Proceedings of the Seventh Working Conference on Reverse Engineering, pp. 278-283, Brisbane, Queensland,

Australia, 23-25 November, 2000.

Next Generation Data I nter change:
Tool-to-Tool Application Program Interfaces

Susan Elli ott Sim
Dept. of Computer Science
University of Toronto
simsuz@cs.utoronto.ca

Abstract

Data interchange in the form of a standard exchange
format(SEF) is only a first step towards tool
interoperability. Inter-tool communication using files is
dow and cumbersome; a better approach would be an
application program interface, or API, that allowed
tools to communicate with each other directly. This
paper argues such an AP is a logical next step that
builds on the current drive towards an SEF. It presents
high-level descriptions of three approaches to tool-to-
tool APIs and illustrates how requirements for the SEF
also apply to the API.

Keywords
standard exchange format, API, tod interoperabili ty,
library, protocol, framework

1. Introduction

As agreement is readed on a standard exchange format
(SEF), we nedd to turn our attention to problemsthat lie
beyond the airrent event horizon. These problems will
exist independent of any single representation format
and will continue to be interesting regardless of which
one is chosen. Chief among these @mncerns is an API
(Applicaion Program Interfacg for dynamic toadl
interoperabili ty.

The primary objed of an SEF is greaer tod
interoperability. Within the reverse engineaing
community, we have readed a level of maturity where
we have remgnised the benefits of making our tools
work together more effedively. However, the arrent
drive towards an SEF has focussed on data interchange
through files. This interaction model essentially requires
toolsto read and write to disk to communicae with each
other. Such delays are a@mbersome axd do not
encourage interadive experimentation to recver high-
level structuresin legacy systems.

Tool interoperability can be daraderised using three
levels.

Level 0 Ad hoc interadion.

Level 1 Static interadion using an SEF and disk fil es.

Level 2 Dynamic interadion using an APl to share

data and to invoke other toals.

We ae arrently at level 0, where tods are pieca
together using data wnverters and scripts. Furthermore,
these helper programs bemme out-of-date & on as
one todl changes. An SEF will allow us to achieve level
1 and reduce the number of data mnverters needed.
Adding an API* would take us to level 2 and reduce the
brittl eness of commands or scripts issued between todls.
Progress towards this level depends on having a stable
and operational SEF. Leaning to communicae datais a
necessary pre-condition to leaning to communicae
operations on data.

This paper looks at the problem of how to make tools
communicae with ead other diredly. Such an APl isa
logicd next step and results from the current SEF are
also applicable to its development. Sedion two gives
high-level descriptions of three passble gproaches for
the API. Having illustrated how an APl might operate,
sedion three shows that the requirements for the SEF
transfer to the APl as well.

2. Approaches for Dynamic Tool
Interoperability

There ae three basic goproadies, or architedures, for
dynamic tods-to-tod communicaion. [6] The first
approach isto encgpsulate eat software tool and have it
operate & a library. The second approach would be to
add a communicaion protocol to an existing SEF.
Finaly, these two approaches could be combined to
crede aset of federated todls that agreed to a protocol

1 1t should be noted that an API is under discussion as part of the
current SEF effort and it is primarily concerned with facilitating access
to data stored in the SEF. It will be referred to as “data-API” to
distinguish it from the API that isfocus of this paper.

Susan Sim
Proceedings of the Seventh Working Conference on Reverse Engineering, pp. 278-283, Brisbane, Queensland, Australia, 23-25 November, 2000.

for intraa and inter-tool behaviour. Each of these
approaches will be discussed in greaer detail to provide
a basis for discussng requirements of an APl in Sedion
3.

Libraries

Each tod developer could make an encapsulated version
of their tool available. This version could be invoked
like alibrary from other todls, using a set of pre-defined
commands or API, on a mmmon data structure, or SEF.
The APl would include rules on modifications and their
data requirements.

The avantage of this approach is geed. Tods cdling
ead other in this fashion would not have to write and
reread data from disk. Nor would they even have to
copy memory pages. They could simply cdl commands
on other toos and pass memory references. The
disadvantage of this approach is that some tools are not
designed to be used as libraries. For instance, they might
have cmmand-line switches or a graphicd user
interface Also, the resulting system would be tightly
integrated and sensitive to changes. Reseachers may
also be reluctant to maintain another version of their
todls.

Communication Protocol for SEF

This approach would alow stand-alone tods to
interoperate. The underlying architedure muld be pee-
to-pee or client-server, and would likely use sockets to
communicae. Existing technologies sich as CORBA or
Enterprise Java Beans could be gplied here. Woods et
al. have propcsed a dient-server architedure, CORUM,
for this purpose.[7] The APl would consist of a set of
commands (operations on data) and a protocol for using
the SEF.

The alvantage of this approach is it compatible with
current work. It would leverage the data-API being
designed for use with the SEF and ead too would till
be an independent entity. Using sockets to communicate
would alow tools to be run on different operating
platforms, thus reducing compatibility issues. A
disadvantage of this approach is that data
synchronisation between tools would be amajor isae.

Hybrid: A Framework for Federated Tools

The framework approach takes elements from both of
the previous approaches and combines them. Todls
would have to be encgpsulated in the sense that they
follow a template prescribed by the framework and they
would communicae using protocol. The interadion
template would include basic commands (ones that
every tod would be required to handle), a mechanism
for acceting and returning data, and configuration

commands. It would also include standards for how eath
toadl should behave in terms of error handling, blocking,
and the like.

Tools co-operating in a framework would result in a
smoother end-user experience, thus addressng the
original problem of shortening the length of discovery
cycles. It does require tod developers to do more work
to put an interfaceon their own toals, but this work is
repaid with the eae that they can use other todls.

While this interadion model appeas complex, its
implementation need not be. For example, eatr group
make their tod available on the Internet, say using a
CGl-script. This sript would receve requests and data
and passit to the reverse engineaing toodl. The results
could then be returned using another CGI script, ftp
protocol, or email. In this example, the framework
would consist of a set of communicaion rules how to
send commands and data, how to return the results, and
how to ded with errors. The results may be fads in the
SEF, astatic graphic, or tool runningin aweb browser.

3. Transferring Lessons Learnt from
SEFs to APIs

During the mnsultation and design process we ae
leaning about the technicd aspeds of designing an SEF
and the organisational aspeds of building a amnsensus—
lesons that will prove valuable in the development of
an API. With resped to technicd issues, we ae diciting
functional requirements (i.e. data schema for various
toals) and non-functional requirements (i.e. criteria for
sucecess. [1, 3-5]

Virtualy al of the requirements are gpliceble to an
API, including such as language-independence,
flexibili ty, appli cability to multiple levels of abstradion,
and scdability. In the previous sdion, three posshle
approachesto an APl were given. With this background,
the most relevant requirements will be discussed here.

e Theformat should be simple and lightweight.

As with the SEF, the API needsto be eay to understand
and use in order to promote aloption. Furthermore, the
time and space requirements will be minimised with a
simple, lightweight standard.

» Every entity must have aunique identifier.

By giving every element in the software system a unique
identifier, we would be &le to address ead one
independently. The intention for SEFs was that this
unique identifier could be used in the same manner as an
index key in a database or repository.

e |t should be possble to incrementally add data to
the repaository.

Since toods would be &le to huild their internal

repasitories incrementally, they need not share the entire

database up front. Instead, they can ask for only relevant

fads, as they need them using unique identifiers and

relations between entities.

e There needs to be a library for accessing and
analysing the SEF.

While this library, or data-API is not dtrictly part of the

SEF design, it would fadlitate aloption. Furthermore,

this data-APl could be used within the APl to

manipulate and manage the SEF.

Some requirements are not diredly applicable, but have

analogues for the API, such as the following.

e It should be etensible, alowing users to define
new schemas for the fads dored in the format as
needed.

An API does not nead to be extensible with resped to

the schemata it represents, but the operations that it

allows. It should be eay to extend the API to add new
analyses to the reverse engineaingtod kit as they
become avail able. Asa wrollary to extensihility, it
should be eay to de-couple aparticular toadl from the

API. In other words, todls need to retain the &ility to

runindependently.

4. Conclusion

An SEF would be amgjor step forward in for the reverse
engineaing community. The most significant benefit of
an SEF is greder tod interoperability between tools
from both research and industry. However, file-based
data interchange should not be viewed as the pinnade of
toadl interoperability. More can be done to enable todls
to work together diredly, such as through an API. In
this paper, we illustrated three possble gproaches for
designing an API and we showed how the devel opment
of an API flows out of our current work with SEFs. We
need not design this APl simultaneoudly with the SEF.
Nor do we neead to have awy approach in mind when
designing the SEF. We neal only be aware of the API
as a desirable next step, in order to avoid closing off
possbiliti es.

At time of writing, we have agreement that the SEF

should:

* use XML to encode data;

e usetyped, attributed graphs as the conceptual data
model;

* have asyntax that permits multi ple schemata; and

e transmit the schema dong with instance data.

We have ealy indicaions that GXL (Graph eXchange
Language) will become the SEF.[2] Part of the aurrent
effort includes work on a data-API for manipulating
data stored in this format. These developments bode
well for the design of a next generation standard, atoal-
to-todl API. Progressalong these lines indicates we ae
on a path that will | ead us to greaer tool interoperability
beyond data interchange.

Acknowledgements

Thanks to Jeff Elliott, Jeff Turnham, and Dave
McKnight for the discussions. They are responsible for
the good ideas in this paper, while the mistakes are dl
mine.

Bibliography

[1] I. T. Bowman, M. W. Godfrey, and R. C. Holt,
“Conneding Architedure Remnstruction
Frameworks,” Journal of Information and
Software Technology, vol. 42, pp. 93-104,
1999

[2] R. C. Holt, Andy Schirr, and A. Winter,
“GXL: Toward a Standard Exchange Format,”
University of Koblenz, Koblenz, Germany RR-
1-200Q 2000.

[3] R. Koschke, J.-F. Girard, and M. Wirthrer,
“An Intermediate Representation for
Integrating Reverse Engineaing Analyses,”
presented at Working Conference on Reverse
Engineging, Honolulu, HI, 1998

[4] H. A. Mdller, “Criteriafor Successof an
Exchange Format,” presented at Workshop
meding, CASCONQ98, Toronto, Canada, 199%8.
Available &: http://plg.uwaterloo.ca~holt/-
sw.eng/exch.format/criteria_mull er.html

[5] S. Rugaber and L. Will s, “Position Paper on
Reseach Infrastructure for Reengineeing,”
presented at International Workshop an
Program Comprehension, Deaborn, M1, 1997.

[6] P. Wegnrer, “Interoperabili ty,” ACM Computing
Surveys, vol. 28, pp. 285-287, 1996.

[7] S. Woods, L. O'Brien, T. Lin, K. Gallagher,
and A. Quilici, “An Architecure for
Interoperable Program Understanding Toadls,”
presented at International Workshop an
Program Comprehension, Ischia, Italy, 1998

