
Next Generation Data Interchange:
Tool-to-Tool Application Program Interfaces

Susan Elli ott Sim
Dept. of Computer Science

University of Toronto
simsuz@cs.utoronto.ca

Abstract
Data interchange in the form of a standard exchange
format(SEF) is only a first step towards tool
interoperability. Inter-tool communication using files is
slow and cumbersome; a better approach would be an
application program interface, or API, that allowed
tools to communicate with each other directly. This
paper argues such an AP is a logical next step that
builds on the current drive towards an SEF. It presents
high-level descriptions of three approaches to tool-to-
tool APIs and illustrates how requirements for the SEF
also apply to the API.

Keywords
standard exchange format, API, tool interoperabili ty,
library, protocol, framework

1. Introduction
As agreement is reached on a standard exchange format
(SEF), we need to turn our attention to problems that lie
beyond the current event horizon. These problems will
exist independent of any single representation format
and will continue to be interesting regardless of which
one is chosen. Chief among these concerns is an API
(Application Program Interface) for dynamic tool
interoperabili ty.

The primary object of an SEF is greater tool
interoperabili ty. Within the reverse engineering
community, we have reached a level of maturity where
we have recognised the benefits of making our tools
work together more effectively. However, the current
drive towards an SEF has focussed on data interchange
through files. This interaction model essentially requires
tools to read and write to disk to communicate with each
other. Such delays are cumbersome and do not
encourage interactive experimentation to recover high-
level structures in legacy systems.

Tool interoperabilit y can be characterised using three
levels.

Level 0 Ad hoc interaction.
Level 1 Static interaction using an SEF and disk files.
Level 2 Dynamic interaction using an API to share

data and to invoke other tools.
We are currently at level 0, where tools are pieced
together using data converters and scripts. Furthermore,
these helper programs become out-of-date as soon as
one tool changes. An SEF will allow us to achieve level
1 and reduce the number of data converters needed.
Adding an API1 would take us to level 2 and reduce the
brittleness of commands or scripts issued between tools.
Progress towards this level depends on having a stable
and operational SEF. Learning to communicate data is a
necessary pre-condition to learning to communicate
operations on data.

This paper looks at the problem of how to make tools
communicate with each other directly. Such an API is a
logical next step and results from the current SEF are
also applicable to its development. Section two gives
high-level descriptions of three possible approaches for
the API. Having il lustrated how an API might operate,
section three shows that the requirements for the SEF
transfer to the API as well.

2. Approaches for Dynamic Tool
Interoperability
There are three basic approaches, or architectures, for
dynamic tools-to-tool communication. [6] The first
approach is to encapsulate each software tool and have it
operate as a library. The second approach would be to
add a communication protocol to an existing SEF.
Finally, these two approaches could be combined to
create a set of federated tools that agreed to a protocol

1 It should be noted that an API is under discussion as part of the
current SEF effort and it is primarily concerned with facilitating access
to data stored in the SEF. It wil l be referred to as “data-API” to
distinguish it from the API that is focus of this paper.

Susan Sim
Proceedings of the Seventh Working Conference on Reverse Engineering, pp. 278-283, Brisbane, Queensland, Australia, 23-25 November, 2000.

for intra- and inter-tool behaviour. Each of these
approaches will be discussed in greater detail to provide
a basis for discussing requirements of an API in Section
3.

Libraries
Each tool developer could make an encapsulated version
of their tool available. This version could be invoked
like a library from other tools, using a set of pre-defined
commands or API, on a common data structure, or SEF.
The API would include rules on modifications and their
data requirements.

The advantage of this approach is speed. Tools calli ng
each other in this fashion would not have to write and
re-read data from disk. Nor would they even have to
copy memory pages. They could simply call commands
on other tools and pass memory references. The
disadvantage of this approach is that some tools are not
designed to be used as libraries. For instance, they might
have command-line switches or a graphical user
interface. Also, the resulting system would be tightly
integrated and sensitive to changes. Researchers may
also be reluctant to maintain another version of their
tools.

Communication Protocol for SEF
This approach would allow stand-alone tools to
interoperate. The underlying architecture could be peer-
to-peer or client-server, and would likely use sockets to
communicate. Existing technologies such as CORBA or
Enterprise Java Beans could be applied here. Woods et
al. have proposed a client-server architecture, CORUM,
for this purpose.[7] The API would consist of a set of
commands (operations on data) and a protocol for using
the SEF.

The advantage of this approach is it compatible with
current work. It would leverage the data-API being
designed for use with the SEF and each tool would still
be an independent entity. Using sockets to communicate
would allow tools to be run on different operating
platforms, thus reducing compatibili ty issues. A
disadvantage of this approach is that data
synchronisation between tools would be a major issue.

Hybrid: A Framework for Federated Tools
The framework approach takes elements from both of
the previous approaches and combines them. Tools
would have to be encapsulated in the sense that they
follow a template prescribed by the framework and they
would communicate using protocol. The interaction
template would include basic commands (ones that
every tool would be required to handle), a mechanism
for accepting and returning data, and configuration

commands. It would also include standards for how each
tool should behave in terms of error handling, blocking,
and the like.

Tools co-operating in a framework would result in a
smoother end-user experience, thus addressing the
original problem of shortening the length of discovery
cycles. It does require tool developers to do more work
to put an interface on their own tools, but this work is
repaid with the ease that they can use other tools.

While this interaction model appears complex, its
implementation need not be. For example, each group
make their tool available on the Internet, say using a
CGI-script. This script would receive requests and data
and pass it to the reverse engineering tool. The results
could then be returned using another CGI script, ftp
protocol, or email . In this example, the framework
would consist of a set of communication rules how to
send commands and data, how to return the results, and
how to deal with errors. The results may be facts in the
SEF, a static graphic, or tool running in a web browser.

3. Transferring Lessons Learnt from
SEFs to APIs
During the consultation and design process, we are
learning about the technical aspects of designing an SEF
and the organisational aspects of building a consensus—
lessons that will prove valuable in the development of
an API. With respect to technical issues, we are eliciting
functional requirements (i.e. data schema for various
tools) and non-functional requirements (i.e. criteria for
success). [1, 3-5]

Virtually all of the requirements are applicable to an
API, including such as language-independence,
flexibili ty, applicabili ty to multiple levels of abstraction,
and scalabili ty. In the previous section, three possible
approaches to an API were given. With this background,
the most relevant requirements will be discussed here.
• The format should be simple and lightweight.
As with the SEF, the API needs to be easy to understand
and use in order to promote adoption. Furthermore, the
time and space requirements wil l be minimised with a
simple, lightweight standard.
• Every entity must have a unique identifier.
By giving every element in the software system a unique
identifier, we would be able to address each one
independently. The intention for SEFs was that this
unique identifier could be used in the same manner as an
index key in a database or repository.

• It should be possible to incrementall y add data to
the repository.

Since tools would be able to build their internal
repositories incrementally, they need not share the entire
database up front. Instead, they can ask for only relevant
facts, as they need them using unique identifiers and
relations between entities.
• There needs to be a library for accessing and

analysing the SEF.
While this library, or data-API is not strictly part of the
SEF design, it would facilit ate adoption. Furthermore,
this data-API could be used within the API to
manipulate and manage the SEF.

Some requirements are not directly applicable, but have
analogues for the API, such as the following.
• It should be extensible, allowing users to define

new schemas for the facts stored in the format as
needed.

An API does not need to be extensible with respect to
the schemata it represents, but the operations that it
allows. It should be easy to extend the API to add new
analyses to the reverse engineering tool kit as they
become available. As a corollary to extensibili ty, it
should be easy to de-couple a particular tool from the
API. In other words, tools need to retain the abili ty to
run independently.

4. Conclusion
An SEF would be a major step forward in for the reverse
engineering community. The most significant benefit of
an SEF is greater tool interoperabili ty between tools
from both research and industry. However, file-based
data interchange should not be viewed as the pinnacle of
tool interoperabilit y. More can be done to enable tools
to work together directly, such as through an API. In
this paper, we il lustrated three possible approaches for
designing an API and we showed how the development
of an API flows out of our current work with SEFs. We
need not design this API simultaneously with the SEF.
Nor do we need to have any approach in mind when
designing the SEF. We need only be aware of the API
as a desirable next step, in order to avoid closing off
possibiliti es.

At time of writing, we have agreement that the SEF
should:
• use XML to encode data;
• use typed, attributed graphs as the conceptual data

model;
• have a syntax that permits multiple schemata; and
• transmit the schema along with instance data.

We have early indications that GXL (Graph eXchange
Language) will become the SEF.[2] Part of the current
effort includes work on a data-API for manipulating
data stored in this format. These developments bode
well for the design of a next generation standard, a tool-
to-tool API. Progress along these lines indicates we are
on a path that will l ead us to greater tool interoperabilit y
beyond data interchange.

Acknowledgements
Thanks to Jeff Elli ott, Jeff Turnham, and Dave
McKnight for the discussions. They are responsible for
the good ideas in this paper, while the mistakes are all
mine.

Bibliography
[1] I. T. Bowman, M. W. Godfrey, and R. C. Holt,

“Connecting Architecture Reconstruction
Frameworks,” Journal of Information and
Software Technology, vol. 42, pp. 93-104,
1999.

[2] R. C. Holt, Andy Schürr, and A. Winter,
“GXL: Toward a Standard Exchange Format,”
University of Koblenz, Koblenz, Germany RR-
1-2000, 2000.

[3] R. Koschke, J.-F. Girard, and M. Würthner,
“An Intermediate Representation for
Integrating Reverse Engineering Analyses,”
presented at Working Conference on Reverse
Engineering, Honolulu, HI, 1998.

[4] H. A. Müller, “Criteria for Success of an
Exchange Format,” presented at Workshop
meeting, CASCON98, Toronto, Canada, 1998.
Available at: http://plg.uwaterloo.ca/~holt/-
sw.eng/exch.format/criteria_muller.html

[5] S. Rugaber and L. Will s, “Position Paper on
Research Infrastructure for Reengineering,”
presented at International Workshop on
Program Comprehension, Dearborn, MI, 1997.

[6] P. Wegner, “ Interoperabili ty,” ACM Computing
Surveys, vol. 28, pp. 285-287, 1996.

[7] S. Woods, L. O'Brien, T. Lin, K. Gallagher,
and A. Quili ci, “An Architecture for
Interoperable Program Understanding Tools,”
presented at International Workshop on
Program Comprehension, Ischia, Italy, 1998.

