Proceedings of the Seventh Working Conference on Reverse Engineering, pp. 184-193, Brisbane, Queensland,

Australia, 23-25 November, 2000.

A Structured Demonstration of
Program Comprehension Tools

Susan Elliott Sim
Dept. of Computer Science
University of Toronto
10Kings College Rd, Toronto
ON, Canada M5S 3G4
+1 (416) 978 4158
simsuz@ecs.utoronto.ca

Abstract

This paper describes a structured tool demonstration, a
hybrid evaluation technique that combines elements from
experiments, case studies, and tednology
demonstrations. Devdopers of program understandng
tools were invited to bring their tods to a comnon
location to paticipate in a scenario with a comnon
subjed system. Working simultaneously, the tod teams
were given revase engineeging tasks and maintenance
tasks to complete on an urfamiliar subjed system.
Observers were assigned to each team to find ou how
useful the observed program comprehension tool would
be in an industrial setting. The demonstration was
followed by a workshop panel where the devdopment
teams and the observers presented their results and
findings fromthis experience

Keywords
Empiricd study, program comprehension, tool evaluation.

1. Introduction

During the past decale, many tools have been developed
both in industry and reseach to suppat reverse
engineaing and program understanding. There is no
doubt that better tools would have a huge impad
eonomicdly, as the presare to rapidly evolve and
develop software systems increases. Unfortunately, few
todls have ahieved widespread acceptance in industry.
One way to remedy this slow technology transfer is to
undertake tod evaluations. These evaluations are done
not only to assess the gplicability of todls, but also to
help improve them and to identify further requirements.

Unfortunately, the evaluations in the literature tend to be
ad hc at best.[15] Software tods are rarely evaluated in
aforma way by users, and when they are evaluated, it is
for a short time by people who do not have training or
experience with the tool.[11, 13, 21, 22] Too often
potential users base their opinions of the tood on
superficial fadors sich as appeaance, ease of leaning,

Margaret-AnneD. Storey
Dept. of Computer Science
University of Victoria
PO Box 3055STN CSC
Victoria, BC Canada V8W 3P6
+1 (250) 721 876
mstorey@uvic.ca

and number of feaures, rather than factors that are more
important in the long run such as ease of use, flexibility,
and scdability. Evaluations based on case studies, such
as applying a particular tool to a subjed system are
informative but the results are difficult to generalize]9,
12, 14]

Although program comprehension tools share the
common goal of simplifying the task of understanding
large bodes of source @de, these tods differ at many
levels: from their appeaance to technicd detail s to their
philosophicd approach. These differences and their
relative strengths and wegnesses do not beame gparent
until the todls are seen side-by-side. Oppartunities to see
different tools perform the same tasks are highly
illuminating. Some aithors have mpared tools
independently or with colleagues.[8, 10, 17, 24]
Chikofsky organized a Reverse Engineeaing
Demonstration Projed where reseachers were invited to
use their tools to analyze the WELTAB IIl Eledion
System.[4]

With this in mind, the authors of this paper designed a
structured tool demonstration where tool builders were
invited to demonstrate their tods in a live setting. The
ideawas for the toadl developersto apply their own tod to
a ommon software system. Software tools that provide
visualization and exploration fadlities for program
understanding were seleded to participate in the
demonstration. Working simultaneoudly, the tool teams
were given reverse engineaing tasks and maintenance
tasks to complete on the subjed system. Industrial
ohservers were asigned to ead team to learn how to use
the program comprehension tool. They were asked to
asess if the tod would be useful for their own
development team in industry.

The reseach contributions of this work are threefold.
First, they establish a benchmark that can be used to
evaluate reverse engineaing tods. Tool developers who
use the xfig 3.2.1 structured demonstration can compare
their results with those from previous participants.

Susan Sim
Proceedings of the Seventh Working Conference on Reverse Engineering, pp. 184-193, Brisbane, Queensland, Australia, 23-25 November, 2000.

Tod Description Languages Operating
Systems
Lemma, displays oftware structure and code statements are CI/C++, Java, Windows NT
IBM RTP various levels of abstradion Fortran, Cobd, Linux
source mde seaching, navigation, code viewing, cdling PL/I, Pascd, 0S2
diagrams and control flow graphs Rexx
PBS, todl set for extrading, analyzing and visualizing software | C, C++, PL/IX Solaris
U. of architedure Linux
Waterloo Windows
Rigi, graph visualization and exploration tool, with scripting C, C++, Cobd, UNIX
U. of Victoria and some metrics fadli ties PL/IX Linux
Windows
TkSeg e source ®de seaching tod with aGUI for very large C, Pascd, Linux
U. of Ottawa software systems Assmbler
» history and task management cgpabiliti es
UNIX Tools * vi/lemacs C, UNIX
(Red Hak) « compiler, debugger, profiler Fortran,
. grep others
Visual Age * arepository-based IDE with incremental compil er C++ Windows NT
C++, + includes editor, compil er, search capabiliti es, class AlX
IBM browser

Table 1: Summary of Tod Characteristics

Seoond, they present a technique for combining usabili ty
testing with benchmarking to provide further evidence on
the goplicability of todls. Third, the materials developed
for a structured demonstration encgpsulate the knowledge
necessary to perform an empiricd tod evaluation.
Consequently, it will be easier for someone with little
knowledge of experimental design to conduct a
reasonable study.

The demonstration was held as part of a workshop at
CASCON99, an annual Canadian software technology
conference that brings together reseachers, industry and
government.[1] The goal of the demonstration was not to
find a winner, but to help reseachers in this field lean
which aspeds of the studied tools would be useful for
particular tasks. Given the differences in how the tools
operate, comparing toodls along a single dimension would
have been difficult, if not impaossible.

The remainder of the paper is organized as follows:
Sedion 2 outlines our objedives and reasons for
organizing this demonstration. Sedion 3 describes the
participating toals, the format of the demonstration, the
industrial observers assigned to the teams, and the
asdgred reverse engineging and maintenance tasks.
Sedion 4 describes the results of the asdgned tasks.
Sedion 5 reviews me of the observations made by the
industrial observers and the workshop chairs (the authors
of this paper). Sedion 6 discuses the outcomes of the
workshop and autlines future work.

2. Objectives

The overall ideabehind this workshop was to provide a
common playing field for tool builders to demonstrate
their tools by having experienced users apply them in a
live setting to an example software system. We wanted to
cgpture the etire experience, i.e. observe eabt team
receving the subjed system’'s ource ®de ad
documentation right through to when the team used their
tool to complete the assigned tasks.

By demonstrating the todls in a structured fashion, we
could observe expert programmers and expert users using
the todls. A drawbadk with other user studies is that it
can be difficult to find expert users and it isimpradicd to
exped users to spend alot of time leaning a toad for the
sake of participating in a study. Furthermore, by
assgning redistic tasks on an adual software system, this
helped us consider ease of use, flexibility and capabili ty
rather than focusing solely on usability. It also all owed us
to consider tod usefulness from the particular task
perspedives of program comprehension and software
mai ntenance.

For the todl developer participants, we expeded that this
demonstration would provide them with insights into their
own toadls, as well as enable firsthand viewing of other
approaches being developed to provide suppat for the
same tasks. We strove to give the tools an oppatunity to
excd within the structure of the demonstration, by
asdgning a variety of tasks. The subjed system assigned
was a novel experiencefor the development teams.

Tod Team Observer
Lemma, Robert Mays—senior software devel oper Jeremy Broughton—IBM, DB2
IBM RTP Development Environment and Build
Suppat
PBS, John Tran—UofW graduate student Ryan Chase—IBM, DB2 UDB
U of Waterloo Thomas Parry—UofW graduate student Administration Tools
Eric Lee—Uof W graduate student
Rigi, Johannes Martin—UofV graduate student Not avail able due to ill ness
U. of Victoria Bruce Winter—UofV graduate student
Kenny Work—U of Alberta faculty
TkSee Tim Lethbridge- UofO faculty Jeff Michaud—UofV graduate student with
U. of Ottawa Paul Holden—UofO undergraduate previous industry experience
Sonia Vohra—UofO undergraduate
UNIX Tools Piotr Kaminski—UofV graduate student Not applicable
Arthur Tateishi—Shelty Systems, consultant
Andrew Walenstein—SFUJ graduate student
Visual Age C++, David McKnight—software developers Not applicable
IBM Cindy Nie—software developers
Jeff Turnham—software developers

Table 2: Characteristics of Participants

The demonstration was public; conference participants
were invited to olserve how the tools were being
deployed for the assigned tasks. Teams were requested to
have & least one representative avail able to explain their
tools and methoddogy.

3. The Structured Demonstration

This ®dion of the paper describes the participating tools,
the format of the demonstration, the observers assigned to
the teams, and the assigned tasks.

3.1 Participating tools

Five software development teams were invited to
participate in the demonstration:

* Lemma, IBM RTP[23]

* PBS, University of Waterloo[3, 16]

* Rigi, University of Victoria[5, 16]

e TkSeeg University of Ottowa[19]

e Visual Age C++, IBM Toronto Lab [6]

A sixth team of software developers (Red Hadk) used a
set of UNIX tools to solve the same set of tasks. A short
description of the tools and ather relevant charaderistics
can be found in Table 1. The team members are listed in
Table 2. With the exception of TkSee all the teams
consisted of individuals who had experience with
software development in C and their respedive toadls.
TkSeehad one team member who was not an experienced
tool user.

3.2 Format

The workshop consisted of two phases. In the first phase
the tod development teams demonstrated their tools in a
live setting by applying their tods to a subjed software
system. We tried to find a subjed system that was written
in a programming language that was common to all the
teams on an operating system that everyone culd use.
We seleded the open source xfig drawing padkage, which
runs on a variety of UNIX operating systems and is
written in ANSI C consisting of approx 50,000LOC.[7]

We recommended that teams consist of three members
and collaborate using only one computer. However, the
Lemma team had only one individual and the Rigi team
made use of additional computers to fix a bug in their
parsing tod. The teams were given the source mde and
handbodks shortly after 9am and were asked to complete
their work by 5pm.

The six teams were presented with the foll owing scenario:
xfig is a drawing application that runs on a variety
of UNIX platforms. The arrent version is 3.2.1
and consists of about 50 000lines of ANSI C. The
old xfig team and manager quit the xfig projed to
join a start-up company.

Y ou have been assigned, along with some of your
colleggues, to rescue the future development of
the xfig applicaion. You are placed under a new
manager, a recet MBA graduate, who is
impressed that you are going to use some fancy
todlsto get the new team up to speed.

The first thing the new manager would like you to
do is to use your tod(s) to crede some
documentation that would summarize the main
structures and architedure of the xfig applicétion.
The manager would also like you to explore how
you would go about implementing some of the
changes that were identified in the inherited
"TODQO" list.

The scenario also contained a set of assgned tasks.
These tasks were described in a handbodk that also
reviewed procedures to be followed throughout the day
(seeSedion 3.4).

3.3 Observers

Impartial observers (all of whom had experience &
software developers) were a&sgned to the teams to
observe how each of the tods were used to solve the
tasks. We did not reauit an observer for the UNIX Tools
team as these todls are drealy widely used in industry.
Unfortunately, two of the reauited observers were unable
to attend due to work issues or illness We were ale to
asdgn a graduate student to one team but we were not
able to find an observer for the Rigi team. The observers
and their backgrounds are listed in Table 2.

The observers were to ad as "apprentices’ with the goal
of trying to develop a mastery of the todls over the murse
of the day. This experience allowed them to determine
how a particular tod set could be used in their work as
software developers. We asked the observers to take notes
so that they could report on their experiences during the
workshop panel. We briefed eat of the observers before
the demonstration and gave them an observer's handbodk
to guide them in their task’. During this phase workshop
attendees were dso invited to drop by and olserve the
tool developers as they progressd.

3.4 The assigned tasks

We used two principles in seleding the tasks for the
structured demonstration. We wanted the tasks to be
representative of those asoftware developer would facein
his or her daily work. These were presented as problems,
not as prescriptions for how the tools ought to be used.
For example, most managers are more likely to ask people
to repair a defed or add a fedure, rather than perform
data flow analysis or slicing. We dso wanted the tasks to
provide opportunities for the researchers to demonstrate
the strengths of their tools. Consequently, we included
tasks that required the teams to look at the subjed system
in different ways.

1 A copy of the handbodks and other materials used in the
demonstration are available & the workshop web site. [2]

We a&sgned two reverse engineaing tasks and three
maintenance tasks. The teams were required to complete
al the reverse engineeing tasks and at least one of the
maintenance tasks. Ead task had a deliverable that the
teams were required to hand in. The following task
descriptions are taken from the handbodk given to the
developer teans.

3.4.1 Reverse engineering Tasks

Q1.1 Documentation

Provide atextual and/or graphicd summary of how the
xfig source mde is organized. This documentation should
provide the manager with an overview of the system, and
may include a cd graph, subsystem decomposition,
description of the main data and file structures or any
other appropriate information. Use whatever format you
think is appropriate, such as text files, HTML, Word
documents, graphics, etc.

Q1.2 Evaluate the structure of the application.
Y our manager would like you to form an opinion on the
structure of the xfig program. In particular, you should
answer the foll owing questions:
* Wasit well-designed initially?
» Do you think the original designis dill intad?
e How difficult will it be to maintain and modify?
e Arethere some modulesthat are unnecessarily
complex?
Arethere any GOTO's? If so, how many, what
changes would need to be made to remove them?

3.4.2 Maintenance Tasks

These tasks were extraded from the xfig's TODO file.
The teams were instructed to outline changes required to
complete the task, but they were not asked to change the
code.

Q2.1 M odify the existing command panel.

The buttons in the cmmand penel (i.e. the todl bar) at the
top d the window are somewhat unconventional. For
example, the tool bar should be more cnsistent with
those in other graphical user interfaces. The healings
"File", "Edit", and "View" should be left justified and the
"Help" menu item should be right justified. Also, the
buttons in the cmmand panel should be re-arranged as
foll ows:

File Edit View Help

New Undo Landscape [Xfig HTML
Load/Merge |Paste Portrait Reference

Save Find Redraw Xfig tutorial in pdf
Save As Replace Xfig man pages in
Export Spell Check pdf

Print About Xfig

Exit

Q2.2 Add a new method for spedfying arcs.

Currently, arcs are aeded by spedfying threepaints (you
may want to run the program to try this out), which are
then used to creae a spline curve. Add a fedure that
allows a user to draw an arc by clicking on the cantre of a
circle and then seleding two pdnts on the drcumference,
i.e. by spedfying aradius and angle. Explain the goproach
you would take to implement this new feaure.

Q2.3 Bugfix: Loading library objeds.

Loading objeds from a library causes the program to
crash. This error occurs when the user attempts to load a
library objed using the bodkshelf icon on the left-hand
side of the screen. When you click on this icon, a dialog
box opens that alows you to select a Library and an
objed to load. This squence of steps will result in a
" Segmentation Fault" error.

In addition, we asked the teams to consider the foll owing
guestions which they would need to address in their
presentations:
e How long did it take you to read the source mde
into your tool?
e What difficulties did you encounter with your
tool? Did it crash? Any other surprises?
* How long did you spend on the required tasks?
* What kind of documentation did you creae?
* Which maintenancetasks did you do?
* How long did eadt of them take?

The next sedion in this paper provides highlights of the
results provided by the teams in the deliverables.

4. Results

For ead of the assigned tasks the teams had to hand in a
deliverable that included a description of their solutions.
This dion describes the documentation and answers to
the tasks that the teams provided. A table in the
Appendix provides a more detaled summary. The
complete results as submitted by the teams, as well as the
source @de for xfig, can be found at the website for the
workshop. [2]

The Visual Age team was unable to complete the tasks
because xfig is written in ANSI C and their IDE works
with only ANS|I C++. During the structured
demonstration, they and the organizers learned that ANSI
C++ is not a superset of ANSI C. This was unfortunate
becaise this hampered their ability to participate.
However, during the second phase of the workshop, the
VisualAge team demonstrated how they would have
solved the tasks. This presentation is also available & the
workshop website.

4.1 Reverse engineering Tasks

Q1.1 Documentation

In general, the teams produced rather terse
documentation. Red Hack and TkSee provided 3
paragraphs. Rigi provided one diagram. The PBS team
provided about 4 pages, mostly consisting of diagrams.
The Lemma team provided 8 pages of documentation,
which included cdl graphs and code excerpts. The Red
Hadk team explained the brevity of their documentation
for the task by arguing that since they didn’t nedl it to
complete the maintenance tasks then future maintainers
would probably not require it either.

Q1.2 Evaluate the structure of the application.

The teans had varying differences of opinion on the
architedure of the system, the quality of the wmde, and
even the number of GOTO's in the program. All the
teams used file name prefixes as the basis for clustering
the files into five subsystems, corresponding to the letters,
d e f, u and w. However, they had dfferent
interpretations of what the prefixes meant. Lemma
produced a seaond clustering based on the functiona units
in the user interface Although the Red Hadk team did not
explicitly spedfy this clustering, they did criticize it in
their design assessmnent. The PBS group pdnted out that
the subsystems formed using fil e prefixes contained more
function cdls and variable references to files outside the
subsystem than to files withinit.

In terms of quality, PBS said the subsystems exhibited
low cohesion and high coupling, while Lemma said they
exhibited low coupling and high cohesion. The PBS team
thought that the original design hed eroded since its
inception, but the Rigi team thought that the design had
improved over subsequent relesses. Rigi also noted that
some modules were unnecessarily complex. All the
teams had complaints about the mde, such as the lack of
comments, function pointer usage, cloning, and
duplicated names, but they did not find the ade difficult
to modify.

Rigi, Lemma, and Red Hack found 5GOTO'’s, PBS found
4 and TkSee found 3. Three of the teams gave
suggestions for how to remove dl of them. The Red
Hadk team recommended removing only one, and the
Rigi team suggested leaving them in the mde.

4.2 Maintenance Tasks

The solutions given to the maintenance tasks were fairly
consistent aaoss the groups. While the groups were
required to do at least one task, most did al or aimost all
of the maintenancetasks.

Q2.1 M odify the existing command panel.

The groups gave the same basic answer for this task:
change & array containing function pointers in
w_cmdpanel.c. Although they were asked to smply list
the files or functions that were involved in the change, the
teams provided answers with varying levels of detail and
thoroughness Some listed only the file names, while
others explained in detail how to make the change.

Q2.2 Add a new method for spedfying arcs.

There were two approades to solving thistask. The first
approach involved modifying the mode panel and adding
code in some new files. The second approad involved
modifying existing functions to implement the new
behaviour. Red Hack, PBS, and Lemma used the first
approach, while the other teams used the semnd

approach.

Q2.3 Bugfix: Loading library objeds.

This task was not completed by all of the teams and there
was more variability in the solutions given. TkSeelisted
the files to change, but did not explain how or why to
change these files. Lemma used static analysis to find a
number of passhle caises. Red Hack found a cuple of
ways to stop the program crashes, but they were
unsatisfied with those solutions becaise they could not
understand why those dcanges worked. They reverse
engineaed xfig 3.2.2 to find the official solution and the
root cause of the problem. Subsequently, they repaired
the defed by settingavariable to 17instead of 55.

5. Observations

This ®dion of the paper details ssme of the observations
made by the observers and by the workshop chairs during
the structured demonstration. First, some genera
observations are offered, followed by some comments
about eath of the spedfictoadls.

Asis often the cae with demonstrations, some things did
not go acording to plan. The day started late due to
missing observers and minor troubles with library
compatibility within the operating system. The teams, for
the most part, completed the tasks within the dl otted time
(9am to 5pm), but some teams took longer than this to
finish writing wp their results. As organizers, we had our
share of glitches. We had olservers who arrived late or
not at al and Visua Age did not have an operating
system installed on the cmputer assigned to them.

The biggest difficulty for some teams was parsing the
source @de (arequirement for all tools except the UNIX
todls). Although Lemma only spent 20 minutes parsing
and loading the subjed system, a bug in their tool slowed
their progressinitially. The others had to spend several

hours modifying their parsers or customizing scripts to
load the software.

The observers had many comments about their respedive
toadls, which they presented during the workshop. While
these cmments were generaly positive, there were some
criticisms as well. The observer for the PBS team
commented that the tod was useful for learning about the
genera architedure of the subjed system as they were
ableto creae diagrams that fit well with his mental image
of the system. However, he found that the toodl was not
useful for the maintenancetasks. For these, the PBS team
used basic UNIX tods, such as vim and grep. The
observer concluded that although PBS does have some
strengths, it is not a tool that could be eaily integrated
into his daily (maintenance) work. These observations
are dso bane out by the team’s results. The software
landscgpe diagrams all owed them to ask questions about
the dustering that the other teams did not. On the other
hand, they had to use dternative tools to complete the
maintenance tasks.

The Rigi team, unfortunately, did not have an industrial
ohserver, but we noted that they too had to use other toadls
to complete the maintenance tasks. Like PBS, they spent
along time parsing the subjed system in order to display
avisualization of xfig. But once they loaded the system,
they had dagrams that could easily be used as
documentation.

The TkSee observer expressd some frustration with
difficulties parsing the system, but once the mde was
loaded into TkSee he was very impressed with the toadl.
In particular, he liked the alvanced seaching
functionality, seach hstory and the to-do list
management feaure. However, he noted the ladk of
high-level visualizaion cagoabilities. The TkSee team
attempted al the maintenance tasks. The observer felt
this tod would be useful for his daily work but he
expressed some doubts as to whether it would scde as it
seemed a littl e Sow at times.

The Lemma observer was very impressed by the
comprehensiveness of the searching options in Lemma.
While Lemma did provide some diagrams of cdl graphs
and control flow, he was disappanted by the lack of high-
level visudizaion. The Lemma team completed al the
maintenance tasks. The Lemma observer wanted to
participate in the structured demonstration so that he
could determine whether his development team should
adopt this tool. He reported that he would be
recommending accetance

Using the basic UNIX todls, the Red Hack team was able
to very quickly complete the asigned maintenance tasks.
Although it was not required, they modified the source

code and compiled a new exeautable. However, they
produced very little documentation describing the system.

6. Discussion

In this sdion we present our own inferences based on the
results and observations of the structured demonstration.
These points are general in nature spanning several tools
and the evaluation experience & awhole. This gructured
demonstration provides lesons for tool designers,
potential tod users, and reseachers who plan to design
similar todl evaluations.

6.1 Lessons for Tool Designers

Everyone used grep, either at the command-line or built
into their toadl, which has interesting impli cations for us as
reseachers. As the Red Hadk team noted in their
presentation, UNIX todls already provide agrea ded of
suppat to programmers for a variety of programming
languages in the form of editors, compilers, debuggers,
profilers, and cross referencers. There ae two issues
here. One, these widely-avail able, popular tools represent
a minimum standard which we must improve on to
convince software developers and maintainers to use new
todls. Two, industry is arealy able to acomplish a grea
ded using the tools they aready have. Companies
regularly release new programs that consist of hundreds
of thousands of lines of source ®de with sophisticated
functionality and we should not underestimate what they
can tell us about designing successful software toadls.

In the structured demonstration, the tools fell into three
cdegories: visualizaion, advanced seach, and code
cregion. Although this caegorization is based on
feaures and functionality, tools from a given category
produced similar results. PBS and Rigi were designed for
creding gaph-based visual representations of software
systems based on file dustering. Both teams focused on
the same tasks and used diagrams in their documentation
of the subjed system. TkSee ad Lemma had advanced
feaures for seaching and tradng through the source
code. They both had grep-like functionality included in
their tools. The observers for both teams were impressd
with the functionality and were willing to use them in
their daily work, but were @ncerned about the lack of
high-level views. Finaly, Visual Age and UNIX toolsare
development environments, intended to be used in the
credion of new code. The asdgned tasks were seleded to
provide eab tod an opportunity to dsplay its key
feaures. We had expeded the visualizaion toodls to do
better on the reverse engineaing tasks and the seach
tools to do better on the maintenance tasks. These
expedations were confirmed, bath by the performance of
the tools and by observer comments.

While mode aedion tools are fundamental components of
programming environments, this is not yet the case for
visuali zation and advanced searching todls. Visualizaion
and seaching tods complement each other; the
shortcomings of the visualization todls are matched by the
strengths of the seach tools, and vice versa[l18]
Furthermore, these tools represent different approaches to
deding with large software systems. One gproac isto
make the code more manageable by supparting searching.
The other approach isto abstrad away details to make the
system more manageable. Within reseach, it isimportant
to explore different approaches to solving a difficult
problem. Moreover, it is worthwhile to test a particular
approach with multiple toals. During the panel discusson
both the TkSee ad Lemma teams identified elements of
the other toadls that they could use.

As a discipline matures there cmmes a point when the
proliferation of todls is no longer productive. At this
point it becomes more important to synthesize the lessons
leaned from separate explorations. Tool interoperability
can be adtieved either through a standard interchange
format or APIs (application program interfaces) that all ow
programs to cdl ead other diredly. Such mechanisms
would allow, for example, an advanced seaching toal to
leverage the caabiliti es of a visualizaion tool. Parsing
was another problem that was common aaoss the toals.
A standard interchange format or APl would allow toal
designers to use abest of breed approach in seleding a
parser rather than building a parser from scratch.

6.2 Lessons for Tool Users

When selecting a tod for program comprehension it is
important to know what the tool will be used for. If the
todl isto be used as part of a reverse engineaing effort,
where large-scde understanding is required, a
visualization tod that provides architedura diagrams
may be more gpropriate. If the toadl isto be used in day-
to-day software maintenance with extensive effort
focused on spedfic aress, then a seaching tod may be
more suitable. However, there ae many subtle differences
to be onsidered. For example, athough TkSee ad
Lemma ae both seaching tools, TkSee has feaures to
suppat exploration of unfamiliar code, whereas Lemma
supparts control flow diagramming feaures.

Software developers have asophisticated set of skills that
have been acquired over many yeas. These skillsinclude
knowledge of the problem domain, expertise in
programming and experience within a working
environment. It is not surprising that this badkground will
influence their acceptance of a new toal. A new toad has
a much better chance of being adopted permanently if it
works with and complements existing todls. For example,
a UNIX programmer who has been working with
command-line tod's for many years is likely to be biased

against an integrated development environment with a
feaure-rich graphicd user interface However, matching
interface styles by itself may not be sufficient. For
example, the Red Hack team consisted of three people
who had UNIX experience one of them used vi and the
other two used emacs, but preferred working with
different highlighting modes.

There is a @st to installing and leaning a new tool.
Consequently, a task needs to be sufficiently large,
difficult, or long-lived that the user can amortize the time
investment and redi ze the benefits. There are other costs
that are not immediately obvious. Leaning to use the
tod involves more than just leaning the interface the
user also neals to understand the fundamental concepts
underlying the tod. For example, PBS and Rigi can be
used to depict any type of graph with attributes. The
designers of these toadls use them to construct particular
views of a software system but the reverse engineging
processes they follow are not necessarily described in the
documentation. Another cost often not considered is that
the tod may need to be tailored to work with the locd
environment and subjed system. The modificaions may
involve changing the parser, writing scripts to automate
tasks, or writing uilities to add information to a
repasitory.

6.3 Lessons for Organizers of Evaluations

The structured demonstration provided a public
opportunity for researchers and developers to demonstrate
their tools on a cmmon subjed system using prescribed
tasks. We developed the structured tool demonstration to
overcome some of the flaws in other tool evaluation
methods gich as case studies, tedhnology demonstrations,
and experiments. It alowed us to see expert users and
expert programmers using the tools on a medium-sized
software system on redistic tasks.

The final design that we used in the too demonstration
was quite ommplex. It had many elements: required tasks,
optional tasks, deliverables, observers, presentations and a
panel. There ae some things we could have done
differently. Pilot testing is a very important stage in any
experimental design, and we unfortunately overlooked it.
A pilot test would have indicaed that we should have
included another task that was more difficult to complete
in order to have aset of questions that was maximally
discriminating. More inter-tool observations, that is,
observations that compared the tods, in addition to
having assigned observers to individual teams would have
been helpful. We did some time-stamped olservations,
which were invaluable, but they were alast-minute idea

There was a general tendency to crede very terse
documentation, both for task 1.1 and for the exercise & a
whole. Most groups handed in atotal of 3 pages. Lemma

was a notable outlier, producing 24 pages, including
diagrams and code ecerpts. It is unclea why this
occurred. There may have been a general reluctance to
write documentation, or the participants may have felt
congtrained by the time limits or were unacaistomed to
the atificial nature of the deliverables. In hindsight, we
probably should have given more explicit instructions for
documentation or asked for more detail ed deliverables.

Another paosshility is that the groups may have found the
maintenance tasks to be more appeding. After providing
a 3-paragraph description of the subjeda system, the Red
Hadk team wrote “We headed straight for the interesting
tasks.” Despite the fad that the teams were required to do
only one of the maintenance tasks, they opted to do all or
amogt all of them. In genera, the teams began with the
maintenance tasks and left the documentation tasks till the
end. One posshle explanation for this is that there is a
general tendency by programmers to avoid writing
documentation. Moreover, by performing the
maintenance tasks first, this allowed them to glean
information about the system that they later used to
complete the reverse engineaing tasks. This approadch is
consistent with Singer and Lethbridge’s model of just-in-
time program comprehension. [19, 20]

During the panel portion of the workshop, a participant
recommended that a single day wasn’t redly enough time
for the alditional cgpabilities of the reseach toads to
prove themselves and to justify the initial costs of loading
the subjed system. We would agree with this point and
say that the design of the workshopis not perfed.

Despite some criticisms and imperfedions, there were a
lot of successes. One benefit that was not anticipated was
the community buil ding that occurred over the threedays.
We deliberately did not give ay instructions on
collaboration, neither condoning nor forbidding it. At
first, the teams were quite competitive, but when they
redized that they were having similar problems they
began to work together. However, this sharing did not
extend to comparing results as is evident in sedion 4 and
in the Appendix. During the workshop presentations
there was a grea ded of laughter as the participants
looked badk at their struggles. The structured
demonstration alowed them to see the flaws in eah
other’'s todls fostering a feding of familiarity that paper
presentations and norma technology demonstrations
normally do not.

Based on the success of this event we ae planning
another structured demonstration. This one will focus on
parsing todls, becaise parsing was o problematic for
many of the teams in this demonstration. We fed that
such a demonstration would have benefits not only for the
dired participants, but also to the wider community.

Acknowledgements

We thank the tool development teams and olservers for
participating in the structured demonstration. We dso
thank the CASCON organizers from IBM, in particular
Homy Dayani-Fard, for their efforts to acoommodate our
many requests. Thiswork is being supparted by IBM
Canada Ltd., sponsored by CSER, and funded by NSERC.
Our thanks also to Medthild Maczwski, Bruce Philli ps
and the anonymous reviewers for their comments.

References

[1] “CASCON Home page' <Avalable &
http://www.cas.ibm.com/cascon>.

[2] “A Colledive Demonstration of Program
Comprehension Tods." Available &
<http://www.csr.uvic.cacascon99>.

[3] “The PBS Home Page." <Available &
http://www.turing.toronto.edu/pbs>.

[4] “Reverse Engineeging Demonstration Projed
Home Page". <Available a
http://pathbridge.net/reprojed/cfp2.htm>.

[5] “Rigi Group Home Page" Available &
<http://www.rigi.csc.uvic.ca>.

[6] “Visual Age C++ Home Page." Available &
<http://www.software.ibm.com/ad/visualage c+
+/>.

[7] “Xfig Home page." Available a

<http://www.xfig.org>.

[8] M. N. Armstrong and C. Trudeau, “Evaluating
Architedural Extradors,” presented at Working
Conference on Reverse Engineaing, Honolulu,
HI, 1998.

[9] M. Baaznska, E. Merlo, M. Dagenais, B.
Lagie, and K. Kontogiannis, “Partial Redesign
of Java Software Systems Based on Clone
Analysis” presented a Sixth Working
Conference on Reverse Engineaing, Atlanta,
GA, 1999

[10] B. Bellay and H. Gall, “A Comparison of Four
Reverse Engineaing Todls,” presented at 4th
Working Conferences on Reverse Engineaing
(WCRE '97), Amsterdam, The Netherlands,
1997

[1 R. W. Bowdidge and W. G. Griswold, “How
Software Tools Organize Programmer Behavior
During the Task of Data Encgosulation,”
Empirical Sdtware Engineeing, val. 2, pp. 221-
267,1997.

[12] I. T. Bowman, R. C. Holt, and N. V. Brewster.,
“Linux as a Case Study: Its Extraded Software
Architedure,” presented a International
Conference on Software Engineeging, Los
Angeles, CA, 1999

[13] K. Brade, M. Guzdia, M. Stedcke, and E.
Soloway, “Whorf: A Visualization Toodl for

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

(23]

[24]

Software Maintenance” presented at 1992 |IEEE
Workshop an Visual Languages, Sedtle, WA,
1992

T. Bruckhaus, N. H. Madhaviji, |. Jansen, and J.
Henshaw, “The Impad of Tods on Software
Productivity,” |IEEE Sdtware, pp. 29-38, 1996.
B. Curtis, “By the Way, Did Anyone Study Any
Red Programmers?” presented at First
Workshop an Empiricd Studies of Programmers,
Washington, D.C., 1986

P. J Finnigan, R. C. Holt, S. Kerr, K.
Kontogiannis, H. A. Miller, J. Mylopaulos, S.
G. Perelgut, M. Stanley, and K. Wong, “The
software bodkshelf,” IBM Systems Journal, vol.
36, pp. 564-593 1997.

G. C. Murphy, D. Notkin, W. G. Griswold, and
E. S. Lan, “An Empiricd Study of Static Call
Graph Extradors” ACM Transactions on
Sdtware Engineaing and Methodology, vol. 7,
pp. 158-191, 1998,

S.E.Sim, C. L. A. Clarke, R. C. Holt, and A. M.
Cox, “Browsing and Seaching Software
Architedures,” presented at International
Conference on Software Maintenance, Oxford,
England, 1999

J. Singer, T. Lethbridge, and N. Vinson, “An
Examination of Software Engineeing Work
Pradices,” presented at CASCON '97, Toronto,
Canada, 1997.

J. Singer and T. C. Lethbridge, “Just-In-Time
Comprehension vs. the Full-Coverage Strategy,”
presented at Workshop an Empiricd Studies of
Software Maintenance, Bethesda, MD, 1998.
M.-A. Storey, K. Wong, P. Fong, D. Hooper, K.
Hopkins, and H. A. Muller, “On Designing an
Experiment to Evaluate a Reverse Engineeing
Tool,” presented at Working Conference on
Reverse Engineaing, Monterey, CA, 1996
M.-A. Storey, K. Wong, and H. A. Muller, “How
do Program Understanding Tods Affed How
Programmers Understand Programs?,” presented
at WCRE '97, Amsterdam, Holland, 1997

A. von Mayrhauser and S. Lang, “On the Role of
Static Analysis during Software Maintenance”
presented at International Conference on
Program Comprehension, Pittsburgh, PA, 1999
N. Wilde, S. W. Dietrich, and F. W. Caliss
“Designing Knowledge-Based Tools for
Program Comprehension: A Comparison of
EDATS and IMCA,” University of Florida,
Tednicd Repot SERC-TR-79-F, December
1995

Appendix: Summary of Results

PBS Rigi Lemma TkSee Red Hack
Total Deliverables | approx. 6 pages, 3 pages, incl. 1 24 pages 3 pages 3 pages
incl. 6 dagrams diagram
Q11 approx. 4 pages 1 dagram 8 pages, including 3 text paragraphs 3 text paragraphs
Documentation including 5 cdl graphs and code
diagrams excerpts
Clustering? -file name prefix: | -file namesand 1. Functional: -file name prefix: -file name prefix:
draw, edit, file, containment cmd_panel, drawing, events, drawing, edit, file,
GUI, util -clusters nat spedfied | mode_panel, fil g, utiliti es, user interface
ind_panel window windows
2. Components:
draw, edit, file,
upckte, window
Q1.2 Design -low cohesionand | -understandable -high cohesion and -code -dupli cated function
asesanent high coupling overall, but low couging uncommented, lots | names, cloned code,
-asingle menu interdependent -use of global vars of external poor naming
item distributed not excessve variables, |lots of conventions, poor
over several files function panters moddarizaion,
and subsystems global state vars
Well designed -believe it was -can't tell -can't tell -well designed and -can't tell
initially? good -ned to see divided acording to
previous versions clustering scheme
Initial design still yes, but eroding -original design -can't tell yes yes
intact? complex but later
changes improved
organizaion
Difficult to -not bad now, but | no -reasonably easy -alittl e difficult no
maintain and will worsen over
modify? time
Some modules no yes no no no
unnecessarily (did not name)
complex?
GOTOs—how 4 5 5 3 5
many and removal | 2inmain.c -do nd degrade 2inmain.c 2inf_wrgif.c -remove lin
2inf_wrgif.c quality, so don't 2inf_wrgif.c 1linf_reagif.c main.c, leave the
-suggested using remove linf_reagif.c -asuggestion for rest
flags to remove -suggestions plus eah
time estimates
Q2.1 Change -modify array in -modify array in -modify array in -modify array in -modify array in
command panel w_cmdpanel.c w_cmdpanel.c w_cmdpanel.c w_cmdpanel.c w_cmdpanel.c
-plus other files -added 3 structs -verify cdling -plus other files
context
Q2.2 New method -change -changed existing arc | -change -changed existing -change

for spedfying arcs

w_modepanel.c
and add rew files

spedfication method

w_modepanel.c
and add rew files

arc spedficdion
method

w_modepanel.c
and add rew files

with functionality with functionality with functionality
acording to acording to naming acording to naming
naming convention convention
convention

Q2.3 Bug fix -did not complete | -did not complete -identified possble | -gavelong list of -magic constant not
task—could not task causes files to change but set corredly
crash program no description

