
Applying Machine Learning to Software Clustering

Susan Elli ott Sim
901270630
CSC 2541F

Prof. G. Karakoulas

1

1 Introduction

Several branches of software engineering, such as reverse engineering, and software architecture,

need to recover a design level view of a software system using the program code as the primary

information source. There are many ways of representing such a decomposition pictorially, but

typically a high-level view of a system usually consists of boxes representing components and

edges depicting relations between these components. A component can be a source file, or a set

of source files. Figure 1 is the decomposition of a small regular expression utili ty. The system

itself is represented by the level-0 node, “ regex” . There are two boxes at level-1, each

corresponding to a subsystem. The leaf nodes correspond to the files in the system. Note that in

general, the leaf nodes do not all occur at the same level.

Table 1: System Decomposition

regex

resolver

parser.c search.c

stdClib

stdlib.h

2

Obtaining a high-level view automatically is more important in large systems, such as those with

hundreds of thousands or milli ons of lines of source code. In many cases, the software is has

been around for a long time, has changed significantly since it was first implemented, what littl e

documentation that exists is out of date, and the original designers are no longer available for

consultation. As a result, the program code itself is the only reliable and complete source of

information about the system. Furthermore, it is extremely time consuming for these

decompositions to be created manually. To recover these high-level views, the source code is

analyzed using fact extractors. These facts are normally variable use and function call relations

between files. Facts are in turn analyzed to cluster the source files into subsystems. This

clustering represents a hierarchical decomposition of the software system into components.1

A great deal of research has been done on developing automatic software clustering algorithms.

This work has drawn on fields such as graph theory, mathematical concept analysis, data mining,

and microchip design and layout. These algorithms tend to rely on structural information found

in the code itself. For example, variable uses and function calls are treated as relations between

different files within a software system. Mnemonics, code and data binding can also be used in

clustering. Algorithms use measures of cohesion, coupling, complexity, and interface size to

construct and evaluate decompositions. Wiggerts [10] and Tzerpos [9] provide good surveys of

clustering techniques.

1
 See http://www.cs.toronto.edu/~vtzer/papers/hybrid.ps and

http://plg.uwaterloo.ca:80/~itbowman/papers/linuxcase.html for more information on the process used by our the

Holt research group to recover the design of a system.

3

Machine learning algorithms are among those that have been applied to the problem of creating

clusters. Merlo, McAdam, and De Mori [5] have used artificial neural networks (ANNs) to

recognize clusters. By using comments and identifier names in source code as inputs, the

problem become very similar to attributing articles to newsgroups. Greater success was met by

Schwanke and Hanson [8] who trained ANNs to group together similar (according to distance

measure) files into clusters. Mancoridis et al. [4] used traditional hill -climbing and genetic

algorithms to create clusters with promising results.

These tools are still experimental and have met with varying degrees of success. There is no

general-purpose clustering algorithm that will work with any system. Each clustering algorithm

works well with a particular programming paradigm or the architectural style of the system.

These tools function best as an aid to a human constructing a clustering. In their current state,

they are not be used to cluster a large system independently. As with many other knowledge-

intensive tasks, there is no good substitute for a person with a great deal of knowledge of the

software system.

Although, machine learning has been applied to clustering as an unsupervised learning problem,

it has not yet been attempted as a supervised learning problem. With this reformulation, a

learner would be asked to learn a classification, i.e. the decomposition, from a number of

examples. The goal of in this task is to reduce the amount of human input required, rather than

eliminate it entirely. The time required for such a task can be considerable, when a software

system has on the order of 500 000 lines of code in 1000 files. It would save a great deal of

effort if someone were only required to categorize a subset of these files.

4

There are a number of advantages of taking this approach. One, the problem takes on the

structure of a classic machine learning problem: learning a concept inductively and generalizing

this knowledge to other examples. Two, this approach fits with ones currently in use in reverse

engineering. Human experts are usually consulted extensively when creating a clustering. With

machine learning, the number of labels required can be reduced. Three, the programmers who

use these decompositions are more likely to trust them if they were involved in the creating

them.

This paper reports on some experiments undertaken using two learners, Naïve Bayes and Nearest

Neighbour, on three software systems, the C488 compiler used in CSC 488 undergraduate

course, the Linux Operating System Kernel, and an optimizing back-end from IBM. The best

results were found with the Nearest Neighbour learner on the Linux kernel and IBM system, with

accuracy rates of 96.0% and 93.9% respectively. Further experiments were conducted to

evaluate the performance of this learners in greater detail .

2 Software Clustering as a Supervised Machine Learning Problem

As mentioned in the previous section, the goal of applying machine learning to the software

clustering is to reduce the effort required from domain experts to recover the high-level design of

software system. This can be accomplished by training a learner on a set of examples and have

the learner to generalize that learning to other cases. The examples are the files in the system.

The concept to be learned is the decomposition of the software system, which means the

5

classification is the subsystem containing the example. So, given a file we would like the learner

to tell us what subsystem it belongs in.

Clustering presents a number of unusual challenges as a supervised machine learning problem.

These characteristics need to be taken into consideration when designing a learning system.

• The universe of cases is available and requires classification.

Unlike typical machine learning problems all of the instances that need to be recognized are

available to the learner. As a result, probabiliti es and distributions can be calculated over true

values, rather sample estimates. Furthermore, all of these instances are available at the start of

learning.

• The cost of obtaining labels is high, relative to obtaining values and features.

Labels need to be generated by a domain expert. In contrast, adding features and values can be

done by using analysis programs and scripts. Although, some features and values also need to be

generated by hand, they may not be necessary for successful learning.

• The clustering is hierarchical.

As ill ustrated in Figure 1, the decomposition of a system is hierarchical. For example, the file

parser.c belongs in both the resolver subsystem and the regex subsystem. Consequently, a

completely learned concept would need to take this structure into consideration.

6

• Some classifications and features can be sparse.

At the lower levels of the decomposition tree, a subsystem may contain a small number of f iles.

As a result, the number of examples for a given classification can be relatively small . Similarly,

some of the nominal features will have a large number of distinct values, each occurring a

relatively small number of times. The features to be used will be discussed in the next section.

• The cost of being wrong is greater than the cost of faili ng to provide a classification.

When the learner provides a classification, it should do so with a relatively high degree of

certainty. It is more difficult to detect that a file is in the wrong cluster and correct it, than it is to

provide a label for a file when prompted by the learner.

For the purposes of this project, a simpli fying assumption will be made: the learner need only

provide the level-1 subsystem as a classification for a file. This decision was made for two

reasons. Once this top level categorization has been made, the lower level ones can be

performed recursively. Furthermore, these subsystems have a large number of instances within

them, thus improving the likelihood of a correct classification.

2.1 Software Systems

The Holt research group has analyzed the architecture of a number of software systems. Three

software systems were used in the experiments. We have had fair amount of experience with

these systems and their decompositions are well understood. As a result, there is there are both

structural and mnemonic facts can easily be converted into features for learners. These systems

7

present a broad spectrum of structural and mnemonic characteristics, and will serve to test the

performance of the learners under different conditions.

2.1.1 C488 Compiler

The C488 compiler is a toy program written in C and used in the CSC 488 undergraduate course

in compilers. There are 37 files in the system and 11 level-1 subsystems. The distribution of

these files are given in the table below.

Subsystem Number of Files Percentage of Files
stdCLib.ss
parser.ss
codegen.ss
semantics.ss
machine.ss
shared.ss
scanner.ss
symbol.ss
main.ss

11
6
4
4
3
3
3
2
1

29.72
16.22
10.81
10.81
8.11
8.11
8.11
5.41
2.70

Table 2 : Distr ibution of Files in C488

The Standard C Library subsystem has the largest number of f iles, meaning of the learner simply

guessed this answer, it would be correct about 30% of the time. It should be noted that the files

in this subsystem are easily recognizable both structurally and mnemonically. Structurally,

library files are distinct in that they are used by many files, yet they do not use any files

themselves. Mnemonically, they are distinct in that they are not found in the same directory as

files in any of the other subsystems. Hence, the directory structure of the C488 compiler is

significant, as well as some of the names of the files. This system also has a very flat

8

containment hierarchy, all the classes are located in level-1 of the decomposition and all the files

are on level-2.

Because the C488 system is small , it is useful for experimenting with new ideas. In contrast, the

Linux Kernel and the IBM Back End are more typical of industrial software with significant

functionali ty and a large user base.

2.1.2 Linux Operating System Kernel

The Linux Operating System Kernel was developed using the Open Source Software model.

The Holt group and a software architecture graduate course at the University of Waterloo has

spent a great deal of time studying this system. [2, 3] Its containment tree is quite full and

complex. The Kernel is written primarily in C. The directory structure provides valuable

information about the clustering, however, in some cases it can be misleading because all of the

header files are placed in the same directory.

Subsystem Number of Files Percentage of Files
fs.ss
net.ss
lib.ss
sched.ss
mm.ss
ORPHAN.ss
ipc.ss
init.ss

511
247
102
50
30
22
14
8

51.93
25.10
10.37
5.08
3.05
2.24
3.66
0.81

Table 3 : Distr ibution of Files in the L inux Kernel

9

There are 984 files and 8 categories. The largest level-1 subsystem is fs.ss, the file system

subsystem, as it contains all the code for actual and virtual device drivers and includes almost

52% of the files. The next largest is net.ss, which contains the source code network protocols

and connections.

2.1.3 IBM Compiler Back End

The IBM Compiler Back End is an important component in many significant IBM compiler

products. It is written in PL/IX, an IBM PL/I variant, and is maintained by a team at the Toronto

Lab. There are 1016 files in 4 level-1 categories. In this system, all the files are kept under

configuration management, but essentially in a single directory. The different subsystems are

denoted by prefixes and suff ixes in the filename.

Subsystem Number of Files Percentage of Files
optimizer.ss
assembler.ss
allocator.ss
assembler.ss

381
299
268
68

37.50
29.43
26.38
6.69

Table 4 : Distr ibution of Files in the IBM System

Within each of these level-1 subsystems, there are about a hundred smaller ones. The most

frequently occurring subsystems in the Back End have about 5 files in them.

3 Learners and Representations

Based on previous experience and a survey of the clustering literature, both structural and

mnemonic information were selected as inputs to the learners. The mnemonic information used

10

were the directory path of the file, and substrings from the filename. Substrings were chosen

because filenames themselves tend to be unique. Furthermore, substrings can capture the

naming conventions used in the software system. Anquetil and Lethbridge found in their study

that better clustering results were obtained when overlapping substrings of length 3 were used.[1]

To minimize the amount of spurious information provided to the learner, the first three

characters and the last three characters of the filename were selected as features.

Many kinds of structural information, i.e. relations between files, can be extracted from a

software system. The three most general ones are: variable uses, function calls, and

implementation of declarations. A variable-use between two files occurs if f ile X uses a variable

or variable type defined in file Y. A function-call between two files occurs if f ile X calls a

function defined in file Y. Both of these relations can be established during pre-processing,

compilation, or linking of a program. An implement-by relation occurs if f ile X implements a

function declared in file Y. Normally, in C, file Y is a .h file and X is a .c file. The diff iculty in

representing this information to a learner is that a file can have an arbitrary number of relations

to other files. Furthermore, it can have more than one type of relation to a particular file. How

this diff iculty is resolved will depend on the learner.

In summary, features in the cases consisted of: path name, substrings from the file name,

variable-use relations, function-call relations, and implement-by relations.

11

3.1 Naïve Bayes

The Naïve Bayes learner essentially asks the question, “Given data seen during training, what is

the most likely classification for this example?” This classification is called the maximum a

posteriori hypothesis. It builds up this hypothesis by calculating the distribution of the values of

features relative to their classifications. The NewsWeeder version of the Naïve Bayes classifier

was selected because it allows variable length input examples.[6, section 6.10] As a result

structural information can be easily represented to this learner.

A relation was represented by using a prefix to indicate its type, followed by the fully quali fied

name of the file. For example, if f ile X used a variable from file Y, it would be represented to

the learner as “usevar-/path-of-Y/Y” . Including the path ensures that every distinct file has a

unique string associated with it. A similar convention was used with the function call and

implement relations.

Two different representations were used with the Naïve Bayes learner. The first one treated the

path name a single string. The second separated the path name into subdirectories names.

3.2 Nearest Neighbou r

Nearest Neighbour is an instance-based learner. Rather than build a model of the hypothesis

space, it stores all the training examples and calculates the answer when presented with test

example. The Nearest Neighbour learner uses a distance function to find the training example

that is most similar to the test example, and extrapolates the classification. Example that are

similar have small distances between them.

12

Two different distance functions were used: HEOM and HVDM.[11] Although both functions

are able to handle both nominal (categories) and linear discrete (numeric) data types, the

examples contained only the former. As a result these functions will only be discussed in terms

of how they handle nominal data. The Heterogeneous Euclidean-Overlap Metric (HOEM) looks

at whether the values of a feature overlap. It looks at each feature, if they are the same in both

examples the metric gives a score of 0, otherwise it is given a score of 1. The Heterogeneous

Value Distance Metric (HVDM) considers two values to be closer if they have a larger number

of classifications in common. For each feature, it outputs a number between 0 and 1,

representing the proportion of the time the values in the two examples have the same

classification.

One important characteristic of Nearest Neighbour is both examples need to have the same

number of features. This constraint was resolved by making each relation type a single feature.

The values for these features was a list of fully quali fied file names. The distance functions

needed to be modified to handle a “ li st” data type. A distance metric is suggested by

Wiggerts.[10] Every element in the two lists should be categorized according to the matrix

below.

List j
present absent

List I present a b
absent c d

13

The Simple matching coeff icient is:
dcba

da

+++
+

, which gives a number between 0 and 1. The

form of this coefficient is consistent with the other components of the heterogeneous distance

functions and can simply be added to the distance calculation.

4 Results

Two series of experiments were conducted with the learners. In the first series, the four versions

of the learners were evaluated using a cross-validation method on the three software systems. In

the second series, considers the effect of reducing the size of the training sets on the accuracy of

the Nearest Neighbour learner with the Linux Kernel and IBM software. In general, the learners

performed surprisingly well .

4.1 Experiment 1: Performance Under Cross-Validation

A 10-fold cross-validation was used with Linux and the IBM Back End. A 5-fold cross

validation was used with theC488 system because there is a much smaller number of examples

available. These results are summarized Table 5.

With C488, there were 30 cases in the training set and 7 cases in the test set and the best

accuracy rate was obtained with the Naïve Bayes learner using the second representation in

which the path was separated into subdirectories. This learner was able to classify 91.4% of the

test cases correctly, which is considerably better than guessing the largest subsystem, stdCLib.ss,

which contains 29.72% of the cases.

14

For Linux, there were 886 training cases and 98 test cases. The best learner with this system was

Nearest Neighbour using HOEM, which had a success rate of 96%. The largest subsystem in

Linux, accounts for almost 52% of the cases.

The best learner for the IBM Back End was also Nearest Neighbour using HVDM. There were

914 training cases and 102 test cases, which produced an accuracy rate of 93.9%. Even though

there were fewer classes in this system than Linux, its largest subsystem only accounted for

37.5% of the files.

Learner
Naïve Bayes 1 Naïve Bayes 2 NN – HEOM NN – HVDM

C488 80.0% 91.4% 88.6% 88.6%
Linux 87.9% 86.6% 96.0% 95.9%SW

S
ys

te
m

IBM 89.2% 89.0% 93.9% 93.8%

Table 5 : Summary of Accuracy Rates

For each software system, the confusion matrix for its best learner was examined. Each cell i n

the confusion matrix contains two numbers. The top one is the number of cases that fell i nto the

group. The second one is the average value of the metric used by the learner to select the

classification. For Naïve Bayes 2, the metric is the normalized probabili ty of the guessed

classification. For Nearest Neighbour, the metric is the distance to the most similar training case.

These metrics were included to determine if any a threshold could be set for classification

confidence.

The confusion matrix for C488 indicates the learner classified 3 files incorrectly. There does not

appear to be any systematic errors. In two of the three cases, the learner guessed the semantics.ss

15

subsystem. One of these misclassifications was the single file from the main.ss subsystem. This

error is not surprising as the learner had not seen an example from that classification before.

There also does not seem to be a reasonable threshold for the p-value that would not sacrifice

performance. Many of the correct classifications are made with very small p-values and the p-

values of misclassifications are not consistently smaller.

count
p-value Guess By Learner

codege
n.ss

machin
e.ss

main.ss parser.s
s

scanner
.ss

semanti
cs.ss

shared.s
s

stdClib.
ss

symbol.
ss

codege
n.ss

3
0.60

- - - - - - - -

machin
e.ss

- 2
0.75

- - 1
0.85

- - - -

main.ss - - - - - 1
0.38

- - -

parser.s
s

- - - 6
0.71

- - - - -

scanner
.ss

- - - - 3
0.72

- - - -

semanti
cs.ss

- - - - - 3
0.68

- - -

shared.s
s

- - - - - 1
0.25

2
0.42

- -

stdClib.
ss

- - - - - - - 11
0.86

-

A
ct

ua
l C

la
ss

if
ic

at
io

n

symbol.
ss

- - - - - - - - 2
0.40

Table 6: Confusion Matr ix for Naïve Bayes 2 on C488

In the confusion matrix for Linux, there are two patterns. Files from the lib.ss and fs.ss

subsystems are easily mistaken for each other. These two cells, shaded in gray, have the largest

counts of any of the misclassification cells. The other pattern is a difference between the average

distance of correctly and incorrectly classified cases. The average distance of the correctly

16

classified cells is no more than 3.24. Except for one cell , the average distance of the incorrectly

classified cells is no less than 3.97.2 Although this gap is suggestive, an examination of the raw

scores indicates that there are still more correctly classified cases than incorrectly classified ones

above this gap. Therefore, it would not be worthwhile to set the threshold here. On the other

hand, the value 5 could be used an extremely conservative threshold as there are no correctly

classified instances with a distance greater than this number.

count
distance Guess by Learner

ORPHA
NS.ss

fs.ss init.ss ipc.ss lib.ss mm.ss net.ss sched.ss

ORPHA
NS.ss

17
3.23

1
4.97

- - 1
4.00

- - -

fs.ss 1
2.99

497
3.17

- 1
3.99

6
4.15

1
4.93

2
3.96

-

init.ss 1
5.93

2
5.91

7
3

- - - - -

ipc.ss - 2
3.99

- 12
3.16

- - - -

lib.ss - 5
3.97

1
3.99

- 91
3.09

- 2
3.99

1
4.00

mm.ss - - - - - 29
3.24

- 1
4.00

net.ss 2
3.99

- - - 1
4.97

- 243
3.17

2
4.48

C
or

re
ct

 C
la

ss
if

ic
at

io
n

sched.ss 1
3.99

1
3.97

- 1
3.98

2
3.98

- - 46
3.15

Table 7: Confusion Matr ix for NN-HEOM on L inux

2 During previous clustering attempts, any files that could not be allocated confidently were placed in the

ORPHANS.ss subsystem. Consequently, the file from this subsystem that was classified as belonging to the fs.ss

subsystem with a distance value of 2.99 is likely a correct classification. It is gratifying to find that even these small

experiments were able to improve an existing cluster.

17

For the IBM Back End, files from the optimizer.ss are misclassified more often than ones from

the other three subsystems. These cells are shaded gray. A gap between the average distances of

the correctly and incorrectly classified cells that is similar to the one found with Linux also

occurs. Therefore it is also diff icult to set a useful threshold for this system as well .

count
distance

Guess by Learner

allocator.ss assembler.ss optimizer.ss services.ss
allocator.ss 247

3.13
- 6

3.82
8
3.86

assembler.ss - 66
3.06

1
3.98

2
3.49

optimizer.ss 16
4.08

- 367
3.15

11
3.99

C
or

re
ct

C
la

ss
if

ic
at

io
n

services.ss 4
3.74

2
3.49

7
3.98

279
3.05

Table 8: Confusion Matr ix for NN-HEOM on IBM Back End

Although these results are quite good, the rely on having are large proportion of the files already

labelled. Requiring 90% of 1000 files to be classified before using a machine learner is not a big

improvement over clustering by hand. In the next section, an experiment on the effect of

reducing the size of the training sets is discussed.

4.2 Experiment 2: Effect of Reducing Training Set Sizes

This subsection reports on additional experiments were done with Nearest Neighbour – HEOM

on the Linux and the IBM Back End. The Linux and IBM Back End were used because results

with these software systems are more indicative of legacy systems. Consequently, the Nearest

18

Neighbour learner was also selected, Although the performance of the HOEM distance measure

was only slightly better than HVDM, it runs much faster, so it was selected for further testing.

Four different train/test split sizes were used: 80/20, 60/40, 40/60, and 20/80. For each train/test

split size, five sets were randomly generated. Although procedure results in test sets that are not

independent, it would be diff icult to do otherwise. The results are shown in Figure 2 below.

Figure 2: Accuracy Rates of NN-HEOM

The graph shows that there is a large drop in accuracy when the training size is from 90% to

80%. The accuracy with Linux decreased 17.75 percentage points and with IBM Back End it

decreased 24.05 percentage points. However, the decrease in accuracy in the remaining

Effect of Reduced Training Set Sizes

96.02

78.27 78.27 78.29 76.54 76.26

93.9

69.85
67.83 67.34

65.52
62.61

50

60

70

80

90

100

90/10 80/20 60/40 50/50 40/60 20/80

Train/Test Split

A
cc

u
ra

cy
 (

%
)

Linux IBM

19

reductions are relatively small . Reducing the training size from 80% to 20% only decreases the

accuracy by 2.01 percentage points for Linux and by 7.24 percentage points for IBM Back End.

It is somewhat surprising that the IBM Back End is affected by the reduced training test sizes so

much more than the Linux Kernel. This trend is counterintuitive because IBM Back End has

fewer classifications. One possible explanation is that there are too few classifications. Each

level-1 subsystem actually encompasses many disparate subsystems, which means each class

groups together many files that are dissimilar. Perhaps it would be possible to obtain better

results, if there were more classes with a suff icient number of f iles that are more similar to each

other.

There is a variant of the Nearest Neighbour learner, k-Nearest Neighbour, which, as the name

implies, uses the majority vote of the k nearest neighbours to determine the classification of a

test case. The exact number of neighbours, k, is tuned during training using the leave-one-out

method. This algorithm was not used because the experiments would have taken a prohibitively

long time to complete. However, this learner may perform better with the reduced training sets.

In the next section, other improvements and applications are discussed further.

5 Conclusion

The experiments in this study represent a promising start in considering software clustering as a

supervised machine learning problem. The initial results using the Naïve Bayes and Nearest

Neighbour learners are very encouraging. The decomposition of three software systems used,

C488, Linux Kernel, and IBM Back End, were learned with accuracy rates of 91.4%, 96.0%, and

20

93.9%, respectively. When the size of the training set is reduced from 90% to 80%, there is a

large drop in accuracy, but the decrease from 80% to 20% is very flat. The most significant

contribution of this approach is that it is a general purpose clustering algorithm, something that

has not yet been achieved in software engineering. Given these early successes there are many

applications and improvements that are worth considering.

5.1 Applications

Given that the learner performs best when it has a large number of labelled examples, this

machine learning approach may be useful in some problems related to constructing a clustering.

One such problem is clustering new files that have been added to the system. This incremental

clustering may occur as individual files are added, or it can be done in batches, such as when a

new version of the software is released. The established clustering would be used as the training

cases and the new files would be the test cases. The capabili ty is particularly useful for keeping

a the design level views of the software up-to-date and reducing the necessity of re-extracting the

architecture.

“Kidnapping” is an exercise performed to test a clustering. It involves removing a file from a

subsystem, or kidnapping it, and asking the clustering algorithm to place it in the most

appropriate subsystem.3 This test is usually performed with decompositions created by

algorithms that treat the system as a whole, such as those that graph theoretic concepts.

3 In fact, the machine learning approach could be considered as a large kidnapping experiment in which a fraction of

the files are removed, instead of just one.

21

A different, but related problem, would be suggesting a name for new file within a subsystem.

Naming conventions may be complex, or they may be forgotten over time, or a new programmer

may simply be unaware of them. Putting these rules into a program would be a form of self-

documentation. This tool could be used just before a programmer checks in a new file into the

configuration management system. It would look at the file name and its structural relations to

determine whether the name follows the naming conventions of the system. If the name fails, a

modification could be suggested.

5.2 Future Work

There are many ways that the learners could be improved. A fairly simple modification to

Nearest Neighbour would be to add weights to the different features in the calculation of the

distance function. Weights could even be added to the calculation of the Simple matching

coeff icient for li sts. There is a variant, the Jaccard coefficient, which takes the Simple

coeff icient and gives d a weight of 0. This values of the weights would be determined using a

combination of prior knowledge and trial-and-error, and will li kely need to be set for each

software system.

Another improvement would be to have the learner request classifications or labels for files

which will provide the greatest amount of information. Recall from Section 2, that the learner

has access to all the examples before training begins. The learner could use this information to

calculate prior probabiliti es and distributions. Nigam and McCallum suggest an approach that

uses Expectation Maximization (EM) and Query-by-Committee (QBC). [7] A 20% training set

22

that is chosen by the learner with knowledge of its internal state would likely be more useful than

a 20% training set chosen randomly or by a person

Currently the learners do not require any particular knowledge of the software system to learn

the clusters. While this is a strength, their performance may be improved by adding domain

knowledge. For example, if it is known that files that use a particular prefix in their name all

belong to the same subsystem, it would be useful for the learner to have access to rules such as

these. There are two ways for such rules to be used. They could be encoded into each case by

adding features. Alternatively, a rule based learner could be used and combined with the ones

used in this present study. Learners could be combined using stacked generalization. Since

there are three types of information available, mnemonic, structural, and rule-based, a different

learner could be trained on each type of information, and the results combined.

6 References

[1] N. Anquetil and T. Lethbridge, “File Clustering Using Naming Conventions for Legacy

Systems,” presented at CASCON'97, Toronto, Canada, 1997.

[2] M. Armstrong and C. Trudeau, “Evaluating Architectural Extractors,” presented at

Working Conference on Reverse Engineering, Honolulu, HI, 1998.

[3] I. T. Bowman and R. C. Holt, “Linux as a Case Study: Its Extracted Software

Architecture,” presented at Twenty-first International Conference on Software

Engineering, Los Angeles, CA, 1999.

23

[4] S. Mancoridis, B. S. Mitchell , C. Rorres, Y. Chen, and E. R. Gansner, “Using Automatic

Clustering to Produce High-Level System Organizations of Source Code,” presented at

International Workshop on Program Comprehension, Ischia, Italy, 1998.

[5] E. Merlo, I. McAdam, and R. D. Mori, “Source Code Informal Information Analysis

Using Connectionist Models,” presented at International Joint Conference on Artificial

Intell igence, Chambery, France, 1993.

[6] T. M. Mitchell , Machine Learning. Boston, MA: WCB/McGraw-Hill , 1997.

[7] K. Nigam and A. McCallum, “Pool-Based Active Learning for Text Classification,”

presented at Conference on Automated Learning and Discovery (CONALD), 1998.

[8] R. W. Schwanke and S. J. Hanson, “Using Neural Networks to Modularlize Software,”

Machine Learning, vol. 15, pp. 137-168, 1994.

[9] V. Tzerpos, “Software Botryology: Automatic Clustering of Software Systems,”

University of Toronto, Toronto, Depth paper March 20, 1998.

[10] T. A. Wiggerts, “Using Clustering Algorithms in Legacy System Remodularization,”

presented at Working Conference on Reverse Engineering, Amsterdam, The Netherlands,

1997.

[11] D. R. Wilson and T. R. Martinez, “ Improved Heterogeneous Distance Functions,”

Journal of Artificial Intelligence Research, vol. 6, pp. 1-34, 1997.

24

Appendices: Source Code for Naïve Bayes and Nearest Neighbour

