagnizable both structurally and mnemonicaly. Structurally,
library files are distinct in that they are used by many files, yet they do nd use any files
themselves. Mnemonicdly, they are distinct in that they are not foundin the same directory as
filesin any of the other subsystems. Hence, the diredory structure of the C488compiler is

significant, aswell as sme of the names of thefiles. Thissystem aso hasavery flat




containment hierarchy, al the dasses arelocaed in level-1 of the decomposition and all thefiles

areonleve-2.

Because the C488 system is snall, it is useful for experimenting with new ideas. In contrast, the

Linux Kernel andthe IBM Badk End are more typical of industrial software with significant

functionality and alarge user base.

2.1.2 Linux Operating System Kernel

The Linux Operating System Kernel was developed using the Open Source Software model.

The Holt groupand a software achitedure graduate wurse & the University of Waterloo hes

spent agreat ded of time studying this system. [2, 3 Its containment tree is quite full and

complex. TheKernd iswritten primarily in C. The diredory structure provides valuable

information abou the dustering, however, in some cases it can be misleading because dl of the

header files are placed in the same diredory.

Subsystem Number of Files Percentage of Files
fs.ss 511 51.93
net.ss 247 25.10
lib.ss 102 10.37
sched.ss 50 5.08
mm.ss 30 3.05
ORPHAN .ss 22 2.24
ipc.ss 14 3.66
init.ss 8 0.81
Table 3: Distribution of Filesin the Linux Kernel




There ae 984filesand 8categories. The largest level-1 subsystem isfs.sg the fil e system

subsystem, asit contains al the wde for adual and virtual device drivers and includes almost

52% of thefiles. The next largest is net.ss which contains the source ade network protocols

and conrections.

2.1.3 IBM Compiler Back End

The IBM Compiler Back Endis an important comporent in many significant IBM compil er

products. It iswrittenin PL/IX, an IBM PL/I variant, and is maintained by atean at the Toronto

Lab. There ae 1016filesin 4level-1 caegories. In thissystem, all the fil es are kept under

configuration management, bu esentially in asingle directory. The different subsystems are

denoted by prefixes and suffixesin the fil ename.

Subsystem Number of Files Percentage of Files
optimizer.ss 381 37.50
assembler.ss 299 29.43
dlocaor.ss 268 26.38
assembler.ss 68 6.69

Table4 : Distribution of Filesin the IBM System

Within ead o these level-1 subsystems, there are éou a hunded smaller ones. The most

frequently occurring subsystemsin the Badk End have &ou 5 filesin them.

3 Learners and Representations

Based onprevious experience and a survey of the dustering literature, bath structural and

mnemonic information were seleded as inpusto the leaners. The mnemonic information used




1C

were the diredory path of the file, and substrings from the filename. Substrings were dhosen
because fil enames themselves tend to be unique. Furthermore, substrings can cgpture the
naming conventions used in the software system. Anquetil and Lethbridge foundin their study
that better clustering results were obtained when overlapping substrings of length 3were used [1]
To minimize the anourt of spurious information provided to the learner, the first three

characters and the last three dharaders of the fil ename were seleded as fedures.

Many kinds of structural information, i.e. relations between fil es, can be extraded from a
software system. The threemost general ones are: variable uses, function call s, and
implementation d dedarations. A variable-use between two files ocaursif file X uses avariable
or variable type defined infile Y. A function-cal between two filesocaursif file X calsa
function defined infile Y. Both of these relations can be established duing pre-processng,
compilation, a linking of a program. Animplement-by relation aceursif file X implements a
function dcedared infileY. Normally, inC, fileY isa.hfile and X isa.cfile. Thedifficulty in
representing thisinformation to alearner isthat afile can have an arbitrary number of relations
to ather files. Furthermore, it can have more than one type of relationto a particular file. How

thisdifficulty is resolved will depend onthe learner.

In summary, features in the cases consisted of: path name, substrings from the fil e name,

variable-use relations, function-cdl relations, and implement-by relations.



11

3.1 Naive Bayes

The Naive Bayes learner esentially asks the question, “ Given data seen duing training, what is
the most likely clasgficationfor thisexample?’ This classficaionis caled the maximum a
posteriori hypothesis. It builds up this hypothesis by cdculating the distribution d the values of
feduresrelativeto their clasgficaions. The NewsWedaler version d the Naive Bayes classfier
was ®leded because it allows variable length inpu examples.[6, sedion 6.1Q Asaresult

structural information can be easily represented to thisleaner.

A relation was represented by using a prefix to indicae its type, foll owed by the fully qualified
name of thefile. For example, if file X used avariable fromfile Y, it would be represented to
the leaner as “usevar-/path-of-Y/Y”. Including the path ensures that every distinct file has a
unique string associated with it. A similar convention was used with the function call and

implement relations.

Two dfferent representations were used with the Naive Bayes learner. Thefirst onetreaed the

path name asingle string. The second separated the path name into subdredories names.

3.2 Nearest Neighbou r

Neaest Neighbou is an instance-based learner. Rather than buld amodel of the hypothesis
space it stores all the training examples and cdculates the answer when presented with test
example. The Nearest Neighbou leaner uses a distance function to find the training example
that is most simil ar to the test example, and extrapolates the dassficaion. Example that are

similar have small distances between them.



12

Two dfferent distance functions were used: HEOM and HYDM.[11] Although bah functions
are adleto hande both naninal (categories) and linear discrete (numeric) datatypes, the
examples contained orly the former. Asaresult these functionswill only be discussed in terms
of how they handle nomina data. The Heterogeneous Eucli dean-Overlap Metric (HOEM) looks
at whether the values of afeature overlap. It looks at each fedure, if they are the samein bah
examples the metric gives ascore of 0, dherwiseit is given ascore of 1. The Heterogeneous
Value Distance Metric (HVDM) considers two valuesto be doser if they have alarger number
of classficaionsin common. For each feature, it outputs a number between Oand 1,
representing the propation d the time the values in the two examples have the same

classficdion.

One important charaderistic of Nearest Neighbou is both examples need to have the same
number of features. This constraint was resolved by making each relationtype asingle fedure.
The values for these feaures was alist of fully qualified file names. The distancefunctions
neeled to be modified to hande a“list” datatype. A distance metricis suggested by

Wiggerts.[10] Every element in the two lists sroud be caegorized according to the matrix

below.
List j
present absent
Listl present a b
absent C d




13

The Simple matching coefficient is: _a+d , which gives anumber between Oand 1. The
atb+c+d

form of this coefficient is consistent with the other componrents of the heterogeneous distance

functions and can simply be alded to the distance calculation.

4 Results

Two series of experiments were anducted with the learners. In the first series, the four versions
of the leaners were evaluated using a aossvalidation method onthe threesoftware systems. In
the seaond series, considers the dfed of reducing the size of the training sets on the accuracy of

the Nearest Neighbou learner with the Linux Kernel and IBM software. In genera, the learners

performed surprisingly well.

4.1 Experiment 1: Performance Under Cross-Validation

A 10-fold crossvalidation was used with Linux and the IBM Badk End. A 5-fold cross
validation was used with theC488 system because there is a much small er number of examples

available. These results are summarized Table 5.

With C488,there were 30 cases in the training set and 7 casesin the test set and the best
acaracy rate was obtained with the Naive Bayes learner using the second representationin
which the path was separated into subdredories. Thisleaner was able to classfy 91.4% of the
test cases correctly, which is considerably better than guessng the largest subsystem, stdCLib.s§

which contains 29.7 24 of the cases.



14

For Linux, there were 886training cases and 98test cases. The best learner with this system was
Neaest Neighbou using HOEM, which had a successrate of 96%. The largest subsystem in

Linux, acourts for amost 52% of the cases.

The best leaner for the IBM Badk End was also Nearest Neighbou using HVDM. There were
914training cases and 102test cases, which produced an acairacy rate of 93.9%. Even though
there were fewer classes in this system than Linux, its largest subsystem only accourted for

37.8% of thefiles.

Learner
NaiveBayes1 | NaiveBayes2 [ NN—HEOM [ NN —HVDM
= 488 80.0% 91.%% 88.6% 88.6%
5% | Linux 87.9% 86.6% 96.0% 95.9%
@ [IBM 89.2% 89.0% 93.9% 93.8%

Table5: Summary of Accuracy Rates

For each software system, the confusion matrix for its best leaner was examined. Each cell in
the confusion matrix contains two numbers. Thetop oreisthe number of cases that fell into the
group. The second oreisthe arerage value of the metric used by the learner to seled the
classficaion. For Naive Bayes 2, the metric is the normali zed probabili ty of the guessed
clasgficaion. For Nearest Neighbaur, the metric is the distance to the most simil ar training case.
These metrics were included to determineif any athreshold could be set for classfication
confidence.

The confusion matrix for C488indicaes the learner classfied 3filesincorredly. There does not

appea to be ay systematic arors. Intwo of thethree caes, the learner guessed the semantics.ss




15

subsystem. One of these misclassfications was the single file from the main.ss sibsystem. This

error isnot surprising as the leaner had na seen an example from that classficaion before.

There dso dees nat seam to be areasonable threshaold for the p-value that would na sacrifice

performance. Many of the arrect classfications are made with very small p-values and the p-

values of misclassficaions are not consistently smaller.

g?\llj;l'tue GuessBy Learner
codege | machin | main.ss | parser.s | scahner | semanti | shared.s | stdClib. | symbal.
n.ss e.ss s .SS CS.SS s ss ss
codege | 3 - - - - - - - -
n.ss 0.60
macin | - 2 - - 1 - - - -
ess 0.75 0.85
main.ss | - - - - - 1 - - -
c 0.38
o
e parser.s | - - - 6 - - - - -
-f:’ S 0.71
'?é scanner | - - - - 3 - - - -
) SS 0.72
= semanti | - - - - - 3 - - -
g |csss 0.68
< | shareds | - - - - - 1 2 - -
S 0.25 |0.42
stdClib. | - - - - - - - 11 -
ss 0.86
symbal. | - - - - - - - - 2
SS 0.40

Table6: Confusion Matrix for Naive Bayes 2 on C488

In the confusion matrix for Linux, there ae two patterns. Filesfrom the lib.ssandfs.ss

subsystems are easily mistaken for each ather. These two cdls, shaded in gray, have the largest

courts of any of the misclassfication cdls. The other pattern is a diff erence between the arerage

distance of correctly andincorredly classfied cases. The arerage distance of the @rrectly




16

classfied cdlsis nomore than 3.24. Except for one cell, the average distance of the incorredly

classfied cdlsisnolessthan 3.97% Although this gap is suggestive, an examination o the raw

scoresindicaes that there ae still more orrectly classfied cases than incorrectly classfied ores

abowve thisgap. Therefore, it would na be worthwhil e to set the threshold here. On the other

hand, the value 5 could be used an extremely conservative threshold as there are no corredly

classfied instances with adistance greder than this number.

giO;;Ince Guesshy Learner
ORPHA | fs.ss init.ss ipc.ss lib.ss mm.ss net.ss sched.ss
NS.ss
ORPHA | 17 1 - - 1 - - -
NSss 1323 |4.97 4.00
fsss 1 497 - 1 6 1 2 -
2.99 3.17 3.99 4.15 4.93 3.96
S init.ss 1 2 7 - - - - -
i 5.93 5.91 3
2 ipc.ss - 2 - 12 - - - -
2 3.99 3.16
O lib.ss - 5 1 - 91 - 2 1
b5 3.97 3.99 3.09 3.99 4.00
% mm.ss - - - - - 29 - 1
O 3.24 4.00
net.ss 2 - - - 1 - 243 2
3.99 4.97 3.17 4.48
sched.ss | 1 1 - 1 2 - - 46
3.99 3.97 3.98 3.98 3.15

Table7: Confusion Matrix for NN-HEOM on Linux

2 During previous clustering attempts, any fil es that could not be dl ocated confidently were placel in the

ORPHANS.ss subsystem. Conseguently, the file from this subsystem that was classfied as belonging to the fs.ss

subsystem with a distancevalue of 2.99islikely a corred classfication. It isgratifying to find that even these small

experiments were &le to improve an existing cluster.




17

For the IBM Back End, fil es from the optimizer.ssare misclassfied more often than ores from
the other three subsystems. These cell s are shaded gray. A gap between the average distances of
the @rredly andincorredly classfied cellsthat is smilar to the one foundwith Linux also

ocaurs. Thereforeit isaso dfficult to set auseful threshad for this system as well.

g?;;tnce Guessby Learner
dlocaor.ss asembler.ss | optimizer.ss | services.ss
alocaor.ss 247 - 6 8
- 3.13 3.82 3.86
5 't% asembler.ss | - 66 1 2
D O 3.06 3.98 3.49
g “?g optimizer.ss | 16 - 367 11
5 4.08 3.15 3.99
SErViCes.ss 4 2 7 279
3.74 3.49 3.98 3.05

Table 8: Confusion Matrix for NN-HEOM on IBM Back End

Although these results are quite good,the rely on having are large propation d the fil es already
labelled. Requiring 90% of 1000filesto be dassfied before using amacine leaner isnot abig
improvement over clustering by hand. In the next sedion, an experiment onthe df ect of

reducing the size of the training setsis discussed.

4.2 Experiment 2: Effect of Reducing Training Set Sizes

This subsedion reports on additional experiments were done with Nearest Neighbou — HEOM
onthe Linux andthe IBM Bad End. The Linux and IBM Bad End were used because results

with these software systems are more indicative of legacy systems. Consequently, the Nearest




18

Neighbaur learner was aso selected, Although the performance of the HOEM distance measure

was only slightly better than HVDM, it runs much faster, so it was selected for further testing.

Four different train/test split sizes were used: 80/20, 6040, 4060, and 2080. For each train/test
split size, five sets were randamly generated. Although procedure results in test sets that are not

independent, it would be difficult to do dherwise. Theresults are shown in Figure 2 below.

Effect of Reduced Training Set Sizes
100
4

90
g
> &0 NTeRT—eTE2T 7820 .
S . 76.26
=]
g 70
<

62.61
60
50
90/10 80/20 60/40 50/50 40/60 20/80
Train/Test Split
‘—’—Linux —=IBM ‘

Figure 2: Accuracy Rates of NN-HEOM

The graph shows that thereis alarge drop in acarracy when the training sizeis from 90% to
80%. Theaccuracy with Linux deaeased 17.75 jgrcentage points and with IBM Bad End it

deaeased 24.05percentage points. However, the decrease in accuracy in the remaining



19

reductions arerelatively small. Reducing the training size from 80% to 20% only decreases the

acarracy by 2.01 percentage points for Linux and by 7.24 percentage points for IBM Badk End.

It is smewhat surprising that the IBM Bad Endis affeded by the reduced training test sizes ©
much more than the Linux Kernel. Thistrend is courterintuitive becaise IBM Bad End has
fewer clasdfications. One possble explanationisthat there aetoo few classfications. Ead
level-1 subsystem adually encompasses many disparate subsystems, which means ead class
groups together many files that are dissmilar. Perhapsit would be passble to oltain better
results, if there were more classes with a sufficient number of fil es that are more similar to each

other.

Thereisavariant of the Nearest Neighbaur learner, k-Neaest Neighbaur, which, as the name
implies, uses the mgjority vote of the k neaest neighbousto determine the dasdgfication d a
test case. The exad number of neighbaurs, k, istuned during training using the leare-one-out
method. This algorithm was nat used because the experiments would have taken a prohibitively
long time to complete. However, thislearner may perform better with the reduced training sets.

In the next sedion, dher improvements and appli cations are discussed further.

5 Conclusion

The experimentsin this gudy represent a promising start in considering software dustering as a
supervised madine leaning problem. Theinitia results using the Naive Bayes and Nearest
Neighbaur learners are very encouraging. The decomposition d threesoftware systems used,

C488,Linux Kernel, and IBM Back End, were learned with accuracy rates of 91.4%, 96.%%, and



20

93.9%, respectively. When the size of the training set is reduced from 90% to 80%, thereisa
large dropin accuracy, bu the deaease from 80% to 20% is very flat. The most significant
contribution d this approadh isthat it isagenera purpose dustering algorithm, something that
has not yet been achieved in software engineering. Given these early successes there ae many

appli caions and improvements that are worth considering.

5.1 Applications

Given that the learner performs best when it has alarge number of 1abell ed examples, this
madhine learning approach may be useful in some problems related to constructing a dustering.
One such problem is clustering new files that have been added to the system. Thisincremental
clustering may occur asindvidual files are alded, o it can be dorein batches, such aswhen a
new version d the softwareisreleased. The establi shed clustering would be used as the training
cases and the new fileswould be thetest cases. The caability is particularly useful for kegoing
athe design level views of the software up-to-date and reducing the necessty of re-extracting the

architedure.

“Kidnapping” is an exercise performed to test a dustering. It involves removing afile from a
subsystem, or kidnapping it, and asking the dustering algorithm to placeit in the most
appropriate subsystem.® Thistest is usually performed with deacompositions creaed by

algorithms that treat the system as awhale, such as thase that graph theoretic concepts.

% Infad, the machine leaning approach could be mnsidered as alarge kidnapping experiment in which a fraction of

the files are removed, instead of just one.



21

A different, but related problem, would be suggesting a name for new fil e within a subsystem.
Naming conventions may be complex, or they may be forgotten over time, or anew programmer
may simply be unaware of them. Putting these rulesinto a program would be aform of self-
documentation. Thistod could be used just before a programmer chedks in anew file into the
configuration management system. It would look at the file name andits gructural relations to
determine whether the name foll ows the naming conventions of the system. If the namefails, a

modification could be suggested.

5.2 Future Work

There ae many ways that the learners could be improved. A fairly smple modificaionto
Neaest Neighbou would be to add weights to the different feaures in the cdculation d the
distancefunction. Weights could even be alded to the cdculation d the Simple matching
coefficient for lists. Thereisavariant, the Jaccard coefficient, which takes the Simple
coefficient and gives d aweight of 0. This values of the weights would be determined using a
combination d prior knowledge and trial-and-error, and will li kely need to be set for each

software system.

Another improvement would be to have the learner request classfications or labels for files
which will provide the greatest amourt of information. Recdl from Sedion 2,that the learner
has accessto al the examples before training begins. The leaner could use thisinformationto
cdculate prior probabiliti es and dstributions. Nigam and McCallum suggest an approach that

uses Expedation Maximizaion (EM) and Query-by-Committee(QBC). [7] A 20% training set



22

that is chosen by the learner with knowledge of its internal state would likely be more useful than

a20% training set chosen randamly or by a person

Currently the leaners do nd require any particular knowledge of the software system to learn
the dusters. Whilethisisastrength, their performance may be improved by adding domain
knowledge. For example, if it is known that fil es that use aparticular prefix in their name dl
belong to the same subsystem, it would be useful for the leaner to have accessto rules sich as
these. There aetwo ways for such rulesto be used. They could be encoded into each case by
adding fedures. Alternatively, arule based learner could be used and combined with the ones
used in this present study. Learners could be cmbined using stacked generalization. Since
there are three types of information avail able, mnemonic, structural, and rule-based, a diff erent

learner could be trained onead type of information, and the results combined.

6 References

[1] N. Anquetil and T. Lethbridge, “Fil e Clustering Using Naming Conventions for Legacy
Systems,” presented at CASCON'97, Toronto, Canada, 1997.

[2] M. Armstrong and C. Trudeau, “ Evaluating Architedural Extradors,” presented at
Working Conference on Reverse Engineaing, Hondulu, HI, 1998.

[3] I. T. Bowman and R. C. Holt, “Linux as a Case Study: Its Extraded Software
Architedure,” presented at Twenty-first International Conference on Software

Engineering, Los Angeles, CA, 1999.



[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11

23

S. Mancoridis, B. S. Mitchell, C. Rorres, Y. Chen, and E. R. Gansner, “Using Automatic
Clustering to Produce High-Level System Organizations of Source Code,” presented at
International Workshop onProgram Comprehension, Ischia, Italy, 1998.

E. Merlo, I. McAdam, andR. D. Mori, “Source Code Informal Information Analysis
Using Conredionist Models,” presented at International Joint Conference on Artificial
Intelligence, Chambery, France, 1993.

T. M. Mitchell, Machine Learning. Boston, MA: WCB/McGraw-Hill, 1997.

K. Nigam and A. McCallum, “Poal-Based Active Leaning for Text Clasgficaion,’
presented at Conference on Automated Learning and Discovery (CONALD), 1998.

R. W. Schwanke and S. J. Hanson, “Using Neural Networks to Moduarli ze Software,”
Machine Learning, vadl. 15, pp. 137168, 1994.

V. Tzerpos, “ Software Botryology: Automatic Clustering of Software Systems,”
University of Toronto, Toronto, Depth paper March 20, 1998.

T. A. Wiggerts, “Using Clustering Algorithms in Legacy System Remoduarization,’
presented at Working Conference on Reverse Engineering, Amsterdam, The Netherlands,
1997.

D. R. Wilsonand T. R. Martinez, “Improved Heterogeneous Distance Functions,”

Journal of Artificial Intelligence Research, vd. 6, pp. 134, 1997.



Appendices: Source Code for Naive Bayes and Neaest Neighbou

24



