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ABSTRACT 
Large distributed networked software systems are built to provide 
competing qualities such as reliability, availability, security, 
performance and scalability to their clients. In certain situations 
these qualities must be traded off, sacrificing some qualities to 
some extent to improve others. This paper presents TOMCAD (a 
Tradeoff a Model with Capacity and Demand) for such tradeoffs 
and gives various properties and constraints that apply to such 
situations. With this approach, we show how to dynamically 
allocate system resources when demand changes with time, in a 
way that maintains required objectives for some service qualities. 
We demonstrate how this model applies to a family of distributed 
systems that trades off data consistency to gain availability. 

Keywords 
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1. INTRODUCTION 
Large distributed networked software systems are built with 
competing qualities such as performance, scalability, reliability, 
availability and security to the user of their services. In general, 
all these qualities cannot be maximized at the same time. For 
example making remote procedure calls secure hampers their 
performance [4], increasing the performance of information 
retrieval on the web by caching comes at the cost of staleness [2] 
and providing high availability for mail or bulletin board services 
using lazy replication causes inconsistency among the replicas [5]. 
Tradeoff is inevitable between different quality attributes in such 
situations. 

Tradeoff refers to a compromise between two or more different 
benefits. It happens in a situation when maximizing both the 
benefits at the same time is not possible to achieve. One of them 
can be sacrificed to some extent for gaining more of the other. A 
tradeoff is finding a right balance between both the benefits.  

In this paper we establish a set of terminology and vocabulary to 
characterize tradeoffs. We discuss various concepts relevant to a 
system making some tradeoff and the relationship between them.  
We present a general model of tradeoff TOMCAD (a Tradeoff a 
Model with Capacity and Demand) in our effort to analyze and 
understand the nature of tradeoffs in software systems. The 

TOMCAD model has various properties and constraints that apply 
to a tradeoff situation. We also illustrate how to use the model to 
fulfill different QoS goals in a system with dynamically changing 
load and failure characteristics. We demonstrate the applicability 
of the model on a family of distributed systems built using the 
TACT (Tunable Availability and Consistency Tradeoffs) [10][11] 
or other TACT-like [7][12] middleware, that provides a 
systematic tradeoff between availability and data consistency of 
the service.   

2. TRADEOFF EXAMPLES 
This section introduces tradeoff in the area of economics, software 
engineering, distributed systems and computer architecture in 
terms of the examples illustrated in Figure 1. 
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Figure 1. Tradeoff Examples 

2.1 Earnings-Leisure Tradeoff 
There is a tradeoff between how much money someone can earn 
in a day and how much time he can spend in leisure. For a given 
amount of time a day, say 8 hours, he can spend all of the time 
working and earning money. Or he can spend some of it in leisure 
with his children. For fixed hourly pay, say $10/hr, every 
additional earning of $10 requires a sacrifice of an hour of leisure 
time. This tradeoff relationship between the dollars earned and the 
leisure time is depicted in the curve shown in Figure 1(a). 

2.2 Tradeoff in Software Testing 
Bugs are inevitable in a software system. A study [13] found an 
average of 0.33 bugs per KLOC in Linux Kernel 2.6, while 
Apache had an average of 0.25 bugs per KLOC. It is quite 
impossible to release a flawless software with many thousands of 
lines of code in it. The number of bugs in a software can be 
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reduced by doing more testing before releasing it. Hence the 
managers in a software development project have to make a 
tradeoff decision between the time-to-market of the product and 
the acceptable residual bugs in the release. According to the 
software reliability growth models [6] more bugs are detected per 
unit time at the early stage of the testing period compared to the 
late stage, giving a software testing tradeoff curve as shown in 
Figure 1(b). 

2.3 Tradeoff in Replication 
Replication is a technique used to increase the reliability and 
availability of software systems. In a replicated system multiple 
copies of the software and hardware resources are maintained. 
The replication management protocol gives the illusion of a single 
system to its clients while the client requests are served by the 
replicas concurrently. In case of failures, the system can still 
continue to operate as long as there are some replicas operational, 
thus increasing the availability of the system. However replication 
introduces the issue of inconsistency among the replicas. The 
internal states of the replicas can diverge from each other as they 
process client requests concurrently. In order to limit the 
inconsistency among the replicas it is necessary to periodically 
synchronize them with each other.  

There are two classes of replication techniques, namely 
pessimistic and optimistic. In pessimistic replication [3], any state 
changing operation in a replica (e.g., an update) is synchronously 
propagated to all other replicas maintaining a single copy 
consistency throughout the system. In a wide-area setting like the 
Internet, due to high network latency, frequent synchronization 
can cause increased client response time and lead to request 
timeouts in the clients. Also, due to link unreliability, access to 
the replicas may be denied when part of the network becomes 
temporarily unreachable. Hence pessimistic replication provides 
strong consistency but no guarantee on availability. On the other 
hand in optimistic replication [8], any kind of operation in a 
replica is allowed to proceed without any priori synchronization. 
Synchronization is done asynchronously in background. The time 
lag between an update in a replica and its propagation will cause 
stale reads in other replicas. Also, concurrent updates in different 
replicas may cause conflicts that have to be aborted eventually. 
Optimistic replication provides high availability but no guarantee 
on consistency. 

Pessimistic and optimistic replications are the two extremes in the 
consistency and availability tradeoff as shown in Figure 1(c). 

2.4 Tradeoff in Memory Caching 
Cache memories are high-speed memories in between the CPU 
and main memory in a computer system to hold the portions of the 
main memory currently being used by the CPU. Cache memory is 
usually much faster than main memory but much smaller, as 
dictated by its cost. Memory pages requested by the CPU are 
loaded in the cache memory from the main memory, if it does not 
already exist in the cache. As new pages come in the cache old 
pages may have to be replaced according to criteria (e.g., LRU, 
LFU). The benefit of cache comes from the property of “locality 
of reference”, which means the address space to be used in near 
future is likely to be the current address space. The performance 
of cache memory is measured in terms of hit ratio, the probability 
of finding a memory request in the cache. Studies [9] have shown 
that the hit ratio increases with the cache size. Initially adding a 

small amount of cache increases the hit ratio significantly, but at a 
certain point the hit ratio becomes saturated and does not increase 
significantly with the addition of more cache. The curve in Figure 
1(d) illustrates the tradeoff between cache hit ratio and cache size 
in a cache memory system. 

3. TOM: THE BASIC TRADEOFF MODEL  
In this section we present the basic tradeoff model TOM (Tradeoff 
Model) that gives the properties of tradeoff curves and the 
constraints for a tradeoff to exist in a system. TOM was described 
in our earlier work [1]. 

3.1 Morality: GG, BB, GB and BG 
A (binary) tradeoff is a relationship between the benefits of two 
aspects of a system. However, the metric used to measure a 
property and to draw the tradeoff curve does not always indicate a 
benefit. Instead it may indicate the lack of the benefit. In the 
earnings-leisure tradeoff curve in Figure 1(a), more dollars earned 
along Y-axis and more leisure time along X-axis are both benefits. 
But In the software testing tradeoff example in Figure 1(b), more 
residual bugs along Y-axis and more time-to-market along X-axis 
are both measures for lack of benefits. The benefits are along the 
reverse directions of the axes, namely, less residual bugs and less 
time-to-market.  

We define the morality of a tradeoff curve based on the goodness 
or badness of the properties along the axes of the curve. An axis 
has a good morality if it measures the goodness of a property, i.e., 
the benefit increases along the (positive) axis. On the other hand 
an axis has a bad morality if it measures the badness of a 
property, i.e., the benefit decreases along the axis. A tradeoff 
curve is said to have a Good-Good (GG) mortality if the benefits 
increase along both the X and Y axes of the curve. The earnings-
leisure tradeoff curve of Figure 1(a) and the replication tradeoff 
curve of Figure 1(c) are examples of GG tradeoff curve. In these 
examples as X increases the benefits leisure time and consistency 
increase and as Y increases the benefits earnings and availability 
also increase.  

In a Bad-Bad (BB) morality tradeoff curve the benefits decrease 
along both the axes. The software testing tradeoff curve of Figure 
1(b) is a BB tradeoff curve, since the benefits lie along the reverse 
direction of both the axes. Similarly in a Good-Bad (GB) tradeoff 
curve the benefit increases along the X-axis, but decreases along 
the Y-axis. In a Bad-Good (BG) tradeoff curve the benefit 
decreases along the X-axis, but increases along the Y-axis. The 
memory cache tradeoff in Figure 1(d) is an example of BG 
tradeoff curve.  

3.2 Monotonicity: Increasing or Decreasing 
Whatever the morality of curve is, in order for it to be a tradeoff 
curve it has to fulfill the basic tradeoff condition: increase in one 
benefit will cause a decrease in the other benefit. As a result in a 
GG tradeoff curve as X increases to increase one benefit, Y 
necessarily decreases to decrease the other benefit. This constraint 
between X and Y dimensions of a GG tradeoff curve can be 
characterized as Monotonically Decreasing (MD). In a BB 
tradeoff curve as X decreases to increase one benefit, Y will 
increase to decrease the other. This also gives a monotonically 
decreasing constraint. Conversely, in a GB tradeoff curve as X 
increases to increase a benefit, Y will increase to decrease the 
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other benefit. A GB tradeoff curve can be characterized as 
Monotonically Increasing (MI). Similarly in a BG tradeoff 
curve, as X decreases to increase a benefit, Y will also decrease to 
decrease the other benefit. This also gives a monotonically 
increasing curve. 

3.3 Tradeoff Constraints 
By combining the morality and the monotonicity properties we 
now define the basic constraint of tradeoff. For a tradeoff to exist 
between two GG or BB properties X and Y of a system, there must 
be a monotonically decreasing relationship between them. Eq. 1 
expresses this constraint mathematically. 

0)( <=
dX

dY
andXfY  (Eq. 1) 

On the other hand the tradeoff constraint for two GB or BG 
properties X and Y of a system is for them to have a monotonically 
increasing relationship, which is given by Eq. 2. 

0)( >=
dX

dY
andXfY  (Eq. 2) 

Both X and Y are dependent on each other and their dependency is 
defined by Eq. 1 or Eq. 2. As such, the X and Y axes may not have 
any particular dependent or independent characterization. In other 
words changing value along any axis will cause the other to 
change accordingly.  

An actual tradeoff curve may not be as smooth and ideal in shape 
as the curves in Figure 1. But there still can be a tradeoff as long 
as the appropriate constraint of Eq. 1 or Eq. 2 holds. 

4. TOMCAD: TOM WITH CAPACITY AND 
DEMAND 
In this section we extend TOM to TOMCAD, which combines the 
effect of capacity and demand of a system with the basic tradeoff 
described in the previous section. Let us revisit the software 
testing tradeoff example of Figure 1(b). The more testing is done 
on a software, the more bugs are found and resolved. More testing 
can be achieved by testing the software for a longer period. But 
the longer the testing period, the later the time-to-market for the 
product. The result is a tradeoff between the time-to-market of the 
software and the residual bugs. Since this is a tradeoff, it is not 
possible to reduce residual bugs and time-to-market at the same 
time. This tradeoff scenario has some underlying assumptions in 
it. Two important assumptions are that the system has a fixed 
capacity and demand. The capacity of a software testing system is 
how much code the team can test per unit time, which is 
determined by the size of the testing team. On the other hand the 
demand on a software testing system is the size of the code base to 
be tested, which is given by the number of features to be tested. It 
is possible to decrease both the residual bugs and the time-to-
market of the product by either increasing the team size (the 
capacity) or decreasing the number of features in the software (the 
demand). The tradeoff given by the curve in Figure 1(b) assumes 
a particular capacity and demand of the system. 

4.1 Family of Tradeoff Curves 
We will illustrate the effects of capacity and demand on the 
software testing example with the curves in Figure 2. Suppose in 
the development of a particular software system there are M1 
different features to be tested by a team of size N1. The tradeoff 

between residual bugs and time-to-market of the software is given 
by the curve R1. For a target time-to-market x1 of the product, the 
achievable residual bugs is y1 given by the point p1 on the curve. 
If this amount of residual bugs is not acceptable in the release and 
it has to be at most y2, moving along curve R1 up to point p2 by 
increasing the time-to-market to x2 can achieve this residual bugs 
target. But if it is required to meet the residual bugs target of y2 
without changing the time-to-market target of x1, an alternative 
could be to increase the testing team size. For the new team size, 
for every time-to-market the amount of residual bugs will be 
lower than the previous team size. This will give a new tradeoff 
curve for this increased capacity and the new curve will be closer 
to the origin from its previous location. For some team size N2 > 
N1 both x1 and y2 target for time-to-market and residual bugs can 
be achieved at point p3 on the new curve R2. On the other hand 
decreasing the capacity of the testing team will move the tradeoff 
curve away from the origin. For some team size N3 < N1 the new 
tradeoff curve will be R3. This gives a family of tradeoff curves 
based on the capacity of the system. 

Residual Bugs

Time-to-Market

R1

R2

R3
p3

p1

More Features 
(Demand++)

Larger Team 
(Capacity++)

x1

y1

y2
p2

x2  
Figure 2. Capacity and Demand in Testing Tradeoff 

The above analysis is done by varying the capacity and keeping 
the demand fixed. The same result can be achieved by keeping the 
capacity fixed and varying the demand for new features but in 
reverse direction. Increasing demand will move the tradeoff curve 
away from the origin, while decreasing demand will move the 
curve towards the origin. If curve R1 represents a number of 
features M1 and team size N1, curve R2 may represent a number 
features of M2 < M1 and R3 may represent a number of features of 
M3 > M1 for the fixed team size N1. 

4.2 Capacity 
The capacity C of a system is the amount of resources available to 
perform its designated tasks.  In a system making a tradeoff 
between two benefits X and Y, it is possible to gain more of both 
the benefits by increasing the capacity of the system. We assume 
X and Y to be in a GG tradeoff relationship in this discussion. The 
constraint among X, Y and C, where ),( YXfC = , can be given 

as Eq. 3. 

00 >
∂
∂>

∂
∂

Y

C
and

X

C  (Eq. 3) 

Since increasing C allows obtaining more of both X and Y, the 
new XY tradeoff curve will move away from the origin. Note that 
this is just the opposite from the software testing tradeoff example 
in the previous section, since the morality of the software testing 
tradeoff curve (it is BB) is just the opposite.  
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Notice that the relationship between C and either X or Y is 
monotonically increasing. The morality of the curve is GB since X 
or Y is a benefit (good) and more capacity indicates more cost 
(bad). But a curve with GB morality, which is also monotonically 
increasing, is the property of a tradeoff curve (Eq. 2). This results 
in a three-dimensional tradeoff among X, Y and C. 

Figure 3(a) shows a family of XY tradeoff curves for various 
capacities of C, C1 being the lowest capacity and C6 being the 
highest. Suppose the system is operating at capacity C3 and at 
tradeoff point P1. By increasing capacity to C4 the system moves 
to a new XY tradeoff curve. During the move from the original 
curve to the new curve, it is possible to increase Y without 
changing X at point P3 or to increase X without changing Y at 
point P4 or increase both X and Y by moving to point P2. 
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(a) Capacity in 2D   (b) Capacity in 3D 

Figure 3. Capacity in Tradeoff 

The relationship among X, Y and C can be illustrated in the 3D 
graph of Figure 3(b), with C as the z-axis. This is the 3D 
equivalent of the 2D graphs in Figure 3(a). The tradeoff between 
X and Y as C varies is determined by the surface PQRS.  

4.3 Demand 
Some systems may have a variable amount of demand imposed on 
them. The demand on a system is the volume of task it has to 
perform. Increasing the demand on the system may reduce both of 
the basic benefits X and Y. The constraint among the demand on 
the system D, X and Y, where ),( YXfD = , can be given as Eq. 

4. 

00 <
∂
∂<

∂
∂

Y

D
and

X

D  (Eq. 4) 

As Eq. 4 specifies, increasing D reduces one or both of X and Y, 
so the new tradeoff curve will move towards the origin. The 
relationship among X, Y and D will have curves similar to Figure 
3(a) and 3(b) except the direction of D will be reverse from that of 
C. 

The relationship between D and either X or Y is monotonically 
decreasing. The morality of this curve is GG since X and Y are 
benefits (good) and more demand implies more revenue (good). A 
GG morality curve, which is also monotonically decreasing, is the 
property of a tradeoff curve (Eq. 1). This adds a fourth dimension 
D to the tradeoff among X, Y and C. 

4.4 Capacity and Demand 
Given fixed X and Y, the relationship between capacity C and 
demand D of the system is a two-dimensional tradeoff 
relationship. In order to handle more demand, without changing X 

and Y, the system needs more capacity. This is a monotonically 
increasing relationship between the capacity (bad) and demand 
(good). Eq. 5 gives the constraint between C and D of a system, 
where )(DfC = . 

0>
∂
∂
D

C  (Eq. 5) 

4.5 Four-way Tradeoff 
Combining Eq. 1, 3, 4 and 5, the complete set of tradeoff 
constraints among GG properties X and Y, the capacity C and the 
demand D on the system is given by Eq. 6. 

whereDCYXf 0),,,( =  

,0,0,0 >
∂
∂>

∂
∂<

∂
∂

Y

C

X

C

X

Y  

00,0 >
∂
∂<

∂
∂<

∂
∂

D

C
and

Y

D

X

D  (Eq. 6) 

 

Figure 4. Four-way Tradeoff 

Figure 4 illustrates the combined four-dimensional tradeoff 
relationship. The dimensions for each surface in the figure are X, 
Y and C. Each surface represents the tradeoff among X, Y and C 
for a particular D. The surfaces represent the demands D1, D2 and 
D3 respectively, where D1 < D2 < D3.  

5. TOMCAD IN DISTRIBUTED SYSTEMS 
Section 2.3 and Figure 1(c) describes the tradeoff between 
availability and consistency in a replicated system. Various 
middleware and frameworks are available to perform a continuous 
tradeoff between the two extremes of the figure. TACT (Tunable 
Availability and Consistency Tradeoffs) [10][11] is such a 
middleware toolkit for building replicated services. It provides a 
means to make a controlled and systematic tradeoff between the 
consistency and availability of the service by varying the level of 
inconsistency among the replicas. FRACS (Flexible Replication 
Architecture for a Consistency Spectrum) [12] is another TACT-
like framework, which provides tradeoff between either 
performance or availability and consistency in replicated systems. 
The techniques in TRAPP (Tradeoff in Replication Precision and 
Performance) [7] enable tradeoff between performance and 
precision in data caching. 

In this section we apply our tradeoff model on distributed systems 
built using TACT and analyze the resulting tradeoffs. From the 
analysis we show how to dynamically allocate system resources 
when demand changes with time, in a way that maintains a QoS 
guarantee to the user of the system. 

7



5.1 TACT 
In the TACT system model, as illustrated in Figure 5, the TACT 
middleware sits in between the application and the data store in 
each replica in order to manage the replication protocol. The 
replicas can directly communicate with each other. A client, 
intending to use the service, can submit a query to any of the 
replicas.  

TACT controls consistency vs. availability tradeoff as follows. 
Each replica maintains measures of current inconsistency and 
maximum tolerable inconsistency between the data in it and that 
of other replicas in the system. For every client request to a 
replica (a read or a write operation), if performing the operation 
does not cause the current inconsistency to exceed the maximum 
tolerable inconsistency, the operation is done locally within the 
replica. Inconsistency is introduced in the system when a write 
operation is performed locally while letting the data in this replica 
diverge from the others. If performing an operation causes the 
current inconsistency to exceed the maximum tolerable 
inconsistency, the replica will first synchronize the accumulated 
write operations with one or more other replicas and reduce the 
current level of inconsistency in it. 

Data

Application

TACT

Client Client Client Client ClientClient

Application

TACT

Application

TACT

Data Data

 
Figure 5. TACT System Model 

It is inevitable that components of an Internet scale service will 
occasionally fail. The failure model of TACT handles two types of 
failure: replica failure and network partitioning. Any attempt to 
perform synchronization from a replica during a failure will be 
unsuccessful if it cannot communicate with the required replicas. 
This will cause the replica to reject any subsequent write 
operations from the clients, since it cannot do so without 
remaining in the tolerable inconsistency bound, until the 
component is repaired. 

The higher the tolerable inconsistency bound, the higher the 
chances that a failed component will be repaired by the time a 
replica reaches the bound, hence the lower the number of rejected 
write requests and hence the higher the availability. This creates a 
tradeoff between the consistency and the availability of the 
system. 

5.2 Analytical Model of TACT 
We now build an analytical model of a TACT-based system 
consisting of the relationship among the relevant system 
parameters. From the model we then determine the tradeoffs in the 
system. Our model assumes Order Error [11] as the metric for 
measuring inconsistency. This metric specifies the number of 
write operations a replica can accumulate before synchronizing 
with the rest. In TACT the read operations are always handled 
locally, so they do not contribute to systems availability during a 
failure in other parts of the system. Hence only the writes are 

considered as client requests in our analysis. Our model has the 
following parameters for the system: 

• N = Number of replicas, 0>N  
• E = Order Error tolerated in each of the replicas, 

∞≤≤ E1   
• D = Total client demand in terms of number of writes per 

unit time arriving across the set of replicas, 0>D  
• L = Total lost or rejected writes per unit time across all 

the replicas, DL ≤≤0   
• C = Total capacity utilization to serve the demands across 

all replicas 

For simplicity we assume that the lost operations (L) do not 
consume any system resources. So the effective total demand on 
the system is LD −  writes per unit time.  This demand must be 
supplied by all N replicas, so the total capacity of the system 
needs is )( LDN − .  Since we are using TACT, each replica 

accumulates its operations into batches of size E. These batches 
are transmitted to and effectively dealt with by the other replicas 
as a single operation.  So the resulting required capacity is 
reduced by a factor of E. Thus the actual capacity utilization C is 
given by Eq. 7. 

)( LD
E

N
C −=  (Eq. 7) 

We will now give an example of particular values that can satisfy 
Eq. 7. Consider a configuration in which the system has 3 replicas 
(N=3), the allowed order error in each replica is 5 (E=5), there is a 
total of 100 write operations per minute arriving at all the replicas 
(D=100), and a total of 5 of them are lost due to failures in the 
system (L=5). The resulting capacity utilization of the system is 
computed to be 57 write operations per minute (C=57). The 
combined capacity of all the replicas needs to be at least 57 write 
operations per minute. In the rest of the analysis we will assume 
that the capacity is exactly given by Eq. 7. 

E and L are measures of badness, thus giving a BB tradeoff. In 
order to transform it into a GG tradeoff we can take the inverse of 
the measures. The inverse of E and L are the benefits consistency 
and availability. We will replace E and L with X and Y where 

• X = Consistency of the system, 10 ≤≤ X   
• Y = Availability of the system, 10 ≤≤ Y   

When there is no order error in the system (1=E ), i.e., every 
operation is synchronized immediately, the system is fully 
consistent and 1=X . Whereas when order error is arbitrarily 
large ( ∞=E ), the system is totally inconsistent and 0=X . So 
E is transformed to X, for some constant 0>K , by Eq. 8. 

X

XK
E

EK

K
X

1)1(1 +−=⇒
+
+=  (Eq. 8) 

On the other hand the availability of the system, as defined in 
TACT, is the ratio between the number of fulfilled requests and 
the total requests. So D is transformed to Y by Eq. 9. 

)1( YDL
D

LD
Y −=⇒

−=  (Eq. 9) 

Combining Eq. 7, 8 and 9 we get Eq. 10, a combined relationship 
among the system properties consistency X, availability Y, 
capacity C, demand D and number of replicas N. 
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1)1( +−
=

XK

NDXY
C  (Eq. 10) 

5.3 Tradeoff Analysis 
Based on the analytical model of TACT given in Eq. 10, we now 
derive the pair-wise monotonicity relationships among the GG 
properties X and Y along with the capacity C and demand D of the 
system. Eq. 11 lists the obtained relationships. 
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>
+−

=
∂
∂

XK

NXY

D

C   (Eq. 11) 

The set of equations of Eq. 11 satisfies the tradeoff constraints of 
TOMCAD given in Eq. 6. This confirms that there is a four-way 
tradeoff among the consistency, availability, capacity and demand 
of a service built using TACT. 

5.4 Automating Service Quality 
With the change in the system dynamics as the values of some of 
the system parameters change, the analytical model of Eq. 10 and 
the tradeoff relationships of Eq. 11 can be used to determine the 
values for the remaining parameters of the system. This model can 
also be used to determine how to adjust the parameters 
automatically to maintain a certain QoS guarantee to the user of 
the system, as we will now illustrate in the next paragraph. 

Suppose that initially the system with capacity c1 (C) is required 
to provide a particular minimum QoS specified as consistency x1 
(X) and availability y1 (Y) while the total demand is d1 (D). The 
actual initial values for X and Y are x2 and y2, such that x2 > x1 and 
y2 > y1. The QoS requirements for X and Y are clearly satisfied by 
the initial values. Now suppose that due to a system failure the 
capacity is reduced to c2 such that c2 < c1. Consequently, the 
system can make a tradeoff between C and X and reduce X down 
to x1 and/or make a tradeoff between C and Y and reduce Y down 
to y1 to cope with the reduced capacity. If at this point the client 
demand increases to d2 such that d2 > d1, this will try to push X 
and/or Y down. But since x1 and y1 are the minimum QoS 
required, the available options are either not to let the demand 
increase or to add more resources to the system to raise C to some 
amount c3 such that c3 > c2 as required by the C and D tradeoff.  

This approach leads to satisfying QoS by adjusting required 
parameters. The amount of adjustment required is given by the 
pair-wise tradeoff relationship between the relevant quality and 
the parameter. 

6. CONCLUSION 
In this paper we present TOMCAD, a tradeoff model that can be 
applied to various kinds of distributed systems in order to identify 
and understand the tradeoffs going on in the systems. TOMCAD 
implies that a tradeoff between any two qualities of a system is 
actually a four-way tradeoff. The capacity and the demand of the 
system introduce two additional dimensions to the basic tradeoff 

between system qualities, such as reliability, availability, security, 
performance and scalability. So in any tradeoff analysis it is 
important to take the additional two dimensions into account and 
consider how they might affect the tradeoff situation. We also 
show that by having a tradeoff model and the tradeoff equations, it 
is possible to automatically control system parameters and 
resource allocation to maintain a certain QoS goal for the service.  
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