
Practical Experiments are Informative, but Never Perfect
Rosalva E. Gallardo-Valencia

University of California, Irvine

5051 Donald Bren Hall

Irvine, CA 92697-3440
1-949-824-4047

rgallard@ics.uci.edu

Vivian Olivera
University of California, Irvine

5051 Donald Bren Hall

Irvine, CA 92697-3440
1-949-824-4047

volivera@ics.uci.edu

Susan Elliott Sim
University of California, Irvine

5226 Donald Bren Hall

Irvine, CA 92697-3440
1-949-824-2373

ses@ics.uci.edu

ABSTRACT

The design of empirical experiments involves making design

decisions to trade off what is ideal against what is achievable.
Researchers must weigh limitations on resources, metrics, and the
current state of knowledge, against the validity of the results. In
this paper, we report on the design decisions we made in a small
controlled experiment and their effects on the conclusions of the
study. The goal of the study was to measure the impact of
requirements formats on maintenance tasks. We encountered
problems with the subjects’ lack of expertise in the technology

used, the equivalence of subjects in our experiment conditions,
and the number of subjects. These issues meant that we were able
to draw conclusions about how subjects worked with the
requirements formats, but not about the effect of the formats on
the completeness of the implementation. We had a practical and
doable experiment, but our results were not conclusive, only
informative.

Categories and Subject Descriptors

D.2.1 [Software Engineering]: Requirements/Specifications –
Elicitation methods.

General Terms

Design, Experimentation, Human Factors.

Keywords

Use Cases, User Stories, Agile Requirements, On-Site Customer,
Controlled Experiment, Empirical Study, Experience Report.

1. INTRODUCTION
Designing an experiment has much in common with designing
software. It is often necessary to select one option or a
combination of options based on the availability of resources.
Software developers are aware that the decisions made will have
an effect on the system, but these decisions will help to make the

system more feasible. In the same manner, researchers also have
to make design decisions. Each design decision will have trade-

offs. On one hand the decisions will make the experiment
practical, but on the other hand the decisions could impact the
validity of the results. To trade off these constraints, researchers
must keep in mind the larger goal: to perform experiments that
will provide valuable information and insight about the

phenomenon being studied.

To illustrate our analogy, imagine that we have to develop a small
web application that allows 50 students in an elementary school to
upload their homework and keep some information about the
status of the uploaded files. We want to create the best design but
we also have to consider the budget (small) and time constraints
(short). We can consider two options to store the information: a
Database Management System (DBMS) or XML files. On one

hand, if we use the DBMS we can have access to the information
via SQL commands and have all the power of this specialized
system. On the other hand, if we store information in an XML
file, we can easily create the file on disk, and read it directly
without installing any other software. We could choose to
implement the system using XML files knowing that it is not the
best design but it will meet the requirements and constraints.

We were interested in investigating the effects of different

requirements formats on the performance of maintenance tasks.
Should we do a case study in an industrial setting, or a controlled
experiment in a laboratory? Should we do an exploratory
qualitative study or test a hypothesis quantitatively? Should we do
a detailed study with a small number of subjects or a more
constrained study with a large number of subjects?

We decided to conduct a laboratory experiment using a small
number of subjects and to collect both qualitative and quantitative
data. A laboratory experiment would allow us to perform head-to-

head comparisons of the formats and to draw conclusions about
causality. We would collect both quantitative and qualitative data,
so that we could both explore and test hypotheses.

Having selected the basic structure of the study, there were still
many other choices to be made. In this paper, we will discuss the
design decisions that affected the conclusions and validity of the
study. Some of these decisions were made to optimize on scarce
resources, in particular, the availability of subjects and the length

of the experiment. Other decisions reflected the novelty of the
research problem and the limitations of our methods.

It is always a challenge to find willing subjects for experiments in
software engineering. We only screened for their knowledge of
Java. However, the experimental task involved making three
changes to an existing web application. As a result, only one out
of nine subjects was able to complete the task, which led to

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy

otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
Conference’04, Month 1–2, 2004, City, State, Country.

Copyright 2004 ACM 1-58113-000-0/00/0004…$5.00.

inconclusive results regarding the effect of the formats on
performance of the maintenance tasks.

When conducting a controlled experiment the length of the
session is limited by how long someone can concentrate and how
much time someone can commit in a single block. In our study,

the experiment tasks combined with the tutorials, familiarization
task, and debriefing interview, each session was very long (2.5
hours). Consequently, we administered only a short questionnaire
about their background, and nothing on their personal or cognitive
traits. Without this data, we were not able to effectively
counterbalance the amount of subject experience in each of the
conditions. As well, we were not able to control for background
experience when analyzing subject performance.

The remainder of the paper is organized as follows. Section 2
presents related work done in empirical experiment design in
software engineering, trade offs in experiment design, and
research design. Section 3 describes the experiment we conducted
which we use as an example for our hypothesis. Section 4
discusses the trading off between practicality and perfection. Our
conclusions are presented in Section 5.

2. BACKGROUND
There is a great deal of literature on the design of empirical
studies. There are many books available from the social sciences,
and a number of papers, tutorials, and books for software
engineering specifically. For example, Kitchenham et al. [3]
suggested taking into consideration eleven design guidelines for

empirical research in software engineering. Some of these
guidelines are related to the identification of the population, the
process for allocating the treatments, among others. Following
these guidelines will help researchers to have an ideal experiment
design, but resource limitations could make it difficult to follow
them.

At a macroscopic level, the trade-offs between field studies and
laboratory studies, long-term studies and single session studies,
qualitative and quantitative studies are well known.

Perry et al. [4] proposed that the design of better studies and the
effective collection of data could help create better empirical
studies in software engineering and draw more conclusive
interpretations from the results. They concluded that no study is
perfect and the challenge is to conduct credible studies. Perry et

al. also studied the management of trade-offs in the experiment
design. They suggested that design decisions should try to
maximize accuracy of interpretations, relevance, and impact.
However, these decisions should be subject to resource constraints
and risk.

Not only empirical studies but formal experiments in software
engineering as well depend on careful experiment design to have
useful results. Pfleeger [5] presented the needed activities to
design and analyze an experiment in software engineering. She
explained in detail the principles of experimental design, which
aim to satisfy the need for simplicity and for maximizing

information. The author emphasized the importance of having
simple experiment designs that help making a practical
experiment. Also, simple design reduces the use of time, money,
people, and other experimental resources.

However, there is little in the literature on how to make design
decisions at a detailed level. There is also little discussion of the
consequences and lessons learned from particular design

decisions. It is here that this experience report seeks to contribute
to the software engineering literature.

3. DESCRIPTION OF THE EXPERIMENT

3.1 Experiment Design
We performed an initial controlled experiment to study which
requirements format was most effective: Use Cases alone, Agile
Requirements alone (User Stories with access to an On-site

Customer), or Use Cases with Agile Requirements. A full
description of the experiment has been published elsewhere [1].

We had a small sample of nine subjects, each assigned to one of
the three conditions. We attempted to counterbalance the level of
experience of the subjects in each condition. In the study, subjects
were asked to modify a shopping cart in a web application, by
changing an existing feature and adding two new features.

3.1.1 Subjects
Nine subjects participated in our experiment. We recruited them

by word of mouth. Most of them were graduate students but we
also had an undergraduate student and a research assistant. Most
of them had a major in Computer Science. Five of them stated to
have had between 1 to 2 years of experience in Java Web
Development. More details of our subjects are shown in Table 1.

Table 1. Characteristics of subjects

Average Age 25.55

Gender 3 Females
6 Males

Occupation 7 Graduate students
1 Undergraduate student

1 Research Assistant

Degree Major 8 in Computer Science and

1 in Aerospace

Years of Experience in
Software Development

Range: 0-15 years.
Average: 4.72 years.

Years of Experience in Java
Web Development

<1 year: 4
1 year: 1
2 years: 4

3.1.2 Conditions
The goal of our experiment was to measure the level of impact

that different requirement formats could have on how people
implement a system. To achieve our goal, the experiment had
three conditions. First, subjects in the UC Group were given the
requirements only in Use Cases. Second, subjects in the US&OC
Group used agile requirements. They received the requirements in
User Stories and they also had access to an On-site Customer via
chat. Third, subjects in the UC+US&OC Group used all the
requirement formats used by the previous groups. We will refer to

each condition by the name of the group from here onwards.

3.1.3 Procedure
Subjects first filled out a Background Questionnaire to provide
information about their background and experience. Then we
provided tutorials in the requirements format subjects would use.
A familiarization task was also included to familiarize subjects
with the Eclipse Workbench, Tomcat Application Server, and
implementing JSPs (Java Serve Pages) and Servlets.

Subjects were given descriptions of three features in one of three

requirements formats, according to their assigned experimental

condition. They had to understand the requirements, perform three
maintenance tasks, and to think aloud as they worked. The
maintenance tasks involved modifying a feature and adding two
new features to a shopping cart for a web-based application. This
subject system, called “An Online Boat Shop,” was taken from the

book “More Servlets and Java Server Pages” by Marty Hall [2].
The boat shop application was developed using JSP and Servlets,
it uses a Tomcat application server, and it does not need access to
a database. The source code of the application includes 10 JSP
files, 12 Java™ files, and a XML configuration file. In total, there
were 1,340 lines of source code.

The first maintenance task asked the subject to change how items
were added to the shopping cart. Initially, each time the user

added an item, the system did not verify whether one was already
in the cart. We asked our subjects to add a “Quantity” attribute to
the shopping cart and to increment it when an existing item was
added to the cart. The second maintenance task required our
subjects to add a new feature that allowed users to update the
quantity of an item in the shopping cart by entering the new
quantity in an input field. The third implementation task asked
subjects to add the functionality to delete items from the shopping

cart.

If we observed that a subject would not be able to complete the
tasks in the time available due to unfamiliarity with JSP and
Servlets, we asked them to document their design. We suggested
that they draw sketches of screens, but they could draw or write
whatever they needed to show that they understood the
requirements. The design sketch allowed us to collect data about
how well they understood the requirements when they were not

able to complete the implementation.

Finally, the subjects participated in a Debriefing Interview to
provide feedback and insight about their experience using the
requirements formats, about their preferences among the formats,
and about their performance in the implementation and design
tasks.

3.1.4 Analysis
We analyzed the data by reviewing the screen, video, and audio
recordings of the experiment. We tallied the amount of time that

they spent reading the requirements, chatting with the Customer
(where applicable), and implementing the features. We also
analyzed the chat transcripts, counted the number of questions
asked, and judged the relevance of the questions.

We also collected data from the coding and design to provide an
objective, performance-based measure of how well subjects
understood the requirements. For subjects who completed the
implementation, we scored the program code. Otherwise, we
scored the design drawings and the explanation that they
provided. The maximum possible score was 30 points. Finally, we
examined subject responses from the Debriefing Interview.

We tested our data using non-parametric statistics. This kind of
statistical method is appropriate for our study because we have a
small sample size. In addition, we converted our ratio data into

ordinal data by rank ordering the times and performance scores
for the subjects.

3.2 Results
We found that subjects using Agile Requirements spent the most
time understanding the requirements (average = 28:03 minutes),

followed by subjects who used both Agile Requirements and Use

Cases (average = 18:00), followed by subjects using only Use
Cases (average = 4:13). This difference was found to be
statistically significant at p<0.05 using the Kruskal-Wallis one-
way analysis of variance by ranks [3]. This result is surprising for
a number of reasons and to understand this difference we will

examine how subjects went about understanding the requirements.
Figure 1 shows how much time each group spent using each
requirement format.

Figure 1. Time subjects spent in each requirement format

Table 2. Time spent understanding requirements

Average/Group

UC

(mm:s
s)

US&OC

(mm:ss)

UC+US&
OC

(mm:ss)

p
value

Time reading
Use Cases

04:13 - 07:34 p<0.05

Time reading
User Stories

- 02:12 00:37 p<0.05

Time asking
relevant
questions to the
OC

- 22:46 09:12 p<0.05

Time asking

irrelevant
questions to the
OC

- 03:05 00:37 p<0.05

Total time
understanding
requirements

04:13 28:03 18:00 p<0.05

The time spent understanding the requirements can be divided
into two parts, reading and chatting with the Customer. A
summary of the time spent can be found in Table 2. Subjects who
were in the UC condition did not have the opportunity to talk to a
Customer, and this was the main reason that they spent the least

time understanding the requirements. However, all three groups
spent time reading the documentation that they were given. The
Agile Requirements group spent more time reading User Stories
than the UC+US&OC group who were given all the formats. This
is understandable, because the US&OC only had access to these
short descriptions. On the other hand, it is surprising that the

UC+US&OC group spent the most time reading the requirements
of all the three groups. They even spent more time reading the
Use Cases than the UC group (7:34 minutes vs. 4:13 minutes).
This difference was found to be statistically significant at p<0.05
using the Kolmogorov-Smirnov test for two independent samples

[1]. This difference can be attributable to the availability of the
On-Site Customer and not the User Stories, because subjects in
the third group spent a scant 37 seconds reading the latter. We
now examine the chatting portion of the time spent understanding
the requirements.

We found that subjects in US&OC condition spent more time
chatting with the On-Site Customer than those in the
UC+US&OC condition (25:51 minutes vs. 9:49 minutes). This
result is statistically significant at p<0.05. While it appears that
Agile Requirements are less efficient, in reality this time included
requirements elicitation activities that were not needed in the

other two conditions. In other words, subjects in the US&OC
condition had to talk to the Customer just to catch up with the
other two groups in terms of knowledge. While the subjects in the
UC+US&OC group spent less time chatting, they made better use
of it by asking fewer relevant and irrelevant questions (p<0.05 by
Komolgorov-Smirnov). The average counts of the questions asked
by the two groups are presented in Table 3.

Table 3. Number of relevant and irrelevant questions asked to

the on-site customer

Average/Group

US&OC UC+US&
OC

p value

Number of relevant
questions to the OC

6.00 4.00 p<0.05

Number of irrelevant
questions to the OC

1.67 0.33 p<0.05

Table 4 shows the partial and overall score on the implementation
tasks. Overall, the differences between the groups were not
statistically significant. Although there are numerical differences
between the average performance of each group, the variation
could be explained by chance alone.

We broke down the performance score into sub-parts to determine
if one group did better than another in a particular part of the

implementation. While the UC Group had the highest average
score on validations and messages, none of the differences in the
sub-parts were statistically significant.

Table 4. Partial and overall scores on tasks

Average/Group

UC US&OC UC+

US&
OC

p value

Functionality score 18.17 19.17 17.67 n.s.

Validations and
messages score

5.33 1.33 1.67 n.s.

Overall score 23.50 20.50 19.34 n.s.

3.3 Interpretation of Results
Our experiment produced two important findings. The first is that
subjects in the third condition (UC+US&OC) spent more time
reading Use Cases than subjects in the UC condition, but spent
less time than subjects in the US&OC condition understanding the

requirements. This difference can be attributed to the availability
of the On-Site Customer, which meant that subjects had to study
the Use Cases and understand them well enough to ask questions
about them.

The second finding is that there is no clear link between the

format in which the requirements were presented and how well
subjects scored on the implementation task. Because we failed to
reject the null hypothesis, it is unknown if this is an actual effect.
If our conclusions are true, it means that efforts made to improve
requirement formats will not benefit software engineers.
However, we doubt about the veracity of this implication because
of the decisions we made in the experiment design.

We expected that subjects who spent more time understanding

requirements would perform better in the implementation tasks. In
addition, we expected that subjects using more requirement
formats at the same time would also perform better because they
would have more information available. Thus, we believed that
the requirement formats which subjects used would have an
impact on their performance. Contrary to expectations, our results
showed that there was no link between the time subjects spent
understanding requirements and their performance. In addition,

our results showed that subjects using the most number of
requirement formats scored the worst, though the difference was
not statistically significant.

Not surprisingly, it appears that design decisions we made
regarding limited resources had an impact on the validity of our
results. We had a practical and doable experiment but our findings
were not conclusive, only informative. In the next section, we will
discuss some of the design decisions and their consequences.

4. TRADING OFF PRACTICALITY AND

PERFECTION
We designed our experiment to measure the impact of
requirements formats in the implementation of a software system,
but had to take into account resource limitations. In particular,
these were the availablity of subjects, qualifications of subjects,
and duration of experiment sessions. Based on these limitations,
we had to make choices to deal with difficult problems in the
experiment design. As a result, these decisions were likely to
affect the conclusions we were able to draw. These decisions
made the experiment more feasible, but at the same time, also

made the experiment less perfect and less ideal.

4.1 Subjects
The first scarce resource that we had to consider was the
availability of qualified subjects. As a result, we had to make
compromises in our sample size and our screening procedures.

4.1.1 Number of Subjects
Our experiment was designed with three conditions to evaluate.
We thought that having three subjects per each group and nine
subjects in total was appropriate for an initial study and was
enough to draw some conclusions.

Our decision to have a small number of subjects had the
advantage that we could finish with the experiment faster and we
are able to report our initial experience sooner. However, it has
the disadvantage that we are not sure about our results and

conclusions. Definitely, the small number of our subjects affected
the generalizability of our results.

Another factor in the decision to use nine subjects was the effort
required to run the sessions and analyze the data. Each session
required two experimenters to run and required about three hours
of their time. Each subject produced about 2.5 hours of screen,
video, and audio recordings and other artifacts, which typically

took a pair of researchers 4 or more hours to analyze, because we
were collecting qualitative and quantitative data. In total, it took
approximately 15 person hours to run and analyze each subject,
which is not an inconsiderable number.

This small number of subjects meant that we had to use non-
parametric statistics to analyze the data. This type of statistic
relaxes assumptions about the distribution of the data, but at the
cost of making it more difficult to achieve statistical significance.

Clearly, more subjects are needed in order to produce stronger
results. Published software engineering experiments typically use
a sample size in the mid-teens, though this figure can range from a
handful to three dozen. Power analysis suggests that to achieve
!=0.95 a total of 96 subjects are required (32 per condition), a

truly infeasible number. Once again, we will need to make design
decisions that trade-off resource constraints.

4.1.2 Qualifications of Subjects
When recruiting subjects, we found that many of the potential
subjects had knowledge of Java, but not of JSP and Servlets. We
decided to accept these subjects and included JSP and Servlets
tutorials and a familiarization task. It was very difficult to find
nine subjects willing to spend 2.5 hours on the experiment. It was
not practical to add another filter in the selection of subjects. We
expected that a small number of our subjects would not be able to
complete the implementation task. For that reason, we had the

option of redirecting subjects who were struggling with the
implementation technology to a design task.

The advantages of this decision were that we were able to recruit
nine subjects and conduct the experiment within two and a half
hours.

On the other hand, there were also disadvantages. First, we had a
low rate of task completion; only one of our nine subjects finished
the implementation task, which likely affected our results. One
possible reason could be the level of difficulty of the

implementation task. Subjects had to add a new attribute to the
shopping cart to count items, allow this new attribute to be
modified, and allow deletion of items in the shopping cart. We felt
that this task was relatively straightforward, and subjects agreed.
They were asked to rate the level of difficulty of the task and they
assigned on an average 2.83 out of 5, 0 being easy and 5 difficult.
We believe that the low task completion rate was caused by the
low level of expertise in JSP and Servlets that our subjects had.

Second, depending on the completeness of the implementation
task, we scored different artifacts. We scored the source code in
case the subject completed some parts of the implementation task
and also scored the design for other parts when the
implementation was not completed. If a specific feature was
completed, we assigned the same score for it without caring if the
feature was completed in the implementation or in the design.
However, it is possible that we could have been mixing apples

with oranges when we equally scored the implementation and the
design. We think that probably this equal scoring could not be fair
in some cases because not all the subjects spent the same time
implementing and designing. We asked our subjects to switch to

designing at different times for each subject, depending on the
difficulty they were having with the implementation.

4.2 Duration of Experiment Sessions
The second scarce resource that we had to manage was the length
of the experiment sessions. There are limits to how long a subject
can focus and work intensively on a task. As well, there are fewer
people who are available and willing to commit to longer

experiments. Our experiment sessions were 2.5 hours long, a
duration that pushed these limits. Consequently, we had to make
design decisions about what we asked subjects to do in the time
available. These decisions had effects on the equivalence of
subjects in the three conditions, and on the software tools and
information that we gave them.

4.2.1 Equivalence of Groups
Our experiment had three conditions to which we needed to assign
the same number of subjects. Furthermore, we wanted to ensure

that each group was comparable in terms of subject
characteristics, background, and experience. Counterbalancing the
groups helps to ensure that the performance of the groups can be
compared.

Ideally, we would have assigned our subjects to groups based on
tests of their cognitive traits and familiarity of JSP and Servlets.
For example, we could have postponed our decision of assignment
of subjects after having the results of the background

questionnaire including quantitative information about their
experience and background. The tests would have to assess
knowledge and skills, and not just ask about how much prior
experience the subjects had. The number of years of experience of
subjects is known not to be a good measure of expertise. We
found that four of our subjects said that they worked with Java
web technologies for two years, but only one of them was able to
finish the implementation tasks. However, adding more tests was

not feasible, because it would have made the sessions too long. A
skills test would have added 30 minutes and a personality test
would have added 30-60 minutes.

Instead, we decided to assign three subjects to each group based
on our knowledge of the expertise and background of our
subjects. We were able to do this because we recruited our
subjects by word-of-mouth. Before conducting the experiment we
already contacted the nine subjects and we knew about the
background and the expertise of some of them. Other subjects

were asked informally about their familiarity with JSP and
Servlets and background before scheduling the appointment for
the experiment. Having this information, we assigned our subjects
to each group before running the experiment and tried to have a
balance of expertise and background in each group.

The design decisions we took had some advantages, for example
before starting the experiments we knew that we had three
subjects in each group and that this number of subjects will be

enough to have balanced groups. Another advantage is that we did
not need to include any additional test that could have increased
the length of our experiment.

The main disadvantage of our approach was the groups created
were not ideal, in the sense they were not completely balanced,
and this likely affected the results of the study. As well, we were
not able to control for personal traits, such as analytic ability, in
analyzing the data. However, it was a reasonable trade-off, given

the alternatives.

4.2.2 Stimuli Given to Subjects
Since this was a software engineering experiment, the subjects
had to work with many different technologies in order to complete
the maintenance tasks. We knew that we could not assume that all
the subjects had worked with them previously, so we had to
include time in the schedule for subjects to become familiar with
the various tools and languages. We tried to reduce the
technologies that subjects were required to use in order to save

time and this affected the generalizability of the study.

Subjects in all three conditions had to use software tools (the
Eclipse workbench and the Tomcat Application Server),
programming languages and frameworks (Java, JSP, and
Servlets), a data format (XML), and many conventions and best
practices. Depending on the condition, subjects also had to work
with Use Cases, User Stories, and an On-Site Customer via chat.

We decided not to include Test Cases with the material given to

the groups using agile requirements for two reasons. One, we felt
that Test Cases would have provided too much information and
the comparison between the three conditions would have been too
imbalanced and unfair. Two, we did not want to require our
subjects to use yet another tool. Including a testing tool would
have further increased the length of each experiment session.

In retrospect, this was not a good decision and the reasons were
not well founded. Excluding Test Cases made conditions using
Agile Requirements less realistic, and in turn, less generalizable.

The prevailing view is that the trio of User Stories, On-Site
Customer, and Test Cases form the core of Agile Requirements.
The omission of test cases affected the credibility of study among
agilists. We had assumed that we needed to provide the Test
Cases in an automated testing tool, another common practice in
Agile. We felt that this would have done too much of the work for
those subjects using Agile Requirements, but at the same time
required them to learn another tool. Looking back, we could have

provided the written descriptions of the Test Cases, e.g. input,
output, preconditions, to the US&OC and UC+US&OC
conditions. This would have made the three conditions more
similar in terms of the information given to them.

5. CONCLUSIONS
Making design decisions to implement a software system is not an
easy task. Software designers have to evaluate the tradeoffs of
each decision before selecting an option. Similarly, researchers
need to evaluate different ways to design the experiment taking
into account the resource constraints.

In this paper, we discussed the design decisions that had an effect
on the validity of a small controlled experiment aiming to measure
the impact of different requirement formats on how people

implement a system. The limited resources that we were
attempting to manage were the availability of qualified subjects
and the duration of the experiment sessions.

Because it is very difficult to find qualified subjects, we decided
to perform the study with nine subjects who had previous
experience developing software using the Java programming
language. The small sample size affected the power of the
experiment, and meant that we could only use non-parametric

statistics. The subject system in our study was a web application
using JSP and Servlets. We did not screen for prior experience
with these technologies and only one of our nine subjects were
able to complete the implementation tasks. The poor scores of our

subjects on this task led to inclusive results on the effect of the
requirements formats on how well subjects implemented the
change tasks.

The other constraint discussed in this paper was the duration of
the experiment sessions. In our study, the sessions lasted 2.5 hours

and included a background questionnaire, tutorials, a
familiarization task, experiment tasks, and a debriefing interview.
There were other tests and stimuli that we considered including,
but did not.

Adding tests of skill and knowledge level in web technologies
would have allowed us to make the groups in each conditions
more similar to each other. Adding tests of personality traits and
cognitive ability would have allowed us to control for the effects

of these factors when analyzing performance. However, there
simply was no time available to add these to the schedule.

We do regret one design decision that we made with respect to
time constraints; we did not provide Test Cases to the groups
using Agile Requirements and in retrospect we should have. We
originally felt that we could not burden these subjects with yet
another tool or format, but this was a poor decision, because it
decreased the credibility of our experiment especially among

Agilists.

In summary, these design decisions ensured that we had a study
that was feasible, but at the cost of some threats to validity. It
would not have been possible to conduct an ideal experiment.
Instead, we had an imperfect experiment that shed light on a
phenomenon, the effect of requirements formats on maintenance
tasks. The result was a practical experiment, but our results are
not conclusive, merely informative, which still allows us to make

incremental progress as a field.

6. REFERENCES
[1] Gallardo-Valencia, R., Olivera, V., and Sim, S. Are Use

Cases Beneficial for Developers Using Agile Requirements?
In Proceedings of the Fifth International Workshop on

Comparative Evaluation in Requirements Engineering

(CERE'07), India, 2007. To appear.

[2] Hall, M., More Servlets and JavaServer Page. First Edition.
Sun Microsystems Press Publisher, 2001.

[3] Kitchenham, B.A., Pfleeger, S.L., Pickard, L.M., Jones,
P.W., Hoaglin, D.C., Emam, K.E., and Rosenberg, J.

Preliminary Guidelines for Empirical Research in Software
Engineering. IEEE Transactions on Software Engineering.
Vol. 28, No. 8 (Aug. 2002), 721-734.

[4] Perry, D., Porter, A., and Votta, L. Empirical Studies of
Software Engineering: A Roadmap. Future of Software
Engineering. ACM. 2000. 345-355.

[5] Pfleeger, S.L. Experimental Design and Analysis in Software
Engineering. Annals of Software Engineering 1. Baltzer
Science Publishers. The Netherlands. 1995. 219-253.

[6] Sheskin, D. Handbook of Parametric and Nonparametric
Statistical Procedures. Second Edition. Boca Raton: CRC
Press, 2000.

