
A Structured Demonstration of
Five Program Comprehension Tools: Lessons Learnt

Susan Elli ott Sim
Dept. of Computer Science

University of Toronto
10 Kings College Rd,
Toronto ON, Canada

M5S 3G4
+1 (416) 978 4158

simsuz@cs.utoronto.ca

Margaret-Anne Storey
Dept. of Computer Science

University of Victoria
PO Box 3055 STN CSC

Victoria, BC Canada
V8W 3P6

+1 (250) 721 8796
mstorey@uvic.ca

Andreas Winter
Institute for Software

Technology
University of Koblenz-Landau

Rheinau 1
D-56075 Koblenz, Germany

+49 (262) 287 2764
winter@uni-koblenz.de

Abstract
The purpose of this panel is to report on a structured
demonstration for comparing program comprehension
tools. Five program comprehension tool designers
applied their tools to a set of maintenance tasks on a
common subject system. By applying a variety of
reverse engineering techniques to a predefined set of
tasks, the tools can be compared using a common
playing field. A secondary topic of discussion will
address the development of “ guinea pig” systems and
how to use them in a structured demonstration for
evaluating software tools.

1 Background
Many tools to support program comprehension have
been developed in both industry and research during the
past few years. Although these tools share the common
goal of simplifying the task of understanding large
software systems, they have different functionality and
different approaches. Various tools extract system
artifacts and their relationships at different levels of
granularity, ranging from fine-grained data at the
abstract syntax tree level to coarse-grained data at the
architectural level. Other tools support techniques for
abstracting these artifacts e.g. using metrics-based
discovery of software architecture, query-based
investigations of software structure, or browsing
capabili ty to support a structured exploration of the
system. Furthermore, tools can be distinguished by how
they present the results of analyses. Some tools show
different kinds of graphs, reporting the results in terms
of source code, or presenting these data in textual
representations such as lists or tables.

Despite the commonly held assumption that effective
tools could be of huge economic gain, there have been
relatively few tool evaluations. The evaluations that
have been done have limited results that cannot easily be
transferred to other tools or studies. There is no single
way to demonstrate the facili ties of the various program
comprehension tools and compare tool capabiliti es in a
realistic reengineering context in an equitable manner.

Over the past few years, a consensus has been
developing within the reverse engineering community
that more evaluation of tools and more methods to
evaluate are needed. One approach that has sparked a
great deal of interest is the benchmark technique where
tools are deployed on a common subject system, or
“guinea pig.” In this vein, Chikofsky organized a
demonstration project where participants analyzed the
WELTAB III Election Tabulation System.

A derivative of the benchmark technique, a structured
demonstration was held at CASCON99. CASCON is an
IBM sponsored Canadian software technology
conference held annually in Toronto. Sim and Storey
invited six teams of developers to bring their tools to
participate in this workshop. In addition to the common
subject system, the teams were given a set of assigned
tasks. These tasks were designed from the point of view
of a software engineer who was an end-user of the tools.
This event occurred in “real time,” that is, the six teams
analyzed the subject system at the same time and in the
same place using different tool sets. This structured
demonstration is discussed further in a technical paper
in this volume. [1]

In February of 2000, Winter organized a Workshop on
Algebraic and Graph-Theoretic Approaches in Software
Reengineering at the University of Koblenz-Landau. [2]

Susan Sim
Proceedings of the Seventh Working Conference on Reverse Engineering, pp. 210-212, Brisbane, Queensland, Australia, 23-25 November, 2000.

At this workshop, four program comprehension tools
and their underlying approaches were discussed from a
more theoretical point of view. One of the conclusions
from the workshop was that the participating approaches
were based on similar concepts and that a comparative
demonstration of the tools would be very informative.
The participants agreed to apply their tools to the the
subject system and tasks from the CASCON99
structured demonstration.

2 WCRE 2000 Panel
A panel at WCRE 2000 was organized to provide a
forum for the teams from both workshops to review
their experiences with the structured demonstration
materials. In total, five tool teams will report on their
experiences with this benchmark: three of the original
six teams from the CASCON99 workshop and an
additional two teams from the Koblenz workshop. Each
of the five teams submitted a short paper describing
their experience. In these papers, they discuss their
results, amount of time spent on the tasks, changes made
to their tools to complete the tasks, other tools used to
solve the tasks, and their recommendations for future
changes which should be made to their tool. During the
panel there will be individual team presentations as well
as a group discussion to discuss the commonalties and
interesting differences between the tools and
approaches. The panel will close with a discussion on
the benefits and costs of using a benchmark system with
a common set of tasks for comparing and evaluating
tools.

2.1 Participating Tools

The following tools are participating in the panel:
From the CASCON99 Workshop:

• Rigi, University of Victoria. Rigi is a tool for
re-documenting and browsing software archi-
tectures.

• PBS, University of Waterloo. PBS (Portable
Bookshelf) is a tool suite for extracting, analy-
zing, and visualizing software architecture.

• UNIX tools such as grep, emacs etc.
From the Koblenz Workshop:

• GUPRO, University of Koblenz, is a graph-
based, generic environment to support program
comprehension based on query technology and
graph algorithms.

• Bauhaus, University of Stuttgart. Bauhaus is a
set of tools for architecture recovery using
static analysis.

2.2 Subject System and Tasks

The subject system was xfig 3.2.1, an open source
drawing program consisting of approximately 60KLOC
of ANSI C code. Teams were given two sets of tasks,
reverse engineering and maintenance. The reverse
engineering tasks asked the teams to document the
structure of the system and to do an assessment of the
architecture. There were three maintenance tasks, a
defect removal, a feature change, and a feature addition.
These tasks are described in greater detail i n the
developer handbook.[3]

The teams that participated in the CASCON demonstra-
tion had already done the tasks and did not need to do
any further work (however, they were free to do more
analysis if they wished). Since GUPRO and Bauhaus
participated after the CASCON99 workshop, they were
requested to carefully keep track of how long they spent
on parsing the code and on each of the tasks. They were
also asked to document any changes made to their tools
in addition to recording any other tools they used to help
do the assigned tasks. It was suggested that they spend
approximately one day on the assigned tasks, since this
was the amount of time spent by the teams at CASCON.

3 Observations and Theses
Observations were made by the organizers and
participating tools in the structured demonstration.
These observations lead to a set of theses to be
discussed.

3.1 Tools and Applications of Tools

Parsing
All participating teams (except for the UNIX team)
reported problems with their parsers and had to adapt
them to parse xfig.
Thesis: To avoid redundant work in building and adap-
ting parsers, it would be beneficial to use a common set
of robust and correct parsers.

Flexibility
Analyses performed with GUPRO, PBS, and Rigi are
based on an adaptable conceptual model. When working
on the xfig tasks, the teams used or adapted conceptual
models developed for other reengineering problems.
Thesis: Tools supporting program comprehension and
software maintenance require flexible conceptual
models that can be modified as the user or task requires.

Quantity of Extracted Data
The quantity of data extracted from the xfig source by
the tools varied a great deal size. The size of the
database depended on the granularity of the underlying

conceptual models. Fine grained conceptual models lead
to an enormous amount of extracted data, which can
barely be processed by program comprehension tools.
Thesis: Careful consideration must be given to when
fine-grained source code representations should be used.
The benefits of such an analysis need to be
commensurate with the costs.

Level of Experience With the Tool
The teams participating in the tool demonstration were
very famili ar with their tools. A thorough understanding
of the tools was necessary to adapt the tool to the given
problems and to solve the maintenance tasks.
Thesis: Using powerful program comprehension tools
requires a thorough knowledge about the tools.

Participation
It was not difficult to find teams wil ling to participate in
the structured demo. It would be interesting to know
why teams wanted to participate in a tool contest.
Thesis: A structured demo provides a lot of insight for
tool designers into their own tools and allows them to
directly compare their tool capabiliti es with other tools
and learn about future tool extensions.

3.2 Demonstration Scenario

Tool Selection
In addition to their own tools, all teams used other tools,
such as plain UNIX tools to solve the given maintenance
tasks.
Thesis: Analyzing and comparing program comprehen-
sion tools should focus on a suitable mix of different
interoperable tools instead of viewing single stand alone
tools.

Educational Value
Some teams had novice users participating in the
demonstration. They found that having novices work
alongside expert users enabled them to learn about the
tool quickly and easily.
Thesis: A structured tool demonstration provides good
educational material to support teaching novice users.

Fairness
Not all of the participating tools in the structured
demonstration were specifically designed for supporting
maintenance tasks like the one given in the xfig
scenario. Some of the tools are more suited to more
focused subtasks in program comprehension.
Thesis: Any evaluation must be situated within a
particular context. For the structured demonstration, the
viewpoint was that of a software maintainer. The given
scenario is fair in the sense that it was applied to all the
tools.

Replication
The application of the structured demonstration by
Bauhaus and GUPRO in a second trial led to similar
results to those obtained in the original demonstration. A
lot of the results from the CASCON99 workshop were
verified in this second run.
Thesis: Structured tool demonstrations should lead to
repeatable and comparable results. The demonstration
defined for CASCON99 fulfilled this requirement.

Scalability of Results
The xfig guinea pig only addresses a very small mainte-
nance problem which could be processed in one day.
Industrial strength software is usually much bigger and
maintenance problems are usuall y much more complex.
Thesis: This small tool demonstration example was able
to accentuate lots of tool features which may be
transferable to large-scale maintenance problems.

4 Future Plans
We are planning two future events. Since parsing was a
diff iculty for so many tools, we plan to have another
structured demonstration for comparing parsers. As
noted above, many of the tools that participated are
suitable for particular subtasks in a maintenance
scenario. We are therefore planning a collaborative
reengineering exercise to combine tools to help solve
maintenance and reengineering tasks. We are open to
suggestions for other events and for feedback on the
structured demonstration described in this panel.

5 References
[1] S. E. Sim and M.-A. D. Storey, “A Structured

Demonstration of Program Comprehension
Tools,” presented at Working Conference on
Reverse Engineering, Brisbane, Australia,
2000.

[2] “Workshop on Algebraic and Graph-Theoretic
Approaches in Software Reengineering
Available" at <http://www.uni-koblenz.de/
~winter/AlGra/>.

[3] “A Collective Demonstration of Program
Comprehension Tools." Available at
<http://www.csr.uvic.ca/cascon99>.

