
Case Study, Interrupted: The Paucity of Subject Systems
that Span the Requirements-Architecture Gap

Mamadou H. Diallo
Department of Informatics

Donald Bren School of
Information and Computer

Sciences
University of California, Irvine
mamadoud@ics.uci.edu

Susan Elliott Sim
Department of Informatics

Donald Bren School of
Information and Computer

Sciences
University of California, Irvine

ses@ics.uci.edu

Thomas A. Alspaugh
Department of Informatics

Donald Bren School of
Information and Computer

Sciences
University of California, Irvine
alspaugh@ics.uci.edu

ABSTRACT
A number of approaches for spanning the requirements-archi-
tecture gap have been published in recent years, and we
sought to rigorously characterize the gap and to conduct a
comparative evaluation of approaches to span the gap using
a case study method on a realistic problem. However, our in-
tentions were impeded by the problem of finding appropriate
subject systems that included sufficient information in both
requirements and architecture document. Most subject sys-
tems that we found contained either detailed requirements
or detailed architecture description, but not both. In this
paper, we report on our search and the seventeen most suit-
able subject systems with the hope of aiding others under-
taking a similar study. We speculate on the reasons for the
paucity of suitable subject systems and invite contributions
and suggestions for our ongoing work.

1. INTRODUCTION
In recent years, the gap between requirements and architec-
ture has been recognized in the software engineering com-
munity and many techniques and approaches for bridging
it have been proposed. However, the techniques and ap-
proaches are not based on a rigorous characterization of the
gap. Furthermore, little effort has been devoted in evaluat-
ing these methods and approaches. Evaluation of methods
and approaches in software engineering is necessary to ad-
vance research in the field and to provide evidence to pro-
mote adoption.

The need to evaluate approaches to span the requirements-
architecture gap is particularly acute, because this is a tech-
nology that is pertinent to the development of large software
systems. Consequently, subject systems that are realistic
in size and composition are needed. The subject systems
need to have not only well-documented requirements speci-
fication, but also good architecture artifacts. In this paper,
our focus is directed toward the problems in finding sub-

ject systems that are suitable for analyzing the gap between
requirements and architecture, and evaluating the methods
for closing the gap.

We looked for subject systems in locales ranging from acade-
mia to industry. Our selection was based on two criteria.
The first criterion was that the subject system must have
a well documented requirements specification. Ideally, the
system should have requirement scenarios that describe the
functional, non-function, data, and interface requirements.
If the requirements specification does not include the sce-
narios, it should be possible to derive the scenarios from the
available requirements with ease. The second criterion was
that the architecture of the system to include required and
provided interfaces for each component in the architecture.
If these two criteria are not satisfied, it would difficult to
study the gap between requirements and architecture and
evaluate existing methods and approaches for bridging the
gap. These criteria were derived in part from the expected
inputs to existing approaches to span requirements and ar-
chitecture.

We looked at various sources for subject systems and exam-
ples. However, after many months of searching, we found
a surprisingly small number. In this paper, we describe the
seventeen software systems with both some forms of require-
ments specification and architecture artifacts. Of these, fif-
teen did not contain enough information for a case study or
evaluation, and the two that contained sufficient detail were
toy systems.

This paucity has led us to speculate on the reasons be-
hind our apparent difficulties. One possible explanation
is that current approaches to spanning the requirements-
architecture gap are based on a misunderstanding of how
systems are actually developed. Perhaps developers do not
create detailed versions of both because doing so would in-
troduce redundancy and the need to maintain parallel docu-
ments. Another possible reason is that spanning approaches
are expecting the wrong kinds of documents as input. Per-
haps requirements are created, but not as scenarios, and
architectures are created, but not as class and component
diagrams. One final reason that we consider is that projects
that demand both detailed requirements and detailed ar-
chitecture are produced in certain sectors with particular
characteristics. For example, the defense and aerospace in-



dustries supposedly create detailed documents at each step
of the process because there is a need for high availability
and reliability, but due to security issues they do not make
these widely available. We suspect the answer is a combina-
tion of the three.

The rest of the paper is organized as follows. Section 2
reviews prior efforts to develop subject systems and exem-
plars for evaluation requirements and architecture research.
In Section 3, we motivate our study by reviewing technolo-
gies designed to span the requirements-architecture gap. We
describe our method and the 17 best subject systems that
we found in Section 4. In Section 5, we speculate on possi-
ble reasons for our difficulty in finding appropriate subject
systems and present concluding remarks in Section 6.

2. RELATED WORK
Finding an appropriate subject system is essential to con-
ducting realistic case studies. Large software systems de-
veloped by industry are preferred over toy problems de-
veloped by teachers or students. The subject systems are
even more valuable if they can be turned into exemplars,
i.e. shared and used in multiple empirical studies, thereby
facilitating comparisons between tools. Much of software en-
gineering has turned to Open Source projects for source code
and data for empirical evaluations. However, Open Source
projects are not suitable subject systems for evaluations of
some kinds of technology, due to factors such as software
process and team composition. In particular, Open Source
projects cannot be used to evaluate approaches for spanning
requirements and architecture, because they typically lack
the necessary documentation. Consequently, the search for
subject systems must turn elsewhere.

Researchers in requirements engineering and software archi-
tecture have recognized the need for common subject sys-
tems, or exemplars. There are a number of these available
for either requirements or architecture, but rarely do they
contain details about both aspects of the system.

There are many well-known requirements specification ex-
emplars including the meeting scheduler, a patient monitor-
ing system, a package routing problem, a turnstile problem,
lift problem, production cell problem, and the generalized
railroad crossing problem. Due to their importance in re-
quirements specification, some studies have focused on eval-
uating the examplars themselves. Feather et al. [6] have
investigated the purposes that a number of examplars can
serve. These exemplars typically consist of a short descrip-
tion, e.g. a few paragraphs, and researchers use them to
demonstrate the capabilities of a new technology. It should
be noted that these are exemplars and not standardized sub-
ject systems. Researchers often add features to the prob-
lem to draw attention to breakthroughs in technology, e.g.
specification for real-time or security. Studies such as the
one by Wing [20], who used the library problem to com-
pare twelve requirements specification approaches, are the
exception rather than the rule.

The software architecture community has recognized the
need for subject systems and exemplars more recently. It
has been acknowledged that there is a lack of architecture
artifacts from example or real systems that can be used to

analyze and assess techniques and approaches in software
architecture. There are two separate efforts, by Bredemeyer
Consulting [4] and Grady Booch [10] to publish a collection
of examples on a web site. The former is collecting software
architecture case studies as well as architecture project ar-
tifacts. The main issue with the provided architecture ar-
tifacts in this website is that must of architecture diagrams
show only a very high-level decomposition of systems, which
are not very useful. The latter focuses on developing an ar-
chitectural reference for software-intensive systems, a hand-
book of software architecture. This is a promising project,
but still in its early days. There has been some limited use of
standardized subject systems for evaluating architecture re-
covery tools in a structured demonstration format, one using
the WELTAB III election tabulation system and organized
by Elliot Chikofsky, and another using the xfig [19] drawing
tool.

Despite the availability of some requirements and architec-
ture exemplars, these subject systems have relatively few
artifacts that can be examined. However, when it comes
to systems with both requirements and architecture arti-
facts, to our knowledge, there has not been any effort to
create, identify, or share appropriate systems. For analyz-
ing and evaluating techniques and approaches developed to
bridge the gap between requirements and architecture, ex-
ample systems with complete requirements and architecture
are necessary.

3. METHODS FOR BRIDGING REQUIRE-
MENTS-ARCHITECTURE GAP

3.1 Requirements-Architecture Gap
Requirements and architecture have been traditionally trea-
ted as two separate processes in software development life-
cycle. However, treating requirements and architecture as
distinct activities has had widespread impact on tools and
techniques that have been created, the research communi-
ties that have emerged, and more recent efforts to bridge the
gap.

The separation of requirements and architecture into differ-
ent phases can be traced back to the earliest software devel-
opment process models (which in turn can be traced back
to hardware development lifecycles). The process models
for software development impose consistency and structure
of the different activities by separating them into phases. In
particular, the Waterfall Model [18] divides the software de-
velopment lifecycle into requirements specification, design,
implementation, testing/validation, integration, and main-
tenance phases. Requirements and architecture were placed
in separate phases because it was felt that the former con-
cerned with the problem domain while the latter concerned
with the solution domain. The problem domain is the space
in the world where the software system will live. The ques-
tion of what is needed is addressed, but not how this can
be achieved. The solution domain is the conceptual space
where the system will be specified. It is here that ques-
tions related to how the software system will be built are
addressed. As Grünbacher and et al. [12] pointed out, “part
of the challenge in bridging requirements and architecture is
due to the fact that they use different terms and concepts to
capture the model elements relevant to each.” This separa-



tion was made in order to articulate the difference between
the problem and solution domains as a conceptual gap.

This division has led to the emergence of distinct technolo-
gies for requirements and for architecture. Not only have
different techniques and approaches have been developed to
model each phase separately, but also different notations
have been used to document the models. Even in agile
software development process models, such as Extreme Pro-
gramming [8], where there are no phases, different key prac-
tices have been developed for requirements and others for
architecture. These differences in processes, techniques, and
artifacts have resulted in a semantic gap between require-
ments and architecture.

Many researchers have argued that the separation of require-
ments and architecture causes problems in the overall de-
velopment of software systems. Garlan and Perry [11] are
among the first to point out that “Architectural design has
traditionally been largely informal and ad hoc, which result
in difficulties in communication, analysis, and comparison of
architectural designs and principles”. Similarly, Grünbacher
and et al. [12] wrote, “Little guidance and few methods are
available for the refinement of software requirements into
an architecture satisfying those requirements”. This view is
also shared by Chung et al. [5], who stated “One key task
that remains a difficult challenge for practitioners is how to
proceed from requirements to architectural design”. This
approach of building architectures in an ad hoc manner is
a source of errors that can lead to software systems that
do not meet stakeholders’ expectations. These problems are
further evidence of the requirements-architecture gap.

3.2 Methods for Requirements-Architecture
Gap

A number of methods for bridging the gap between require-
ments and architecture have been proposed. In general, the
methods focus on improving the software architecture design
process by making use of requirements specification directly.
These methods can be grouped into two main categories: i)
architecture generation methods based on requirements re-
finement; and ii) architecture analysis and evaluation meth-
ods based on requirements.

The first category aims to rationally choose the optimal ar-
chitecture of a system based on the tradeoff analysis of re-
quirements quality attributes, such as modifiability, secu-
rity, and performance. Most of these methods are based on
requirements scenarios and make use of iterative and con-
current development of requirements and architecture. An
example of such an approach is ATAM (Architecture Trade-
off Analysis Method) [1], which models a set of quality at-
tributes such as performance, availability, and security into
measurable quantities that can be analyzed. The tradeoff
analysis of the conflicting attributes helps to establish the
right balance that leads to the best possible architecture in
regard to requirements. Another example of this category is
the CBSP (Component-Bus-System-Property) method [12].
CBSP proposes the design of an architecture by refining the
requirements into an intermediate model and mapping this
model into a set of architecture concepts. Other methods in
this category include the ART-SCENE environment [21], the
pattern oriented software development: moving seamlessly

from requirements to architecture [17], and the method for
moving from requirements to architecture design using goals
and scenarios proposed by Liu and Yu [15].

The second category of methods is intended to assess the
fitness of a given architecture with respect to its require-
ments. Most of the methods in this category are also based
on requirements scenarios, where an architecture is evalu-
ated against a set of scenarios. The method proposed by
Bose [3], scenario-driven analysis of components-based soft-
ware architecture models is good example of this category
of methods. The method checks the consistency between re-
quirements and architecture by analyzing the model of the
architecture behavior (represented as a finite state machine)
and the model of the requirements scenarios (represented in
sequence diagrams). Other notable scenario-based architec-
ture evaluation methods are SAAM (Scenario-based Archi-
tecture Analysis Method) [14], ALMA (Architectural Level
Modifiability Analysis) [2], and PASA (Performance Assess-
ment of Software Architecture) [7].The architecture analysis
methods proposed by Nord and Soni [16], which introduces
a global analysis of factors that influence software architec-
tures, is an example of a method in this category that does
not make use of scenarios.

For the above mentioned methods and others to be improved
and adopted, they need to be evaluated with respect the
goals they set to achieve. Good examples systems that can
challenge the methods is a necessary condition for success of
the evaluation.

4. SUBJECT SYSTEMS AND EXAMPLES
4.1 Strategy for Finding Subject Systems
Despite the high number of software systems that have been
developed and running, we found a surprisingly small num-
ber of good example systems after many months of search.
In our search, we used two selection criteria. The first cri-
terion was that the subject system must have a well docu-
mented requirements specification. Ideally, the system should
have requirement scenarios that describe the functional, non-
function, data, and interface requirements. If the require-
ments specification does not include the scenarios, it should
be possible to derive the scenarios from the available re-
quirements with ease. The second criterion demanded that
the architecture of the system to include required and pro-
vided interfaces for each component in the architecture. If
these two criteria were not satisfied, it would difficult to
study the gap between requirements and evaluate existing
methods and approaches for bridging the gap because all the
required information for these purpose would not be avail-
able.

The 17 systems with the most detail in their requirements
and architecture documents are summarized in Figure 1.
Before going on describing these systems, we review some of
the sources that we examined.

Published Empirical Studies. We looked at published
empirical studies in requirements and architecture. The sub-
ject systems are typically not described in detail and difficult
to use in a replication or in another study. They have either
detailed requirements and general architecture or vice versa,



or lack details of both. We have not selected any of those
systems.

Academia. We looked at systems developed in academic
settings and we found that they have very rudimentary re-
quirements and architecture artifacts. An example of this
types of systems is the Alloy Analyzer, developed by the
Software Design Group at MIT or ArchStudio produced at
the University of California, Irvine. They are mostly sys-
tems developed by researchers for a specific purpose, where
documenting the processes is not very important. Occasion-
ally researchers will create a subject system for use in an
evaluation, but these tend to be small and limited in scope.

Industry. Finally, we looked at industrial systems. We
found few systems that are publicly available. One large
system we came across is “the Clouds and the Earth’s Ra-
diant System” developed by NASA. This system has large
requirements documents, but does include all the functional,
non-functional, data, and interfaces requirements. Further-
more, the architecture of the system is limited to class di-
agrams. This system and others are also summarized in
Figure 1.

Bredemeyer Consulting. Another source we looked at
for examples system is the Bredemeyer’s website [4]. This
website contains software architecture case studies and ar-
chitecture project artifacts. The summary of the interesting
examples we found in this site is included in Figure 1. In
general, the architecture artifacts are limited to architec-
ture diagrams that present the high-level decomposition of
the systems. The architectural details as well as the require-
ments from which the systems the architectures are devel-
oped are rudimentary.

Software Architecture Handbook. Another website that
promises to provide good architecture examples is Grady
Booch’s Software Architecture Handbook site [10]. This
website is still under construction and has only a few ar-
chitecture diagrams. If all the systems listed in this website
are well documented, not only in terms of architecture but
also requirements, it would be a very good source.

4.2 Search Results
The table in Figure 1 summarizes the best seventeen sys-
tems we were able to locate. We selected these systems
because they all have some forms of requirements and ar-
chitecture artifacts. The first column show the name of the
system. The second column categorizes the systems based
on their sizes, small, medium, or large. The categoriza-
tion is based on both the available requirements and archi-
tecture design artifacts, for example, the functionality pro-
vided and the type of the systems. The third column gives
the source of the systems. The explanation of the available
parts in the requirements and architecture artifacts are ex-
plained in columns four and five respectively. As these two
last columns show, only the AquaLush system from a text-
book by Fox [9] and the PIMS system used in a textbook
by Jalote [13] have complete requirements and architecture
documents. The other fifteen systems are missing details
about the requirements, architecture, or both.

We were able to find a long list of subject systems, but

as we analyzed the artifacts they provided, the list became
shorter and shorter. First, we eliminated all the systems
that do not have some form of requirements specification,
such as those in the Software Architecture Handbook. At
the time of our investigation the website had a number of
architecture diagrams for large systems without any men-
tion of their requirements. We were hopping to find the
requirements for these systems, but could not. Second, we
eliminated all the systems that lack an architecture descrip-
tion, for instance, the specification exemplars. These exam-
plars have been specified using different approaches, so we
were hoping to find some kind of design for them, but were
unsuccessful.

4.3 Observations
After arriving at this small list, we examined the subject sys-
tems for commonalities. We found that the systems could be
place in one of four categories: i) toy systems (with detailed
requirements and detailed architecture); ii) systems with de-
tailed requirements, but sketchy architecture; iii) systems
with detailed architecture, but sketchy requirements; and iv)
systems with sketchy requirements and sketchy architecture.
The only systems with both detailed requirements and de-
tailed architecture that we found were the AquaLush [9] and
PIMS [13] toy examples from texbooks. This suggested to
us that the documents were not processual caches of knowl-
edge, but rational reconstructions of knowledge. Even sys-
tems from large industry such NASA or Google did not have
complete artifacts for both requirements and architecture.
In the next section, we speculate on possible underlying rea-
sons for the paucity of complete systems.

5. DISCUSSION
After months of searching, we were able to locate only 17
software systems with documentation on both requirements
and architecture. This paucity of suitable subject system
leads us to speculate on the possible reasons.

One possible explanation is that current approaches to span-
ning the requirements-architecture gap are based on a mis-
understanding of how systems are actually developed. Per-
haps developers do not create detailed versions of both be-
cause doing so would introduce redundancy and the need to
maintain parallel documents. Of the 17 most complete sys-
tems, only two toy systems have complete requirements and
complete architecture documents. The remaining systems
contain either detailed requirements, but a sketchy archi-
tecture, or sketchy requirements and sketchy architecture,
but never detailed versions of both. This result leads us
to believe that there is an underlying connection between
requirements and architecture through which, possibly, in-
formation in one may be redundant with information in the
other.

Another possible reason is that spanning approaches are ex-
pecting the wrong kinds of documents as input. Perhaps
requirements are created, but not as scenarios, and architec-
tures are created, but not as class and component diagrams.
The proposed techniques and approaches for bridging the
gap between requirements and architecture are based on an
implicit assumption about the nature of the gap. There
aren’t any studies that have attempted to characterize the
gap explicitly. This potential misunderstanding can be ad-



Figure 1: Summary of Subject Systems Artifacts

dressed through empirical studies, such as the one we were
attempting to conduct. However, based on the results of this
study, it is apparent that conducting such empirical studies
is difficult due to the lack of appropriate subjects systems,
leading to a circular chicken-egg problem.

One final reason that we consider is that projects that de-
mand both detailed requirements and detailed architecture
are produced in certain sectors with particular characteris-
tics that demand both detailed documentation and prohibit
their dissemination for research purposes. For example, the
defense and aerospace industries supposedly create detailed
documents at each step of the process because there is a
need for high availability and reliability, but due to security
issues they do not make these widely available. While our
search has been focused on the Internet and the literature,
we have also consulted our colleagues for leads. Our fellow

researchers were aware of suitable industrial examples, but
they were only available to researchers who had relationships
with the corporation or government agency, and could not
be shared.

We suspect our difficulties stem from a combination of the
three reasons presented. In part they are due to a misunder-
standing of software development in practice, part mismatch
in expectations by approaches to spanning the requirements-
architecture gap, and part peculiarities of systems that have
detailed requirements and architecture documentation.

6. CONCLUSION AND FUTURE WORK
Our planned case study was aimed at acquiring a better
understanding of requirements-architecture gap, so that we
could subsequently conduct a comparative evaluation of tools
and approaches for spanning the gap. To achieve this ob-



jective, we needed to find suitable, realistic subject systems.
These subject systems had to satisfy two criteria. The first
criterion was that the subject system must have a well docu-
mented requirements specification while the second criterion
called for detailed architecture other than just a diagram
showing the high-level decomposition of a system.

After many months of searching, we were unable to find re-
sults of subject systems satisfying our criteria. Among the
only 17 best subject systems that we found, only two toy
systems from text books contained sufficiently detailed re-
quirements and architecture artifacts. The others did not
contain enough information either in the requirements, ar-
chitecture, or both, for a case study or evaluation.

This surprising outcome lead us to a further analysis re-
sulting with some speculations on the reasons behind this
phenomenon. We made the following speculations that we
believe are the causes behind the lack of good subject sys-
tems: (i) current approaches to spanning the requirements-
architecture gap are based on a misunderstanding of how
systems are actually developed; (ii) developers do not create
detailed versions of both because doing so would introduce
redundancy and the need to maintain parallel documents;
(iii) spanning approaches are expecting the wrong kinds of
documents as input; (iv) projects that demand both detailed
requirements and detailed architecture are produced in cer-
tain sectors with particular characteristics.

We believe also that for our speculations to be confirmed or
rejected, further studies need be conducted on this matter.
In the future, we intend to take this study further by appeal-
ing to industry. Obtaining real systems from industry from
different disciplines in necessary to conduct more detailed
studies of the requirements and architecture artifacts. An-
other possible direction of this study is to interview system
developers in industry on the process they follow to go from
requirements to architecture.

This need for subject systems that include details from both
requirements and architecture is indicative of a larger prob-
lem, that of finding subject systems that include artifacts
from multiple phases or activities in the software lifecy-
cle. Such subject systems are needed to evaluate techniques
such as specification-based testing, architecture-based test-
ing, and assessing the quality of requirements by using the
documents to write tests. We expect that efforts to locate
subject systems for these studies would be mutually bene-
ficial to our efforts to find subject systems for empirically
studying the requirements-architecture gap.

7. REFERENCES
[1] M. Barbacci, S. Carriere, P. Feiler, R. Kazman,

M. Klein, H. Lipson, T. Longstaff, and C. Weinstock.
Steps in an architecture tradeoff analysis method:
Quality attribute models and analysis, 1998.

[2] P. Bengtsson, N. Lassing, J. Bosch, and H. van Vliet.
Architecture-level modifiability analysis (alma). J.
Syst. Softw., 69(1-2):129–147, 2004.

[3] P. Bose. Scenario-driven analysis of component-based
software architecture models. In WICSA, 22-24
February 1999.

[4] Bredemeyer Consulting. Software architecture case

studies and architecture project artifacts, January
2006. http://www.bredemeyer.com/ArchitectZone/
PublicDomainArchitectures/
PublicArchitectureIndex.htm.

[5] L. Chung, D. Gross, and E. Yu. Architectural design
to meet stakeholder requirements. In WICSA, 1999.

[6] M. S. Feather, S. Fickas, A. Finkelstein, and
A. v. Lamsweerde. Requirements and specification
exemplars, 1997.

[7] E. Folmer, J. v. Gurp, and J. Bosch. Scenario-based
assessment of software architecture usability. In ICSE
Workshop on SE-HCI, pages 61–68, 2003.

[8] C. Fox. Extreme Programming Explained: Embrace
Change. Addison-Wesley, October 1999.

[9] C. Fox. Introduction to Software Engineering Design.
Greg Tobin, Pearson Education, Inc., 2006.

[10] G. Booch. Handbook of software architecture, March
2007. www.booch.com/architecture/index.jsp.

[11] D. Garlan and D. Perry. Software architecture:
Practice, potential, and pitfalls. In Proceedings of the
16th International Conference on Software
Engineering, pages 363–364, May 1994.

[12] P. Grünbacher, A. Egyed, and N. Medvidovic.
Reconciling software requirements and architectures
with intermediate models. Software and System
Modeling, 3(3):235–253, 2004.

[13] P. Jalote. An integrated approach to software
engineering. Springer-Narosa Publishing House, 2006.

[14] R. Kazman, G. D. Abowd, L. J. Bass, and P. C.
Clements. Scenario-based analysis of software
architecture. IEEE Software, 13(6):47–55, 1996.

[15] L. Liu and E. Yu. From requirements to architectural
design using goals and scenarios. In Proceedings of the
First International Workshop on From Software
Requirements to Architectures, ICSE’01, May 2001.

[16] R. L. Nord and D. Soni. Experience with global
analysis: A practical method for analyzing factors
that influence software architectures. In Proceedings of
the Second International Workshop on From Software
Requirements to Architectures, ICSE’03, May 9 2003.

[17] M. S. Rajasree and D. J. P. J. K. Reddy. Pattern
oriented software development: Moving seamlessly
from requirements to architecture. In Proceedings of
the Second International Workshop on From Software
Requirements to Architectures, ICSE’03, May 9 2003.

[18] W. W. Royce. Managing the development of large
software systems: concepts and techniques. In
Proceedings of the 9th international conference on
Software Engineering, ICSE ’87, pages 328–338, 1987.

[19] S. E. Sim and M.-A. D. Storey. A structured
demonstration of program comprehension tools. In
Proceedings of the Seventh Working Conference on
Reverse Engineering, pages 184–193, November 2000.

[20] J. M. Wing. A study of 12 specifications of the library
problem. IEEE Softw., 5(4):66–76, 1988.

[21] X. Zhu, N. Maiden, and P. Pavan. Scenarios: Bringing
requirements and architectures together. In
Proceedings of the ICSE Workshop: 2nd International
Workshop on Scenarios and State Machines: Models,
Algorithms, and Tools, May 3 2003.


