
A Small Social History of Software Architecture

Susan Elliott Sim
Department of Informatics

University of California, Irvine
ses@ics.uci.edu

Abstract
This paper presents an analysis of software

architecture as social artifact, that is, something that
software developers talk about and use in their work.
This analysis is historical in nature, relying on
interviews with software developers with experience
spanning four decades and the software engineering
literature. We found that 1) only large teams have
architecture; 2) architecture is more easily found in
discourse than in source; and 3) architecture does not
happen at a fixed time in the software lifecycle. These
observations taken together suggest that software is a
boundary object that developers use to explain the
system to each other, thereby making it possible to
work together. `

1. Introduction

Since data processing became accepted business
practice in the 1960s, many companies have been
profitably writing software. Yet they were able to do
so without the help of many of the notations and
methods that are considered standard today. Even
today, not all projects are developed using these
methodologies, modern software engineering tools, nor
software architecture technologies. But at the same
time, software developers were at ease with the idea
that software has architecture and they are able to talk
about a system’s architecture.

This paper presents an historical analysis of
software architecture as a concept that is used by
professional developers. The main data sources were
interviews with programmers, examination of
computing technology, and software engineering
literature. The result is a social history because it
examines how people used the term with each other
and the role of architecture on their projects. This
approach consequently yields a different result from
one that starts from programming languages and
software tools.

Our findings are as follows. One, only large
systems have an architecture. While developers always
used the term “design” when talking about a system,
they used the term “architecture” with large systems.
Two, architecture is more easily found in discourse
than in source. In other words, it is difficult to point to

architecture in the implementation artifacts, but, it is
easier to find the architecture in documentation and in
verbal explanations. Three, creation of the architecture
is not limited to a single temporal phase of the
software lifecycle. Despite the presence of a design
phase, the architecture is created and refined
throughout the life of the software.

These observations taken together suggest that
software architecture is a boundary object, a kind of
social convention to help developers understand the
system well enough to work on it [5]. As a boundary
object, the software architecture is a narrative that
presents an idealized description of the system.
Although this finding was arrived at empirically,
further support for architecture as a construct for
facilitating shared understanding can be found in the
software engineering literature. For instance, this use
of software architecture was anticipated by Perry and
Wolf in their inclusion of rationale as one of the three
essential components of an architecture [4].

Section 2 describes the method used to collect and
analyze the data. Section 3 presents the emergence of
software architecture, with a focus on industrial
software developers. Section 4 explores recurring
themes in the data. Finally, we conclude with a discuss
ion of software architecture as a boundary object.

2. Method

This study used a historical analysis, that is,
eyewitness accounts and archival resources were used.
The process is closer to journalism than hypothesis
testing. It is useful to study history, not merely for the
facts, but because it is the context for practices today.
History also tells us about ourselves because the
human condition frequently brings us back to the same
dilemmas.

The method used is consistent with that of a case
study [7]. The initial question was “How do software
developers do design, especially without the aid of
rigorously prescribed methods?” The unit of analysis
was a project. Design was selected as a common,
neutral starting point because it did not assume a
particular method or technology, which was
particularly useful for inquiries regarding the 1960s.

Proceedings of the 13th International Workshop on Program Comprehension (IWPC’05)
1092-8138/05 $ 20.00 IEEE

The informants were not selected randomly; rather
they were selected because they were able to provide
insights into the development process at a given time.
The interviews were conducted in the fall of 1996.
However, it was only recently that the appropriate
methodological tools and theoretical stance for this
investigation were found.

The data were analyzed inductively to identify
larger trends across time and themes across projects. In
examining the answers to these questions, a
programmer was considered to have used design if
some effort was made to conceptualize the program
before coding began and to ensure that the program
was maintainable by passing on this information.
While this could be done in a formal design document,
more informal records such as back of the envelope
scribbles, comments in the code to communicate the
design, or post hoc documentation, were also accepted.

2.1. Interviews

Software developers with industrial experience were
interviewed for this study. Each interview lasted for
approximately 70 minutes. An open-ended script was
used to guide the process. The script began with
questions about the informant’s educational and
professional background, and progressed to projects
that the interviewees had worked on with an emphasis
on the design or architecture in the process or product.
Interviewees were also asked about various resources
that they found useful in learning how to do design.

Six informants participated in this study. Except for
one interviewee from the 1960s and one from the
1970s, all were still working in software.
Starting in the 1960s

“Andy” was currently a software developer at IBM
Canada Ltd. He started programming in 1965 after
graduating from university.

“Jack” worked for IBM Canada starting in 1966
until he retired in 1992. He initially worked at a
service bureau doing data processing for customers
and later moved into software development.

Starting in the 1970s

“Sonja” graduated with a undergraduate degree in
computer science in 1972. Since then, she has been
working in information systems development.

“Alice” worked as a programmer analyst from 1974
to 1980 in various companies such as Sears Canada.
She worked primarily with developing on-line
information systems.

Starting in the 1980s

“Gary” graduated from with a co-op computer
science degree in 1983. He has been working as a
maintenance programmer at a number of companies
since.

Starting in the 1990s

“Scott” began working as a programmer in 1993
after graduating with a computer science degree. He
has worked exclusively at small companies.

3. Background: Design Over Four

Decades

In this section, we give the background to our
discussion by presenting a chronological slice through
the empirical data. The informants gave accounts of
industrial development practices spanning four
decades, starting in the 1960s to 1996. The early
experience informs us of processes before named
methodologies, such as Structured Systems Analysis
and Design (SSAD) or Design Patterns, became
popularized. When contrasted with later experience,
this information traces the evolution of the industry.

3.1. Prior to 1970

The two interviewees who began working in the
1960s. Both started their careers at IBM service
bureaus, though on different continents. Design was
done using flow charts on paper forms with plastic
templates. The same tools and symbols were used for
both program design and system design. A high level
decomposition of a program consisted of functional
units, that is, the functionality required by the user.
Although the term didn’t become widespread until
later, these units could be labeled as modules and they
corresponded to an area of responsibility for a single
programmer. This decomposition was developed
primarily to make the project manageable, rather than
to make the code more elegant. There was also a sense
of stepwise refinement. Since Wirth’s work was not
published until 1971 [6], this appeared to be an
improvised adaptation to a complex problem. These
practices extended well into the 1970s.

While the informants in our study from this era did
not talk about architecture, there were others who did
use the term. Among Brooks’s many anecdotes
regarding the development of OS/360 in “The
Mythical Man-Month,” there is one that refers to a
meeting with Brooks, a manager of architecture, and
the manager of the control program implementation [1]
(p. 47).

3.2. The 1970s

Structured programming languages, such as
COBOL and PL/I, structured analysis and structured
design were adopted by industry during this decade.
Alice and Sonja were involved in the development of
an on-line catalogue system at Sears Canada.
Developers closely followed the Yourdon and
Constantine SSAD methodology and they

Proceedings of the 13th International Workshop on Program Comprehension (IWPC’05)
1092-8138/05 $ 20.00 IEEE

implemented the system in PL/I. Jack and Andy also
reported using more structured methodologies.

In order to deal with these larger and more complex
machines, such as System 360, and the software that
they could support, developers had to use more
rigorous processes. During this period, some concepts
began to appear that are still taught today. Parnas’
work on information hiding appeared in 1972 [3].
Yourdon and Constantine were publishing and
teaching their method to developers by 1974 [8].
Meyer’s book on modular programming appeared in
1975 [2], as did Brooks’ “The Mythical Man-Month”
[1].

Informants’ earliest recollections of projects
involving teams of many people came from this era.
Jack worked on an ordering system project from 1976
to 1982. His team consisted of approximately 50
people, 12-15 of whom were coders, with the final
deliverable consisting of approximately four hundred
thousand lines of code. Alice’s on-line catalogue
system took ten people three years to develop. The
final product was estimated to be several hundreds of
thousands of lines of source code. A software system
that Gary started maintaining in 1983 consisted of
approximately three millions lines of code and came
online in 1978.

3.3. The 1980s

During the next decade, developers began using
“software processes” and “design methodologies” and
calling them by those names. This decade was also
marked by a greater awareness of maintenance issues.
By the 1980s, legacy systems were large and complex
enough that maintenance became a lesser evil than re-
implementation.

A technological advance that occurred during the
1980s was the arrival of the personal computer (PC).
PCs were relatively affordable and accessible which
resulted in an explosion in computer use during this
decade and the next. Small business and home PC
users were looking for user-friendly shrink-wrapped
software. Prior to this, there were relatively few
programmers working outside of large corporations
developing information systems.

3.4. The 1990s

Object-oriented languages, such as Java and C++,
object oriented analysis, and object-oriented design
methods were adopted. This adoption was driven by
the increasing popularity of GUIs. Rather than coding
them from scratch, it became easier to use frameworks
and toolkits. In the past, the software to run a major
enterprise application, such as billing, was several
million lines of source code. Now a single spreadsheet
program on a personal computer was several million
lines. Even with advances in memory management,

optimizing compilers, and IDEs, programming was
more complex than ever.

For informants who were currently working in
software, design was an integral part of their work.
Two commonly cited reasons included communicating
with team members, and making the code more
maintainable. Scott found that when working with
fickle customers, writing and revising design
documents was easier than prototyping and changing a
program. Gary was able to articulate and draw the
architecture of all the software systems that he
maintained or developed.

No further interview data was collected beyond the
1990s. However, a perusal of both popular and
academic writings yield a number of recent
technologies that have affected design practices; these
include Web technologies, UML, design patterns, and
Extreme Programming.

4. Recurring Themes

In this section, we present a thematic analysis of the
data that attempts to identify commonalities across the
interviewees regarding how they used and talked about
software architecture.

4.1. Large Projects

The first recurring theme was that only large
projects have an architecture. The size of a project is
related to both the number of people, the complexity of
the process used, and the size of the end-product. It
seems that a project needs to reach a significant size
before developers feel that they need to describe its
architecture. Another way of looking at it is an
architecture is a description that abstracts away details
from a system and small programs don’t have details
remaining to remove once design is reached.

The size of project is not strictly a chronological
effect because OS/360 had an architecture and it took
5000 person/years from 1963-1966 to construct the
system. However, as hardware became more powerful
and user expectations rose, so projects became larger,
thereby making it more common that for informants to
start talking about architecture on more recent projects.

4.2. It’s Not In the Source Code

Architecture was more easily found to be found in
discourse than in the source code. It was difficult to
point to anything in the implementation that was the
architecture. However, drawings or descriptions of
architecture could be found in documents, and these in
turn were created for communicating concepts and
principles to team members.

The interviewees used the term architecture in a
variety of ways. It loosely included high-level
structure, the process by which the software was
developed and to a certain extent the problem space

Proceedings of the 13th International Workshop on Program Comprehension (IWPC’05)
1092-8138/05 $ 20.00 IEEE

that the software fits. Andy’s current project uses an
“architecture document” as basis for design
discussions. It includes information on requirements,
data on specifications and a wish list of features. He
finds this a rather confusing, unwieldy and
unsatisfying document to work with. Andy feels that
this document could be split up into at least three
smaller, more manageable reports, corresponding to
those produced in the SSAD process.

At Consumer’s Gas, developers had Software
Architecture Guidelines that were taught and
reinforced by a Developer Support Centre. The
Software Architecture Guidelines was a two-volume
document; part one contained design requirements,
such as data formats, safety, and security; and part two
contained coding requirements, such as variable
declaration, stanza ordering, and comments. Starting in
1980, all developers followed the rules set forth in the
guidelines and this resulted in a high level of code re-
use. Unfortunately, this standard was abandoned in
1990, along with mainframe technology and PL/I.

4.3. When Does Architecture Happen?

Architecture was not created at a particular time or
time interval. The architecture starts to take shape very
early in the development process and is created on an
ongoing basis. Both Andy and Scott report having
weekly design meetings. At these meetings, they
resolved problems that were “high level issues”, those
that had impact on more than one programmer at a
time. It appears that the architecting of a piece of
software has become as interactive as coding.
Designing a system on an ongoing basis may be a
response to specifications being relaxed as deadlines
approach.

As delivery schedules have become tighter, the
attitude of “we’ll get it out first, we’ll get it right later”
has become more common. As one would expect, less
time was spent on formal design on small projects than
on larger ones. This is not to say that a design was
omitted altogether but that formal documents were not
written. Experienced programmers were often able to
put together small programs of a thousand source lines
or less using only scribbles on napkins, Post-It notes
and whiteboards. Occasionally, this information would
be transcribed into documentation. These smaller
programs tended to have a cleaner, more consistent
architecture despite the lack of formal design.

5. Architecture as a Boundary Object

The recurring themes in the previous section
illustrate that the concept of software architecture that
is highly fluid. It’s not something that can be found in
the source code of a system nor at a particular time in
the development lifecycle. It is created gradually over
the life of a project. It can be found in documents,

meetings, and whiteboards. In other words, in artifacts
or rituals that are used to provide explanations to other
people. These characteristics indicate that software
architecture is a boundary object.

Star [5] defined boundary objects as “….objects
that are both plastic enough to adapt to the local needs
and …robust enough to maintain common identity” (p.
103). The plasticity of software architecture is evident
in the flexibility of their origins with respect to time,
place, and process. Furthermore, software architecture
is robust enough to allow a team of people to work
together cooperatively to bring a complex system to
fruition.

A large project needs an architecture to serve as a
boundary object to pull together the development team.
Individual team members work on their isolated
portions independently, but still need to be able to
integrate their distinct parts into a whole. An over-
arching organizing principle, or narrative, is needed to
make sense of it all and this narrative becomes the
boundary object.

6. Acknowledgements

I am grateful to all the informants for their patience
and generosity with their time. This study would not
have been possible without them.

7. References

[1] Frederick P. Brooks, Jr., The Mythical Man-
Month: Essays on Software Engineering,
Anniversary Edition: Addison-Wesley, 1995.

[2] Glenford J. Meyers, Reliable Software Through
Composite Design: Petrocelli/Charter, 1975.

[3] David L. Parnas, “On the Criteria To Be Used In
Decomposing Systems Into Modules,”
Communications of the ACM, vol. 15, no. 12, pp.
1052-1058, 1972.

[4] Dewayne E. Perry and Alexander L. Wolf,
“Foundations for the Study of Software
Architecture,” Software Engineering Notes, vol. 17,
no. 4, pp. 40-52, October, 1992.

[5] Susan Leigh Star, “Cooperation Without
Consensus in Scientific Problem Solving: Dynamics
of Closure in Open Systems,” in CSCW:
Cooperation or Conflict?, Steve Easterbrook, Ed.
London: Springer-Verlag, pp. 93-106, 1993.

[6] Niklaus Wirth, “Program Development by
Stepwise Refinement,” Communications of the
ACM, vol. 14, no. 4, pp. 221-227, 1971.

[7] Robert K. Yin, Case Study Research: Design and
Methods, 3/e. Thousand Oaks, CA: Sage
Publications, 2002.

[8] Ed Yourdon and Larry L. Constantine, Structured
Design: Fundamentals of a Discipline of Computer
Program and Systems Design: Prentice Hall, 1985.

Proceedings of the 13th International Workshop on Program Comprehension (IWPC’05)
1092-8138/05 $ 20.00 IEEE

