
WoSEF: Workshop on Standard Exchange Format

Susan Elliott Sim
University of Toronto
simsuz@cs.utoronto.ca

Rainer Koschke
University of Stuttgart

koschke@informatik.uni-stuttgart.de

Abstract
A workshop was held at ICSE 2000 in Limerick, Ireland to further
efforts in the development of a standard exchange format (SEF)
for data extracted from and about source code. WoSEF (Workshop
on Standard Exchange Format) brought together people with
expertise in a variety of formats, such as RSF, TA, GraX, FAMIX,
XML, and XMI, from across the software engineering discipline.
We had five sessions consisting of a presentation and discussion
period and a working session with three subgroups. The five
sessions were: 1) Survey and Overview, 2) Language-level
schemas and APIs, 3) High-level schemas, 4) MOF/XMI/UML
and CDIF, and 5) Meta schemas and Typed Graphs. During that
time we reviewed previous work and debated a number of
important issues. This report includes descriptions of the
presentations made during these sessions. The main result of the
workshop is the agreement of the majority of participants to work
on refining GXL (Graph eXchange Language) to be the SEF. GXL
is an XML-based notation that uses attributed, typed graphs as a
conceptual data model. It is currently a work in progress with
contributors from reverse engineering and graph transformation
communities in multiple countries. There is a great deal of work to
be done to finalise the syntax and to establish reference models for
schemas. Anyone interested is welcome to join the effort and
instructions on how to get involved are found at the end of the
workshop report. Three papers from the workshop have been
reprinted here to promote reflection and encourage participation in
the work to develop an SEF.

Introduction
Researchers in computer-aided software engineering tools and
computer-aided reverse engineering tools have recognized a
standard exchange format (SEF) as a means for improving the
state of the art of tool interoperabili ty. As part of an on-going
effort, the Workshop on Standard Exchange Format (WoSEF) was
held at ICSE2000 on Tuesday, 6 June, 2000. The workshop was
co-chaired by Susan Elli ott Sim, Rainer Koschke, and Richard C.
Holt. This meeting was primarily concerned with moving towards
consensus on a common format for sharing data about source
code. These data could be extracted from source code using
parsers, inferred using analysis tools, or taken from other sources
such as configuration management systems. There is a multiplicity
of reasons to have an SEF. It would allow us to use a best of breed
approach when selecting tools and it would avoid unnecessary
duplication when writing tools. This motivation was reflected in
the reasons that the participants gave for attending the workshop:
1) They wanted to be able to make complementary tools work
together more smoothly; and 2) They were tired of writing
parsers/analyzers and wanted to avoid writing another one, in
particular a C++ parser. A small number of participants were
attending because they were developing a format for use within
their tool sets and wished to see successful examples. Aside from

the benefits for tools, an SEF would enable the creation of
benchmark problems, or “guinea pigs,” for a particular area. Such
guinea pigs would serve to codify knowledge about tools, a class
of problems, and problem solving techniques.

There have been many prior efforts to create an SEF. Some of
these are general-purpose exchange formats that can be adapted to
data about software, while others are specifically for software.
Some examples are XML (eXtensible Mark-up Language)[3], with
a specialized form, XMI (XML Metadata Interchange format)
[18], RDF (Resource Descriptor Format)[9], RSF (Rigi Standard
Form)[10], TA (Tuple Attribute Language)[14], GraX[2], and
CDIF (CASE Data Interchange Format)1. These formats vary in
the amount of support and use they receive. This proli feration of
exchange formats underlines both the need for a standard format
and the lack of consensus on one.

For the first time, this workshop brought together members from
disparate communities to share experiences and work together.
The workshop summarized previous work in this field and re-
visited XML, XMI, UML, and CDIF. We discussed concrete
schemas for high-level information, such as class diagrams or
architectural information, and for low-level information, such as
abstract syntax trees. We also debated the concepts and the
mechanisms to specify meta schemas. The interaction between the
participants were lively and the discussion sessions often ran
overtime (to the great chagrin of one of the co-chairs). On
occasion, someone would jump up to il lustrate a point on the flip
chart. During the breaks, small groups would form in front of the
blackboard to pursue or clarify arguments.

We accepted 13 position papers and these fell into five groups,
which we used to organize the workshop. We scheduled five
sessions, each with a presentation followed by discussion, on the
following topics:

1. Survey and Overview
2. Language-level schemas and APIs
3. High-level schemas
4. MOF/XMI/UML and CDIF
5. Meta schemas and Typed Graphs

To maximise time for discussion, we appointed a chair for each
session to co-ordinate a combined presentation for each group of
papers. We found this format was very effective for identifying
commonaliti es and relative strengths of the various approaches.
We recommend this organization to other workshop organisers.
These sessions will be described in Section 2.

During the last two hours of the workshop, we departed from the
planned presentations and discussions. For one and a half hours,
we broke into three small groups, each focussing on a single topic.
These topics were suggested by discussions earlier in the day, and

1 Work on CDIF has been transferred to the XMI effort.

Susan Sim
ACM SIGSOFT Software Engineering Notes, Volume 26, January, 2001, pages 44-49.

they were i) high-level schemas, ii) C++ schema and API, and iii)
notation for exchanging schemas. The groups identified
requirements, made prescriptions for progress, and wrote wil l-do
lists. Afterwards, each group presented its results to the whole
workshop. Their work is described in Section 3.

By the end of the of the day, this workshop produced two major
results:.
• Virtually all participants committed to refining GXL (Graph

eXchange Language) a format in-progress. GXL uses XML
syntax and is used to encode attributed graphs. The groups
who committed to working together further were University
of Stuttgart, Bell Canada, IBM Canada Ltd., Mahindra-British
Telecom, University of Waterloo, University of Koblenz,
University of the German Federal Armed Forces (Munich),
Phili ps Research Eindhoven, University of Victoria, and
Nokia.

• We identified three major areas for continued work,
coinciding with working groups. Web pages and mail ing lists
have since been created for these topics.

These results, specificall y GXL, will be discussed in Section 4.
Finally, we give instructions on how to become involved in the
effort to establish an SEF in Section 5.

Sessions
As mentioned above, we had five sessions of presentations and
discussions. Each of the sessions was organized according to
common themes in the position paper. We began with a kick-off
presentation by Ric Holt to establish a common vocabulary. The
first session, “Survey and Overview,” reviewed previous work on
SEFs. Subsequent sessions addressed successively higher level
issues. They covered “Language-level schemas and APIs,” “High-
level schemas,” “MOF/XMI/UML and CDIF,” and “Meta schemas
and Typed Graphs.” Summaries of these presentations are
presented in this section of the workshop report.

1.1 Survey and Overview
Holger Kienle gave the joint presentation for this topic covering
papers by Kienle, Czeranski, and Eisenbarth; Martin and Muller;
and Riva [13][16]. The presentation covered background material
and previous work on exchange formats.

There are many different published exchange formats. Some of
them were explicitly designed to be generally usable, others
originated in related areas and could easily be adapted. Among the
formats explicitly designed as general exchange formats, one can
identify two major subclasses: those invented in a software
engineering context (e.g., RSF, TA, CDIF, and GraX) and those
provided by other communities and nevertheless useful to
exchange software artifacts (e.g., ASN.1, XDR, Abstract Syntax
Description Language, Resource Description Framework, XML).
Some examples of the latter have evolved in the graph drawing
community and the compiler community. Because of the rich
expressiveness of graphs, some researchers have found the graph
data model relevant to software engineering. The compiler
community has also evolved several persistent intermediate
representations that can be used to transfer low-level program
information.

There are two different groups of different stakeholders for
exchange formats: users of the format and tool builders. Not
surprisingly, the requirements of these two groups differ. For
example, from the user’s point of view, the exchange format
should be human readable, compact, context-neutral, and
extensible, while a tool builder wants an interchange format that
can easily and efficiently be parsed, stored, and generated.

The group at Nokia Research represents both view points when
they describe their needs for an exchange format to be used as part
of their reverse architecture process. The process consists of three
consecutive major steps: extraction, abstraction, and analysis of
software architectures. For each step, different tools need to be
used because there is currently no tool available that supports the
whole process. Hence, the abil ity to easily exchange information
among these tools is crucial.

1.2 Language-level schemas and APIs
Any tool that parses source code, such as analyzers and compilers,
uses some internal or intermediate representation of the source
with an underlying schema. The schema of the internal
representation might not necessarily be explicitly documented (in
any other form than the code), neither may the internal
representation be designed for more than temporary data storage,
but both schema and the raw data exist nonetheless. Language-
level schemas are used to define the structure of programming
representations for either specific languages or a family of related
languages, e.g., procedural languages. The representations are
often accompanied by an API (application program interface) to
access the data. The programming language Ada even has a
standardized API, called Ada Semantic Interface Specification
(ASIS) that several compiler vendors support[6]. In some other
sub-communities, a particular front end defines a de-facto
standard. For example, the Datrix group at Bell Canada provides
members of CSER (Consortium for Software Engineering
Research), a group of Canadian researchers and companies
involved in reverse engineering research, with a C++ front end that
emits annotated abstract syntax trees. The presentation for this
topic was given by Sébastien Lapierre and covered two papers,
one by Lapierre, Laguë, and Leduc and a second one by Kienle,
Czeranski, and Eisenbarth[13][16].

Lapierre, a member of the Datrix group, reported that use of the
Datrix front end ranges from metric computation, clone and design
pattern detection to program slicing and refactoring. For these
analyses, it is also necessary to allow read as well as write
operations to the AST. Moreover, a user of the intermediate
representation should also be able to add higher-level elements, as
for example, architectural concepts, and additional abstract links.
These annotations are, for instance, needed to record what code
pieces have been identified as clones of each other. Lapierre
observed that it is currently not easy to benefit from other
researcher’s tools and noted that there are basically three technical
ways to ease a closer collaboration. One is to unite all analyzers
into one huge open source project, another one is to provide
standardized exchange formats, or – finally – one can achieve tool
interoperabili ty by means of APIs.

The challenges in API design are:
• to find a suitable way for returning or giving access to the

result of a query (should the same model be enhanced or
should parallel models/copies be created?),

• to find mechanisms to annotate or colour AST nodes,
• to provide means to modify the AST (without

compromising AST integrity), and
• to offer state management mechanisms to permit undo,

roll -back, and reset operations.

Further points to ponder are whether access to the AST should be
embedded into a high-level programming language or rather be by
means of a domain-specific query language, and the question of
how different tools (visualization, graph manipulations, etc.) can
be integrated without duplicating the data.

1.3 High-level schemas
Language analyzers, like compilers, extract very detailed
information from source code. The amount of extracted data can
be far too large to be comprehended or analysed in a reasonable
amount of time. For many reverse engineering activities, only a
broad overview of the system is necessary. Typically, only global
code entities, such as functions, global variables, user-defined
types, and classes together with their relationships are really
relevant for a broad overview. Whereas expressions and
statements in the body of functions can be used to induce certain
relationships among code entities but can otherwise be ignored.
Such high-level information can then be visualized, analyzed, and
manipulated. In contrast to forward engineering, high-level
information is usually the starting point of the design. A class
diagram in UML, for example, does not contain individual
statements, but classes and their relationships.

Similar to low-level extractions, every high-level description of
system, implemented or not, has an underlying high-level schema.
Michael Godfrey from the University of Waterloo summarized
papers by Neuhold, and Hess and Schulz and a portion of his own
paper [13][16]. He distinguished between two different levels of
abstraction in high-level schemas: programming language entity
level (globally declared code entities directly derived from a
system) and architectural level (components and connectors). For
the programming language entity level, he presented several high-
level schemas for procedural and for object-oriented programs
independently developed by different organizations and their
corresponding extractors. Interestingly enough, these schemas
were quite similar, which suggests that reaching an agreement on a
common high-level schema for a particular language or paradigm
is a realistic goal.

1.4 MOF/XMI/UML and CDIF
The presentation by Louis St-Pierre summarized papers by St-
Pierre, Tichelaar et al., and Dirckze et al. [13][16] on a family of
related standard exchange formats widely used in academia and
industry, namely, MOF (Meta Object Facilit y) [8], XMI [18],
UML (Unified Modeling Language) [11], XML [3], and CDIF. St-
Pierre began by revisiting the three levels of the Object Modeling
Group (OMG) model-driven approach:

• M1: concrete models that describe application models,
e.g., a finance application model

• M2: metamodeling languages provide syntax and
semantics to describe concrete models; a specification
using a metamodeling language is called a metamodel;
e.g., UML or FAMIX can be used to describe a concrete
finance application model

• M3: meta-metamodeling languges provide syntax and
semantics to describe M2 models, e.g., MOF is used to
specify UML; meta-metamodeling languages can also be
used to define rules for metadata interchange format
generation (e.g., XMI format including XML DTDs for
content verification)

St-Pierre noted that the M3 level is needed for abstraction (because
the model abstracts functionali ty from implementation) and to
enable semantic interoperabili ty. After explaining the relationships
among UML, MOF, XML, and XMI and reporting on Tichelaar et
al.’s experiences with CDIF, he concluded that MOF and XMI are
our best options at the moment because they are accepted
standards and tool support is already available, while CDIF has
been virtually abandoned. However, UML does not adequately
represent some features of source code, in particular of procedural
programs. UML forces certain interpretations (e.g., the distinction
between inheritance used as generalization or as implementation
re-use) while other information is beyond the scope of UML, for
instance, PICTURE clauses in COBOL.

1.5 Meta schemas and Typed Graphs
This session built on the previous one by considering the M2-level
schema for an interchange format, or meta schema. This
discussion was primarily concerned with the schema of the format
rather than the schema of the data that it encodes. The papers by
van den Brand et al., Godfrey, and Ebert et al. [13][16]described
formats that have different meta schemas, specifically ATerms and
Tgraphs.

Rather than tackling these meta schemas directly, the presenter,
Andreas Winter, identified five components of an SEF and
explained how approaches from the three papers fell into the
taxonomy. The five components were: 1)structure, 2)format,
3)meta schema, 4) data access, and 5) transformation. “Structure”
is the underlying conceptual data model of the SEF, such as ASTs,
graphs, and relational models. “Format” is the form in which the
data is transferred. “Meta schema” is the notation for representing
the schema of the data for transmission between tools. The fourth
component is a standardised mechanism for accessing the stored
data eff iciently, such as an API or set of util ities. “Transformation”
is the capabili ty to transform data from one schema to another.

After using this taxonomy to compare the three approaches,
Winter made the following conclusions. The SEF would need to
encode both schema and instance data to maximise portabilit y
between tools. The SEF should use directed, attributed, typed
graphs as the underlying structure and be based on a common meta
model. He also recommended that the SEF should use XML
syntax to leverage existing tools.

Working Groups
Following the afternoon break, the participants separated into
small groups to discuss specific topics. These issues evolved out of
the discussions during the earlier sessions as points of

disagreement or unresolved problems. Each group was instructed
to work on three items: 1) requirements for solving the problem; 2)
a prescription for making progress, and 3) “wil l-do” lists. We
asked for “wil l-do” lists instead of “ to-do” lists, because we
wanted concrete action items. Again, the discussions were lively
and participants learned a lot from each other. These working
groups were a high point in the day, despite being a last-minute
change to the schedule.

Following one and a half hours of discussion, the workshop
reconvened in a single group. Each working group selected one
person to present its results. In the remainder of this section, these
presentations will be summarized.

1.6 High-level Schemas
The participants in this working group were familiar with a large
number of high-level schemas and they quickly realised there was
not enough time to identify specific requirements that were
common to all of them. Instead, they added this task to the will-do
list and concentrated on broad requirements. Since there was a lot
of agreement in the group, they were able to make good progress
in their discussions.
Requirements
• Design schemas for a variety of “high” levels, including (but

not limited to) one for language-level and one for architectural
level.

• These schemas should support the needs of tool developers.
• These schemas must work with C/C++ and Java.
Prescription for Progress
• Impose one or more standard schemas and later correct them

based on feedback.
• Architecture level schema may be straightforward and should

be considered as first candidate.
• Somebody (not us!) should also consider “software

architecture” in the theorem proving sense, i.e. specifying the
low-level semantics of interactions between components using
formal logics.

Will-Do List
• Join an email list to continue the discussion.
• Explore “Guinness-enabled reverse engineering” later tonight
Volunteer to participate in the validation of a standard schema.

1.7 C++ schema and API
There was a strong desire among WoSEF participants for a robust
and flexible C++ parser. The group recognised that one way to
achieve the goal was to place data parsed from source code into a
repository and use an API to access the data. Consequently, this
working group considered the problem of what data should be
placed in the repository and how the corresponding API should
work. The discussions in this group was particularly complex and
contentious, and the group was the last to re-join the main group.
Requirements
• The API must be able to traverse, query, transform graphs or

trees.
• The API must be connected to a high-level programming

language.
Prescription for Progress
Examine existing APIs for C++ representations, in particular,
Datrix, IBM Visual C++ CodeStore, and g++, and create a single

unified schema.

1.8 Notation for exchanging schemas
This topic had the smallest working group and it spent most of its
time defining terms from which discussion could proceed. The
group explored a number of issues and options and learned more
about what didn’ t work than what did work. When they reported
back to the workshop, they gave only a will-do list.
Will-Do List
• Define a notation for representing schemas that can be used

with GXL. This notation will li kely be a subset of UML class
diagrams.

• Collect a number of example schemas. This collection will be
used to guide the design of the notation.

• Implement converters between GXL and the following
formats: RSF, TA, TGraphs, PROGRES, RPA, and FAMIX.

Results
Beyond gathering momentum and stimulating discussions on
diverse issues on exchange formats, the major result of the
workshop was the commitment of the workshop participants to
work on GXL as a common exchange format. Since GXL is a
promising candidate for a standard format for transferring data on
software artefacts, we will now use the opportunity to briefly
present GXL.

GXL allows to encode typed, attributed, multi -graphs with edges
as first-order entities (edges themselves can have attributes). It
originates from a number of graph-based exchange formats, GraX
(University of Koblenz-Landau) [1], TA (University of Waterloo)
[14], and the graph format of the PROGRES graph rewriting
system (University of the German Federal Armed Forces, Munich)
[12]. Furthermore, GXL includes concepts from the exchange
format of Relation Partition Algebra, RPA (Phili ps Research
Eindhoven, The Netherlands) [5] and RSF (University of Victoria,
Canada) [10].

GXL is an XML sublanguage and its exact syntax specification is
still subject to an ongoing discussion. The following is an excerpt
of version 0.6.6, released 31 August, 2000. The latest version of
the XML Document Type Definition (DTD) can be found at
http://www.gupro.de/GXL/.

<!ELEMENT gxl (graph)* >
<!ELEMENT graph (attr* , (node | edge | rel)*)
>
<!ATTLIST graph
 id ID #REQUIRED
 schema CDATA #IMPLIED
 edgeids (true | false) "false"
 undirected (true | false) "false"
 hypergraph (true | false) "false"
>
<!ELEMENT node (attr*, order*) >
<!ATTLIST node
 id ID #REQUIRED
 type NMTOKEN #IMPLIED
>
<!ELEMENT edge (attr)* >
<!ATTLIST edge
 id ID #IMPLIED

 type NMTOKEN #IMPLIED
 from IDREF #REQUIRED
 to IDREF #REQUIRED
>
<!ELEMENT attr ((%type;)?, (% val;)? , attr*) >
<!ATTLIST attr
 name NMTOKEN #REQUIRED
 kind NMTOKEN #IMPLIED
>

The following interpretation of the DTD deliberately omits some
details for explanatory purposes. In GXL, graphs consist of nodes,
and edges.2 All of these entities, graphs, nodes, and edges, must
have unique identifiers and may have attributes. In the case of
edges, this unique identifier may be given explicitly or it may be
implied by the end points and type of the edge. One of these two
options must be selected for the entire graph by setting the graph
attribute “edgeids” appropriately. A similar choice must be made
for whether the graph has directed or undirected edges. Attributes
defined by giving a name and a value. This value must have a
type, either a primitive type (int, float, boolean, string) or a
composite type (bag, set, seq, struct).

The syntax for representing schemas is currently under discussion,
but it will also use a graph-based representation. As a result,
schemas can in turn be exchanged as graphs represented within the
GXL document. Consequently, both instance data and schema data
can be transferred.

Figure 1: Graph Representation of Source Code

To give a flavour of how GXL encoded data look like, consider
the following information to be represented with GXL: procedure
P (declared in main.c) calls procedure Q (declared in test.c) in line
127. This information is represented graphically in Figure 1. The
GXL document for this example is as follows:
<?xml version="1.0"?>
<!DOCTYPE gxl SYSTEM
"http://www.gupro.de/GXL/gxl.0.5.dtd">
<gxl schema =
"http://www.gupro.de/GXL/demo.xml"
 edgeid = “false”
 undirected = “false”
 hypergraph = “false”
>
<node id = "P" type = " Proc">
 < attr name = "File">
 <string> main.c </string>
 </attr>
</node>
<node id = "Q" type = "Proc">

2 A “rel” is a hyperedge, that is, an edge with more than two
endpoints, such as those used in some entity-relationship diagrams
and class hierarchies. Hyperedges can only occur in hypergraphs,
and the corresponding attribute of the graph is set to true.

 <attr name = "File">
 <string> test.c </string>
 </ attr>
</node>
<edge id = "c" type = "Call" begin = "P" end =
"Q">
 < attr name = "Line">
 < int> 127 </ int>
 </ attr>
</edge>
</ gxl>
Like other XML sublanguages, GXL is quite verbose. In order to
exchange large amount of data, for example, abstract syntax trees
for larger systems, standard compression methods need to be used
to save space. On the other hand, existing XML tools can be used
to traverse the graphs and access the data they encode.

Future Work
Since WoSEF was held, other workshops have been organized to
develop a standard exchange format. There will be a meeting at
APPLIGRAPH (Applications of Graph Transformation subgroup)
[1] to be held 5-6 September, 2000 in Paderborn University in
Germany to find an XML-based SEF for graph transformation
systems. The graph drawing community will hold a kick-off
meeting for an initiative to find an SEF on 20 September, 2000 as
part of at their annual meeting, GD 2000 in Colonial
Willi amsburg, USA [7]. There will be a panel on standard
exchange formats at WCRE 2000 (Working Conference on
Reverse Engineering) [17] in Brisbane, Australia, 23-25
November, 2000. Finally, a Schloss Dagstuhl seminar is planned
for January, 2001 [4].

As is evident from these meetings and this workshop report, work
on a standard exchange format is far from complete. A great deal
of work remains to be done and anyone is welcome to join the
effort. There are a number of ways to learn more about current
work and get involved:

• Visit the workshop home page at
http://www.cs.utoronto.ca/~simsuz/wosef for details of
ongoing work.

• Contact any of the authors of this paper for more
information.

• Join the Waikiki Beach Club mail ing list for email
updates on the work. Instructions are available at:
http://www.informatik.uni-stuttgart.de/ifi/ps/waikiki [15]

• Read the position papers from WoSEF for background
information.

To help you get started, three position papers from the workshop
have been selected and included in this issue of Software
Engineering Notes that together cover a broad spectrum of issues
in interchange formats. While the first paper gives a bibliographic
background for existing interchange formats, the other two papers
concentrate on specific program representations for the lower-level
entities and higher-level entities.

The first paper by Kienle, Czeranski, and Eisenbarth of the
University of Stuttgart reviews and classifies existing exchange
formats. Both domain-specific (e.g., interchange formats for graph
drawing tools) and general-purpose formats (e.g., XML) are

discussed. Included in the survey are persistent intermediate
representations for compilers as candidates for low-level program
representations. Finall y, advantages and disadvantages of
persistent data structures as alternatives to exchange formats are
debated.

The Datrix group at Bell Canada has considerable experience in
providing members of CSER with program extractions in the
shape of annotated abstract syntax trees for C++. The Datrix group
members Lapierre, Laguë, and Leduc report on their experience
with selecting Datrix-TA, a variant of TA, to represent these
annotated abstract syntax trees, called abstract syntax graphs by
the authors.

Godfrey of the University of Waterloo concentrates on high-level
program schemas suitable to represent necessary information for
architecture recovery. His experiences in using different extractors
that generate high-level program schemas along with a detailed list
of requirements for such schemas are described in his paper.
Furthermore, he points out several important practical problems
with uniquely identifying and resolving entities when different
extractions are linked together to a global system representation
(especially if the separate representations stem from different
extractors) and how these entities need to be tracked back to their
original source.

Attendees
Participants: Marat Boshernitsan, Rahul Charmadhikan, Raj
Chittar, Mike Godfrey, Hoh In, Holger Kienle, Kostas
Kontogiannis, Bernt Kullbach, Sébastien Lapierre, Tim
Lethbridge, Johannes Martin, Hausi Müller, Karin Neuhold,
Stephen Perelgut, Derek Rayside, Claudio Riva, Tobias Rötschke,
Louis St-Pierre, Sander Tichelaar, Andreas Winter, Wai-Ming
Wong

References
[1] APPLIGRAPH Subgroup Meeting on Exchange Formats for

Graph Transformation. http://www.uni-paderborn.de/cs/ag-
engels/Conferences/APPLIGRAPH_XML/, 1 September,
2000.

[2] Jürgen Ebert, Bernt Kullbach, and Andreas Winter. “GraX—
An Interchange Format for Reengineering Tools” Proceedings
of the Sixth Working Conference on Reverse Engineering, pp.
89-98, Atlanta, GA, 6-8 October, 2000, Los Alamitos: IEEE
Computer Society Press.

[3] Extensible Markup Language Home Page.
http://www.w3.org/XML/, 1 September, 2000.

[4] Dagstuhl Seminar 01041, Interoperabili ty of Reengineering
Tools, http://www.dagstuhl.de/DATA/Reports/01041/, 1
September, 2000.

[5] L. M. G. Feijs and R. C. van Ommering. “Relation partition
algebra – mathematical aspects of uses and part-of relations,”
Science of Computer Programming, 33(2), pp. 163-212,
February 1999.

[6] International Standards Organization. ISO/IEC 15291 Ada
Semantic Interface Specification (ASIS), 1999.

[7] Graph Drawing 2000 home page,

http://www.cs.virginia.edu/~gd2000/, 1 September, 2000.
[8] MOF Revision Task Force home page.

http://www.dstc.edu.au/Research/Projects/MOF/rtf/index.html
1 September, 2000.

[9] RDF (Resource Descriptor Format.) http://www.w3.org/RDF/,
1 September, 2000.

[10] RSF (Rigi Standard Form)
http://www.rigi.csc.uvic.ca/rigi/manual/user.html, 1
September, 2000.

[11] James Rumbaugh, Ivar Jacobson, and Grady Booch. The
Unified Modeling Language Reference Manual, Addison-
Wesley Publishing Company, 1998.

[12] Andy Schürr. “Developing Graphical (Software Engineering)
Tools with PROGRES , Formal Demonstration,” in
Proceedings of the Nineteenth International Conference on
Software Engineering (ICSE'97), pp. 618-619, Boston,
Massachusetts, 18.-23. May 1997, Los Alamitos: IEEE
Computer Society Press.

[13] Susan Elli ott Sim, Richard C. Holt, Rainer Koschke.
“Workshop on Standard Exchange Format Proceedings.” 6
June, 2000, Twenty-Second International Conference on
Software Engineering, Limerick, Ireland.

[14] Tuple Attribute Language.
http://plg.uwaterloo.ca/~holt/papers/ta.html, 1 September,
2000.

[15] Waikiki Beach Club Home Page http://www.informatik.uni-
stuttgart.de/ifi/ps/waikiki, 1 September, 2000.

[16] WoSEF (Workshop on Standard Exchange Format) Home
Page. http://www.cs.utoronto.ca/~simsuz/wosef, 1 September,
2000.

[17] Working Conference on Reverse Engineering (WCRE), 2000
home page. http://www.reengineer.org/~wcre2k, 1 September,
2000.

[18] XMI (XML Metadata Interchange Format).
http://www.software.ibm.com/ad/features/xmi.html, 1
September, 2000.

