Proceedings of the Twentieth International Conference on Software Engineering, pp. 361-370, Kyoto, Japan,

19-25 April, 1998.

The Ramp-Up Problem in Software Projects:

A Case Study of How Software Immigrants Naturalize

Susan Elliott Sim
Department of Computer Science
University of Toronto
10 Kings College Rd.
Toronto, Ontario, Canada M5S 3G4
+1-416-978-1685
simsuz(@cs.utoronto.ca

ABSTRACT

Joining a software development team is like moving to a
new country to start employment; the immigrant has a lot
to learn about the job, the local customs, and sometimes a
new language. In an exploratory case study, we
interviewed four software immigrants, in order to
characterize their naturalization process. Seven patterns in
four major categories were found. In this paper, these
patterns are substantiated, and their implications discussed.
The lessons learned from this study can be applied equally
to improving the naturalization process, and to the
formulation of further research questions.

KEYWORDS
empirical study, software maintenance, new employees,
process

1. INTRODUCTION

The title of Brooks’ book, The Mpythical Man-Month,
neatly sums up a software team management concept:
adding personnel to a project actually decreases
productivity in the short term due to the start-up costs of
new team members[3, 4]. Despite this difficulty, it is often
necessary to add new employees to replace personnel or to
grow the team in order to take on additional work.
Studying the ramp-up process for these recruits helps us
identify ways to make this transition easier. The benefits
of making this adjustment more manageable include:
employees who are productive sooner; fewer distractions
for senior team members who act as mentors; and the

Richard C. Holt
Department of Computer Science
University of Waterloo
200 University Ave W.
Waterloo, Ontario, Canada N2L 3G1
+1-519-888-4567 x4671
holt@plg.uwaterloo.ca

flexibility to add new employees as they are needed. Such
improvements are particularly beneficial to a growing team
that expects the arrival of many new hires or to an aging
team backfilling positions that are open due to attrition.

When software maintainers begin work on a project, they
face the daunting task of re-tooling themselves for a new
job. This task usually requires them not only to learn about
the a problem domain and software system, but also to
adapt to the new working environment. In order to become
productive they need to learn:

e programming languages or dialects;
e tools;

e the intricacies of a software system,;
e project jargon;

e development processes;

e coding standards;

e team dynamics—who does what;

e organizational structure; and

e how to obtain resources and supplies.

This is an incomplete list of potential areas in which a new
recruit may have to make adaptations. The specifics will
vary according to the team and the recruit.

New staff members are usually experienced programmers
who already have a rich set of skills and background
knowledge. Despite their personal assets, they often lack
basic knowledge about the specific project. For these
reasons, we call these new team members “software
immigrants”, since their experience is analogous to those

of people who arrive in a new land and need to learn its
language and culture. Software immigrants are often
referred to by other terms such as newcomers, newbies,
recruits, new hires, rookies, and even ‘“fresh blood”.
Novice is an inappropriate term since it implies a lack of
experience. Extending this analogy, the process by which
software immigrants adapt to a new project is called
“naturalization”. Others may call it acclimation, re-tooling,
start-up, ramp-up or bringing someone up to speed.

In too many cases, little preparation has been put into a
software immigrant’s training, beyond assigning them to a
senior developer who acts as a mentor. This person is
expected to help the new recruit become productive by
providing whatever guidance she or he needs. DeMarco
and Lister[4] observe “We all know that a new employee is
quite useless on day one or even worse than useless, since
someone else’s time is required to begin bringing the new
person up to speed.” They go on to estimate that this cost
is about twenty percent of the cost of an employee who
works for two years, more if the project is complex.

While there exists a significant body of work from the
fields of organizational psychology, management studies,
and occupational training on the acclimation of new
employees, this work tends to focus on domains such as
education, medicine, manufacturing, and administration.
Wilson[13] is a detailed study of how registered nurses
responded to the stresses of starting employment at a
hospital. Van Maanen and Schein [14] developed six
bipolar scales to characterize the socialization of new hires.
Practical advice on designing orientation sessions for
recruits is given in Beeler [2]. These papers are but a
minuscule selection from the literature of these areas.
Unfortunately, there has been little work done on new
employees in technology oriented domains, such as
engineering or computing.

Studies have been undertaken in software engineering and
cognitive psychology on working with legacy systems.
There are some publications which give practical advice on
working on undocumented software systems[6, 11] and
anecdotes from practitioners and consultants[3, 4]. The
most significant contribution comes from Berlin [1] who
studied the interaction patterns between mentors and
apprentices at the conversation level and found that
mentoring is a highly effective way to transmit information
about the system. Mentors provide not only answers to
apprentices’ questions, but also explanations of design
rationale. Their conversations tend to be highly interactive
in nature, using techniques such as confirmation and re-
statement to verify that a message has been passed
correctly. While mentoring has its merits, it tends to be a
time inefficient method to train a software immigrant
because it results in a net decrease in team productivity in
the short term. As an antidote, Berlin suggests capturing
the information that mentors convey in documentation or
an intensive course for apprentices.

Since the naturalization process is understood from
different perspectives in a piecemeal fashion, we undertook
a study to characterize the process as a whole, a
perspective that includes orientation, socialization, and the
acquisition of domain knowledge. An exploratory case
study methodology was wused because we were
investigating a relatively uncharted area.[16] This research
design is not used to test hypotheses using constructs
formulated, a priori. Rather, it is used to build a body of
knowledge about an area that is not well understood. An
exploratory case study begins with a rationale and a
direction. Our research rationale was to acquire an
understanding of the naturalization process of immigrants
for the purpose of redressing any shortcomings. The
direction we chose to take to forge this understanding was
to interview a number of software immigrants about their
naturalization experience.

This approach would allow us to consider naturalization in
context and to formulate theories about the process based
on interview data. Another benefit of using this
methodology is that each immigrant examined can be
viewed as a replication of the case study, and as such
contribute to the formulation of analytic generalizations.
These inferences can stand on their own merit, or they can
be used later as the basis for quantitative investigations.
Probabilistic generalizations can not be made using only
the quantitative data from case studies, and, indeed, should
not, since this type of result is reserved for research designs
that either test hypotheses or have adequate information
about the population being studied . Since the logic of
case studies differs significantly from the logic of
experimentation, they use different approaches to preserve
internal and external validity, construct validity, and
reliability [5, 16].

By using a multicase study design, we were able to
characterize the naturalization process and make inferences
about the features observed. In section two, the methods
we used to collect and analyze data are described. In
section three, we detail the seven patterns in four major
areas that we found. The lessons that can be learned from
these patterns by both practitioners and researchers are
discussed in section four.

2. METHOD

A multi-case study was performed with four respondents,
all software immigrants to a single team. By interviewing
subjects, we hoped to identify commonalties and
differences in their experiences, and to infer naturalization
patterns from this comparison. In this study, our goals
were to:

e describe the naturalization process;

identify shortcomings and successes of the process;
and

Experience on
. Team at Time of |
Case Interview Interview Highest Level of | Previous Work Experience
Frequency Educational Attained
S1 Every 3 weeks | 0-4 months Masters in CS (compilers) | 4 co-op work terms
for 4 months
S2 Every 3 weeks | 0-4 months Masters in CS (compilers) 3 years as Windows system
for 4 months programmer
S3 Once 7 months Bachelors in CE 2 years with an optimizing
compiler
S4 Once 8 months (on leave) | Doctorate in CS (artificial | Summer jobs
intelligence)

Table 1: Summary of Respondent Characteristics

e characterize the strategies software immigrants used to
adapt to the new job.

In order to highlight areas that would profit from
modification or improvement, we must identify strengths
and weaknesses in the naturalization process.

The unit of analysis in this study is a single naturalization.
The rationale for this choice is that each participant could
be studied more than once, as they naturalized to a
different environment. Data was collected using structure
interviews, and was analyzed using qualitative data
analysis methods. Variables of interest were identified
using a pattern matching technique. A data matrix was
populated with these variables to articulate cross-case
patterns.[9] In the following three subsections, we will
describe, in order, the development team, the data
collection procedure, and the data analysis techniques that
were used.

2.1 Research Setting

We studied software immigrants to a development team
maintaining a compiler component system at a very large
computer company. The software is approximately fifteen
years old and had has twelve major releases. There are
approximately 250 000 lines of source code in 1000 files.
Developers used workstations running the AIX operating
system (an IBM UNIX variant). Senior developers on this
project estimate that it takes six to twelve months for a new
team member to become fully productive. Through most
of its history the development team consisted of
approximately ten people, but in recent years its size has
nearly doubled. The growth of the team provided us with

an opportunity to study a relatively large number of
software immigrants.

2.2 Data Collection

Interviews were conducted from February 1997 to June
1997 with four respondents. Data collection began with S1
and S2 shortly after they joined the company. As the study
proceeded, S3 and S4 were identified as relatively new
software immigrants, and were willing to participate in the
study. Consequently, using “controlled opportunism”[5],
they were interviewed using a sub-set of the questions used
with the first two respondents. At the time of interview, S4
was on an educational leave of absence. The background
of each respondent is summarized in Table 1.

Structured interviews were used with all subjects, in which
standard questions were asked and the respondents were
allowed to elaborate as appropriate to their situation. All
interviews were conducted by a single investigator and
were tape recorded. Prior to being interviewed,
respondents signed consent forms. All raw data is kept
confidential, and the respondents anonymity is maintained.

Three sets of questions were used: the first set of questions
inquired about the respondent’s background, both
educational and industrial; questions from the second set
probed the respondent’s growing understanding of the
software system and naturalization process in progress; and
the last set explored the respondent’s naturalization
experience in retrospect. Question set one was used during
the first interview with a respondent, and set three during
the last. With S3 and S4, these occasions coincided.
Question set two was used only with S1 and S2 as we

Cases Question Set 1 Used During:

Question Set 2 Used During:

Question Set 3 Used During:

S1,S2 First interview

Interview every 3 weeks

Last interview

S3, S4 Only interview

No Only interview

Table 2: Summary of Question Set Usage

followed them through their naturalization. The usage of
these question sets with the respondents is summarized in
Table 2. These question sets can be found in Appendix A.

At the end of the four months, we concluded our interviews
with S1 and S2, because we felt that the immigrants had
reached a plateau in their naturalization. This is not to say
that they were completely familiar with the software
system, but rather they had settled into a stable work
routine and would be making a steady transition to being
fully productive team members.

2.3 Data Analysis

Since a single investigator conducted all of the interviews,
we were able to formulate hypotheses throughout the study,
using a method of constant comparison[5]. After data
collection concluded, notes and recordings made during the
interviews were reviewed entirely. During this stage,
seventeen variables of interest in five major areas of
inquiry were identified using cross-case comparisons. It is
important to note that the variables used were not scalar,
but quantitative. A “value” assigned to a variable could be
numerical, but textual descriptions and lists are also valid.
The variables are listed in Appendix B, and the areas are:

e respondent characteristics,

e orientation and training,

e difficulties outside of learning about the system,
e timing and type of tasks given, and

e approaches used to understand the system.

Data from the interviews were used to assign values to
these variables and this information was put into a data
matrix. A pattern matching technique was used, in which
several pieces of information from one or more cases are
related to a theoretical proposition. Seven propositions, or
“patterns” in were found. Some of the propositions were
grouped together because their causes or effects were
tightly linked. These patterns will be presented in the next
section[5, 9, 16].

3. RESULTS

In this section, the findings of the study are discussed. It
begins with a narrative overview of the naturalization
process, then it continues with analytic results. Counts of
some variables will be presented, where relevant, using the
following notation: (A, B, C, D) units. This tuple indicates
a count of A units for S1, B units for S2, and so on. There
are sufficiently few cases that it is possible to present this
data, and this notation allows us to do so compactly.

When software immigrants began work, they were each
assigned a mentor. Only S3 received a three-hour formal
orientation session from the human resource department;
the remainder received informal orientations from their
manager. Some respondents attended external formal
courses, but they did not find them relevant to their work;

respondents attended (0, 1, 0, 2) courses. Mentors acted as
primary sources of information to software immigrants, and
they passed on a wide range of information to respondents.
This information tended to be practical low-level
information, such as file naming conventions, system set-
up, and pointers on tool usage.

The first two weeks were focused on administrative issues,
that is, providing the software immigrant with the
equipment, tools, and user identifications necessary to do
his or her job. Half the respondents received their first task
after two weeks, the other half after three. These first tasks
tended to be isolated modifications to the software, or
open-ended investigations with no predetermined goal.
After four months, five in the case of S4, respondents were
working independently of their mentors on tasks that had
gradually increased in scope. Although respondents did
not yet have a thorough understanding of the system, they
were on their way to acquiring one. In the words of S3,
“I’'m fairly comfortable now. I can read the code and
understand it. ...I know where to look for problems, and
that’s half the battle and I know who to consult, when I
don’t.”

In the remainder of this section, patterns in the
naturalization process will be discussed. The pattern is
substantiated with details from the cases, then its
implications are discussed, and, where possible, related to
the literature.

3.1 Mentoring

e Pattern 1: Mentoring is an effective, though
inefficient, way to teach immigrants about the software
system.

e Pattern 2: Lack of documentation forces software
immigrants to rely on mentors or consultants.

3.1.1 Evidence

When respondents joined the team, each was assigned a
mentor who helped them with all aspects of naturalization.
This assistance ranged from providing basic information
about the software system, to workstation system
administration, to steering them around food choices in the
lab’s cafeteria. Initially, mentors spent many hours a day
with their charge. This time may have been lumped
together into a long lecture or it may have been spread out
over two or three question and answer sessions in a day.
This frequency was maintained for about two weeks and
then tapered off quickly. The intensity and duration of the
initial contact period was less for subjects whose mentors
who were working on time-critical tasks. Although contact
with their mentors decreased over time, it never stopped
completely as maintainers often consult experts about
esoteric parts of the software system. By four months, S1°s
interaction with his mentor consisted of a short question
every two days or so. In contrast, S4 had a steady ongoing

contact with her mentor because they worked closely
together on the same problems.

There is a paucity of documentation for this system; what
information does exist resides primarily in the minds of
those developers who designed the system architecture and
continue to maintain it. S3 stated, “Most people operate
under the assumption that there are no documents, so you
shouldn’t try asking for one.” This shortage means that for
immigrants, their mentors become their primary source of
information about the software system.

Beyond passing on knowledge, mentoring fills a social
function as well. Mentors act as a means for integrating an
immigrant into the social life of the software team, by
providing them with an introductions at the lunch table and
during coffee breaks. Newcomers need to become
conscious of their fellow team members and their areas of
responsibility, so that they can turn to the appropriate
consultant when necessary.

3.1.2 Implications

A major drawback of mentoring is that it is very time
consuming for the senior developer, a phenomenon
discussed in the introduction of this paper. Despite the
inefficiencies of mentoring, it may not be possible, or even
desirable, to eliminate the system. Mentors function as
more than mere repositories of data about the legacy
system; they provide extends into the administrative and
social domains as well. In light of the lack of
documentation, it is important to identify who the experts
are to new team members.

If changes are to be made to the naturalization process, the
mentoring system should be complemented, but not
replaced. The experiences of software immigrants in this
study were consistent with those in Berlin[1]. Like the
apprentices in that study, these software immigrants had
interactions with their mentors were highly interactive, in
which they received timely feedback about their
comprehension of the software. Efforts should be made to
reduce the time commitment required by mentors, so they
can still maintain their productivity, while providing
adequate guidance to a software immigrant. As a result, an
immigrant who has a mentor with a busy schedule, can still
receive the necessary training.

3.2 Difficulties Outside of the Software System

e Pattern 3: Administrative and environmental issues
were a major source of frustration during
naturalization.

3.2.1 Evidence

In every case, almost the entire first two weeks were spent
dealing with administrative and environmental issues.
These difficulties included setting up their computers,
configuring software, acquiring access to systems or tools.
In many instances, there was overhead involved in
performing simple tasks. Respondents had to maintain an

average of eight identifications, accounts or registrations;
to do their job; they reported having (11, 11, 5, 5)
identifications.

Only S3 had a fully functioning workstation on the first day
of work. Respondents had to wait (3, 6, 0, 1) weeks, an
average of two and a half weeks, for fully functioning
machines. S4 had a computer on the first day, but had to
spend a week configuring it to be usable. S2 did not even
have a workstation on his desk for the first three weeks, but
then he needed another three weeks to set it up to meet his
needs.

Sometimes these problems are interrelated, as recalled by
S1, “I tried to [set up backups for my machine], but I got
stalled because I had to register my machine. So when that
comes back, I’ll continue...” Although his computer was
basically operational after three weeks, S1 had to deal with
system administration problems throughout the study.

Items ranging from user identifications to light bulbs had to
be requested. Some requests could be serviced quickly but
most requests required an overnight wait. Once, when S2
returned to his office with a binder, his office mate asked
him, “Where can I apply to get a binder?” Ironically,
binders, unlike so many other supplies, did not need to be
requested.

Although respondents worked hard to comprehend a large
under-documented system, at no time did they describe the
task as frustrating. In contrast, frustration was a word that
every respondent used with respect to at least one system
administration task. This difficulty could be attributed to
respondents’ lack of experience performing system
administration, or the feeling that machine problems were
keeping them from their real jobs—programming.
Regardless of the causes of this sentiment, it is a problem
common to software immigrants during naturalization.
Later discussions with the project manager indicated that
difficulties with the lack of computing resources were
experienced by all members of the team.

3.2.2 Implications

The problems with administrative and environmental
issues, particularly the computing resource shortage, would
be worth addressing for this team, since benefits would be
felt not only by software immigrants but also by veterans.
Some real productivity gains could be made here if
developers were not distracted by administrative issues. It
is not very efficient for every team member has to invest
the time to learn how perform system administration tasks,
an activity not directly related to writing code. Many of
the processes could be streamlined or combined; for
example, user identifications for a set of tools could be
linked so that access to them need to be requested
separately.

3.3 First Assignments

e Pattern 4: Initial tasks were open-ended problems or
simple bug repairs, that were begun no earlier than two
weeks after a software immigrant’s arrival.

e Pattern 5: Mentors tend to pass on low-level
information about the software system.

3.3.1 Evidence

Shortly after respondents had functioning machines, they
received their first assigned task, which occurred at (3, 4,
2, 2) weeks. These initial assignments tended to be limited
in scope and complexity, and did not have a fixed deadline.
Three of the respondents were given open-ended problems
to explore, for the purpose of improving the compiler’s
performance. S3 was given a bug repair that had been
screened for excessive complexity by his mentor. S4’s first
assignment was to add a feature to a subsystem, and she
recalls, “It was a small enough project and I didn’t have to
know anything else about the rest of the code. So it was a
matter of modifying, maybe three or four files... It didn’t
seem very challenging, but looking back, I appreciate the
fact that they gave me something so isolated. It allowed
me to gain familiarity with at least those four files.”

Three of the four mentors concentrated on conveying low-
level information to immigrants. These lessons tended to
concentrate on the subsystem that an immigrant would be
working on and as a result tended to focus on knowledge
that was immediately useful. Only S1’s mentor began with
high-level system design concepts, but even these lessons
were limited to a single subsystem. By concentrating on
pragmatics, software immigrants were able to start working
with source code quickly.

3.3.2 Implications

Clearly, patterns four and five are closely related: Given
the types of information conveyed by mentors, small, non-
critical tasks are appropriate first assignments for software
immigrants, and vice versa. Even in the absence of
pressure from the team, respondents tended to push
themselves contribute. S1 observed this in himself, saying,
“Sometimes it’s me trying to do several things at the same
time: trying to set up my machine and ...be a little bit
productive for the team.” In such situations, the additional
demands of a task with a tight deadline is unnecessary.
The relationship between these two patterns can be viewed
as symbiotic. Any modifications to one pattern, must be
reflected in the other. Clearly, the initial task needs to
provide an opportunity for software immigrants to use the
lessons learned.

3.4 Predictors of Job Fit

e Pattern 6: Programmers who prefer to use bottom-up
comprehension approaches have a smoother
naturalization than those who don’t.

e Pattern 7: There needs to be a minimal interest match
between immigrants and the software system.

3.4.1 Evidence

Cases S1-3 are still working on the software team, but case
S4 is on a temporary educational leave. This provides an
opportunity to examine the differences between a team
member who may pursue other interests, and ones who are
satisfied working as software maintainers on a compiler.
The two key differences were S4’s inclination to take a
top-down approach to comprehending the software system,
and her lack of previous experience with compilers
coupled with her depth of background and interest in
another field.

Immigrants were trained up from simple tasks to more
complex ones. Consequently, software immigrants
acquired their understanding of the software, one
subsystem at a time, in other words, in a bottom-up
fashion. S1-3 took this approach when they tackled a
problem by reading the source code or by profiling the
subsystem. In contrast, S4 preferred to take a top-down
approach, although there were no real tools or
documentation that supported this line of inquiry. She
said, “The system was humungous and I didn’t know what
comes first or anything. So the only way to do it is to
dump everything [execution traces]. I didn’t do that from
the beginning, but I found it really frustrating because I
wouldn’t know what was actually being done. You need to
know... or you don’t know where to start.”

S4’s background also differed from those of the other
respondents. During their Masters degrees, S1-2 both
wrote theses in the area of compilers. S3 had previous
experience working on a highly similar software system.
S4 had completed a Doctorate in artificial intelligence.
She indicated this was another reason she did not find her
work compelling, “I had spent four years working on my
Ph.D. and I got hired into an area that had nothing to do
with my Ph.D. 1 just never found it fascinating. They
knew that when they hired me. ...They just wanted some
one they felt could pick things up quickly.”

At this point, it must be stated that S4 was not an
unsuccessful software maintainer. Although she is on
leave, she has not given any indication that she will not
return. When describing her work, she included as many
low-level details of the software system as S1-3. She was
able to handle tasks that were as complex as the ones given
to other respondents. Furthermore, throughout the
interview she emphasized that despite the interest
mismatch she had congenial relations with the development
team. She stated, “The actual group was amazing. I think
I was very fortunate to be in that group,” and “ ...it was a
positive experience. I don’t regret working there.”

3.4.2 Implications

Any improvement in job fit is, indirectly, an improvement
on the naturalization process, since reducing a possible
turnover rate decreases the time spent in this area by the
team as a whole. When hiring new employees to be

software maintainers on a large project, managers should
look for at least a minimal interest match and a preference
to work with system details in a bottom-up fashion. This is
not to say that immigrants without these characteristics are
certain to fail or leave, but they will face greater frustration
in their early months on the job, a time that has its own
share of difficulties. A newcomer with a strong interest
match is more likely to buoyed by a high level of initial
excitement about the position, a feeling that does much to
mitigate many of the frustrations he or she may face.
Indicators of an interest match could be experience in a
related field, or it may be as simple as an expressed
preference. A scheme to give employees choices in the
work they undertake is proposed in DeMarco and Lister[4].

4. APPLICATION OF THE PATTERNS

Looking at the patterns across the cases, one of the
conclusions we drew was that software immigrants could
benefit from an intensive course on that focused on high-
level system details. In patterns one we found that
mentoring was very time consuming, and that this problem
was exacerbated by the lack of documentation as found in
pattern two. These two problems could be ameliorated in
the course by presenting core information to all newcomers
and thereby reduce their reliance on mentors. To alleviate
some of the difficulties found in pattern three, immigrants
could attend this course outside of the department in a
location where lack of resources is not an issue. Such a
course could not replace mentoring, since classroom
lectures tend to isolate immigrants from the rest of the
team. As software maintainers, they will eventually need
to consult fellow experts when trying to solve problems.
Therefore, it would not be desirable or even possible to
eliminate mentor or consultant relationships entirely.

In June, we undertook a pilot study in which we designed
such a course and administered it to three software
immigrants with six weeks or less experience. Three
senior developers were interviewed to help select
curriculum for this course. They were asked “What does a
newcomer to the team need to know in order to become
productive?” Two of the three senior developers consulted
felt that it was important for immigrants to acquire an
understanding of the system to work effectively. Of these,
one of them emphasized the importance of conveying
design rationale to immigrants. The third developer
consulted was primarily concerned with the practical
knowledge required. Since mentors already present this
information, we decided not to overlap the lessons. Thus,
by focussing on high-level information about the software
system, the course could complement pattern five.
Furthermore, programmers who prefer to take a top-down
approach, such as those identified in pattern six, would find
the class a welcome change.

This course was based on two hours of videotaped talks
previously given by senior project developers, and a
software architecture visualization tool, Software

Bookshelf[6]. These materials were chosen with the
eventual goal of making the course self-guided.
Participants were given a pre-test and post-test at the
beginning and end of the day, respectively. The purpose of
the pre-test was to determine the extent to which the
subjects had been exposed to the course material and the
purpose of the post-test was to determine how much they
had learned in those same areas over the course of the day.

The reactions to the course were encouraging. The
subjects performed much better on the post-test than on the
pre-test. We are reluctant to report that difference was
statistically significantly because the tests were not
rigorous measures. On the course evaluations, the
participants remarked that they would have like more
information on the overall system architecture and main
data structures. Based these results and the suggestions
made by the immigrants, we found that the material was
pitched at the right level, although some of the content
needed fine-tuning. Four months after subjects completed
the course, they were given an e-mail questionnaire that
asked them to evaluate to the course in retrospect. They
found parts of the course very helpful. Although they did
not find the course directly applicable to their daily work,
they often thought about the concepts they had learned.

The course developed should not be used as a substitute for
the current mentorship system. Mentors also serve as the
basis for a social introduction to the team that a course
cannot replace. These consultation sessions remain very
effective for transmitting low-level information where no
documentation exists and for conveying design rationale.

Other teams could evolve similar courses for immigrants to
their legacy systems. The course could be self-directed or
taught in a lecture format, depending on the goals of the
course, available resources, arrival rate of immigrants, and
personalities on the team. The course or courses could be
aimed at different points in time during an immigrant’s
naturalization. Teams could select curriculum appropriate
for their problem domain, but a standard course should
focus on core information to ensure its applicability for all
potential immigrants.

Such a course should be short, and consequently intense
and highly directed. It should be presented in a manner
that requires little intervention on the part of experts. This
could be done using videotaped presentations or short talks
from a number of team members or some combination of
these approaches. Finally, the current naturalization
process could be co-opted into helping to prepare material
for such a course. Informal lectures by experts could be
videotaped for viewing by future immigrants. New hires
could record information they uncover during their
naturalization, adding to the documentation available on
the software system.

5. CONCLUSIONS

The study undertaken in this paper used a case study
methodology to describe the naturalization process of
software immigrants. The study was replicated with four
newcomers to a single development team. Seven patterns
were identified in cross-case analysis; they are:

e Pattern 1. Mentors are an effective, though
inefficient, way to teach immigrants about the software
system.

e Pattern 2: Lack of documentation forces software
immigrants to rely on mentors or consultants.

e Pattern 3: Administrative and environmental issues
were a major source of frustration during
naturalization.

e Pattern 4: Initial tasks were open-ended problems or
simple bug repairs, that were begun no earlier than two
weeks after a software immigrant’s arrival.

e Pattern 5: Mentors tend to pass on low-level
information about the software system.

e Pattern 6: Programmers who prefer to use bottom-up
comprehension approaches are more appropriate for
the job of software maintenance.

e Pattern 7: There needs to be a minimal interest match
between immigrants and the software system.

These cases identified not only the strengths and
weaknesses in the process, but also areas for future
research. The lessons learned can be applied both to the
naturalization process itself, and to future research.

A theme that repeats itself across patterns, almost as a
meta-pattern, is that the key to improving the naturalization
process is to minimize frustration. This tactic is already
used in some areas, for example, the use of mentors, and
the tight coupling of lessons and initial tasks. Software
immigrants did not speak negatively about tasks that were
difficult, only about tasks that were frustrating. While
newcomers’ early excitement and motivation carries them
over many obstacles, it’s best to maintain these positive
feelings for as long as possible. While strategy may not
directly reduce the time they need to naturalize, it may do
so indirectly by keeping immigrants enthusiastic about
their work.

The obstacles faced by respondents outside of learning
about the software system led us to the next conclusion:
any efforts to facilitate the naturalization process cannot be
limited to technical solutions such as “more
documentation” or “better tools”. Improvements must
encompass modifications to the organizational processes
surrounding the arrival and integration of new developers
to the team. Such changes were outside the scope of this
study, and may require revisions not only at the team level,
but also at the organization level.

As is often the case, this study posed many more questions
than it answered. While software immigrants reported that
they expended much effort resolving administrative issues,
how does this compare with team veterans? Previous
studies have shown that developers only spend about half
their available time coding [10]. They also spend 15% of
their time dealing with interruptions such as telephone
calls, email, and visitors [10,15]. A methodology similar
to that used in these studies to determine to what extent this
is true of newcomers. It was observed that mentors needed
to spend a great deal of time with their charges. How
much of a time commitment is needed? Is less time needed
on systems that are better documented?

The use of an exploratory case study methodology to
examine software processes is effective for two reasons.
First, beyond anecdotal evidence, there have been few
studies that document what actually happens on a
development project. Researchers need to build an
understanding of the processes already in place, so that
they can create innovations that are more likely to be
adopted. Case studies allow us to examine and document
software processes in context. Second, this methodology
allows the construction of theories from qualitative data.
While case studies are not a universal solution for
empirical research, they can be wused forge an
understanding of many hitherto unexamined phenomena.
Investigations like this have the potential to bridge the gap
been between the practice and theory of software
engineering.

ACKNOWLEGEMENTS

This research was generously supported by CSER, ITRC,
and IBM Canada Ltd. We would like to the thank the
software immigrants who generously gave of their time to
participate in this study and the senior developers for their
helpful advice. Thanks also to Stephen Perelgut, and Gary
Farmaner who helped with the studies.

REFERENCES

[1] L.M. Berlin. Beyond Program Understanding: A
Look at Programming Expertise in Industry.
Empirical Studies of Programmers, Fifth Workshop,
pages 6-25, Palo Alto, USA., 1993.

[2] C. Beeler. Roll out the welcome wagon: structuring
new employee orientations. Public Management, 76:
14-17, (August 1994).

[3] F.P. Brooks. The Mythical Man-Month: Essays on
Software Engineering, Anniversary Edition.
Addison-Wesley, 1995.

[4] T. DeMarco and T. Lister. Peopleware: Productive
Projects and Teams. Dorset House Publishing, 1987.

[5S] K. M. Eisenhardt. Building Theories from Case
Study Research. Academy of Management Review,
14 (4): 532-550, 1989.

[6]

[15]

[16]

S.D. Fay and D.F. Holmes. Help! I Have to Update
an Undocumented Program. [EEE Conference on
Software Maintenance, pages 194-202, Washington
DC, USA, 1985.

P. Finnigan, R. Holt, 1. Kalas, S. Kerr, K.
Kontogiannis, H. Miiller, J. Mylopoulos, S. Perelgut,
M. Stanley, and K. Wong. The Software Bookshelf.
IBM Systems Journal, 36 (4): pages 564-593,
(November, 1997).

D.C Littman, J. Pinto, S. Letovsky, and E. Soloway.
Mental Models and Software Maintenance.
Empirical Studies of Programmers, First Workshop,
pages 80-98, Washington DC, USA,1986.

M.B. Miles and A.M. Huberman. Qualitative Data
Analysis: An Expanded Sourcebook, Second Edition.
Sage Publications, 1994.

D.E. Perry, N.A. Staudenmayer, L.G. Votta. People,

Organizations, and Process Improvement. [EEE
Software, pages 36-45, (July, 1994).
T.M. Pigoski and C.S. Looney. Software

Maintenance Training: Transition Experiences. /[EEE
Conference on Sofiware Maintenance, pages 314-
318, Montréal, Canada, 1993.

W.J. Ray. Methods: Toward a Science of Behavior
and Experience, Fourth Edition. Brooks/Cole
Publishing Company, 1993.

R.M. Wilson. Patterns of Response to the Demands
of Starting New Employment. Master of Arts Thesis,
OISE, University of Toronto, 1972.

J. van Maanen and E.H Schein. Towards a theory of
organizational socialization, in Research in
Organizational Behavior, edited by B.M. Staw, Vol.
1, pages 209-264, JAI Press, 1979.

R. van Solingen, H. Leliveld, E. Berghout, R. van
Latum. Applying Software Measurement to
Organizational Issues. Proceedings of the 8"
European Software Control Metrics Conference
(ESCOM), Berlin, Germany, 1997.

R. K. Yin. Case Study Research: Design and
Methods, Second Edition. Sage Publications, 1994.

APPENDIX A: QUESTION SETS
Question Set One: Subject’s Background

1.
2.

What is your educational background?

What experience have you as a professional software
developer? What kinds of projects did you work on?
What tools and languages did you use?

Are there any educational materials that your found
particularly useful such as books, manuals, guides,
course, videos ?

4. What do you enjoy most about your work?

5. What do you dislike most about your work?

Question Set Two: Observing the Naturalization

Process

1. What is your current assignment? What have you
been working on over the last week?

2. How did you gather information about the problem?

3. What resources did you use? What documentation did
you read? Who did you consult?

4. What new things did you learn over the last week?

5. What new tools did you use over the last week?

6. Did you use Software Bookshelf? Include information
about how and why if appropriate.

7. Over the last week, what have you done to become
more familiar with the software system?

8. Draw a diagram of your current understanding of the

Question Set Three:
Process

8.
9.

system.

Recalling the Naturalization

How long have you been working at this job?

What administrative issues did you have difficulties
with? (i.e. badges, logins, machines, payroll, etc.)

How many different computer systems do you have to
use to do your job?

How many different tools or applications do you have
to use to do your job?

What technical issues did you have difficulties with?
(i.e. missing background knowledge)

What difficulties did you encounter when learning
about the system you are working on?

How long did it take you to become comfortable with
your new environment? (i.e. office, building, cafeteria)

How long did it take you to figure out office numbers?

How long did it take to become productive?

APPENDIX B: VARIABLES USED IN ANALYSIS

educational background
work experience
orientation

training

mentoring relationship
IDs acquired

computer systems used

tools used

time to fully functioning workstation

system administration tasks reported

initial task

time until initial task assigned

time until working independently
shortcomings of technical background
approach to learning system

time to comprehend office numbering system

other

	INTRODUCTION
	METHOD
	Research Setting
	Data Collection
	Data Analysis

	RESULTS
	Mentoring
	Evidence
	Implications

	Difficulties Outside of the Software System
	Evidence
	Implications

	First Assignments
	Evidence
	Implications

	Predictors of Job Fit
	Evidence
	Implications

	APPLICATION OF THE PATTERNS
	CONCLUSIONS

