Automating Service Quality with TOMCAD (Tradeoff Model
with Capacity and Demand)

Raihan Al-Ekram, Ric Holt
University of Waterloo
{rekram,holt}@swag.uwaterloo.ca

ABSTRACT

Large distributed networked software systems aikt touprovide
competing qualities such as reliability, availalili security,
performance and scalability to their clients. Intaim situations
these qualities must be traded off, sacrificing sogoalities to
some extent to improve others. This paper preSEQICAD (a
Tradeoff a Model with Capacity and Demand) for stretdeoffs
and gives various properties and constraints tpatyato such
situations. With this approach, we show how to dyically
allocate system resources when demand changesimith in a
way that maintains required objectives for someiserqualities.
We demonstrate how this model applies to a fanfilgtistributed
systems that trades off data consistency to gaiiledility.

Keywords
Tradeoff, QoS, TACT.

1. INTRODUCTION

Large distributed networked software systems ardt with
competing qualities such as performance, scalgpiléliability,
availability and security to the user of their seeg. In general,
all these qualities cannot be maximized at the stime. For
example making remote procedure calls secure hamitesir
performance [4], increasing the performance of rmétion
retrieval on the web by caching comes at the cbstateness [2]
and providing high availability for mail or bulletibboard services
using lazy replication causes inconsistency ambegéplicas [5].
Tradeoff is inevitable between different qualityriutes in such
situations.

Tradeoff refers to a compromise between two or mifierent
benefits. It happens in a situation when maximizbwh the
benefits at the same time is not possible to aehi®ne of them
can be sacrificed to some extent for gaining mdrthe other. A
tradeoff is finding a right balance between both blenefits.

In this paper we establish a set of terminology @ochbulary to
characterize tradeoffs. We discuss various conagésant to a
system making some tradeoff and the relationshiprdsen them.
We present a general model of tradeoff TOMCAD (adeoff a
Model with Capacity and Demand) in our effort toagze and
understand the nature of tradeoffs in software esyst The

Permission to make digital or hard copies of alpart of this work for
personal or classroom use is granted without feeiged that copies are
not made or distributed for profit or commercialvadtage and that
copies bear this notice and the full citation os fhist page. To copy
otherwise, to republish, to post on servers orddistribute to lists,
requires prior specific permission and/or a fee.

ASE Workshop on Automating Service Quality, Novemi2907,
Atlanta, Georgia, USA. © 2007 ACM ISBN: 978-1-595938-7
/07/11...$5.00

Chris Hobbs
Nortel, Canada
cwlh@nortel.com

Susan Sim
University of California, Irvine
ses@ics.uci.edu

TOMCAD model has various properties and constraimas apply
to a tradeoff situation. We also illustrate howuse the model to
fulfill different QoS goals in a system with dynamaily changing
load and failure characteristics. We demonstrageatpplicability
of the model on a family of distributed systemsltousing the
TACT (Tunable Availability and Consistency Tradex)ff10][11]
or other TACT-like [7][12] middleware, that provige a
systematic tradeoff between availability and datasistency of
the service.

2. TRADEOFF EXAMPLES

This section introduces tradeoff in the area ofheenics, software
engineering, distributed systems and computer t@cthire in
terms of the examples illustrated in Figure 1.

Earnings Residual Bugs

$80

$60

$20

. Leisure . Time-to-
T T 7
2Hrs 6Hrs 8Hrs 1IMe Market

(a) Earnings-Leisure Tradeoff (b) Tradeoffin Software Testing
Availability

Hit Ratio

100%

Consistenc .
100% Y Cache Size

(c) Tradeoff in Replication
Figure 1. Tradeoff Examples

(d) Tradeoff in Memory Caching

2.1 Earnings-Leisure Tradeoff

There is a tradeoff between how much money someanecarn
in a day and how much time he can spend in leistoea given
amount of time a day, say 8 hours, he can spendf dalie time
working and earning money. Or he can spend sontdrofeisure
with his children. For fixed hourly pay, say $1Q/hevery
additional earning of $10 requires a sacrifice haur of leisure
time. This tradeoff relationship between the dallearned and the
leisure time is depicted in the curve shown in Fégl(a).

2.2 Tradeoff in Software Testing

Bugs are inevitable in a software system. A stut3j found an
average of 0.33 bugs per KLOC in Linux Kernel 2hile

Apache had an average of 0.25 bugs per KLOC. Ituge

impossible to release a flawless software with mdwoysands of
lines of code in it. The number of bugs in a sofavaan be

reduced by doing more testing before releasingHignce the
managers in a software development project havenae a
tradeoff decision between the time-to-market of pineduct and
the acceptable residual bugs in the release. Aowrtb the
software reliability growth models [6] more bug atetected per
unit time at the early stage of the testing pedodpared to the
late stage, giving a software testing tradeoff euas shown in
Figure 1(b).

2.3 Tradeoff in Replication

Replication is a technique used to increase thiabiéty and

availability of software systems. In a replicatagtem multiple
copies of the software and hardware resources aiatamed.

The replication management protocol gives theidinof a single
system to its clients while the client requests seeved by the
replicas concurrently. In case of failures, thetetys can still

continue to operate as long as there are someaspbperational,
thus increasing the availability of the system. ldwer replication
introduces the issue of inconsistency among théiceep The

internal states of the replicas can diverge frocheather as they
process client requests concurrently. In order imitl the

inconsistency among the replicas it is necessargetgodically

synchronize them with each other.

There are two classes of replication techniqguesmeha
pessimistic and optimistic. Ipessimistic replication [3], any state
changing operation in a replica (e.g., an updateynchronously
propagated to all other replicas maintaining a Isingopy
consistency throughout the system. In a wide-ae#ting like the
Internet, due to high network latency, frequentcéyonization
can cause increased client response time and eaequest
timeouts in the clients. Also, due to link unrelldlp, access to
the replicas may be denied when part of the netwmomes
temporarily unreachable. Hence pessimistic reptcaprovides
strong consistency but no guarantee on availabilty the other
hand in optimistic replication [8], any kind of operation in a
replica is allowed to proceed without any priornelironization.
Synchronization is done asynchronously in backgdodrhe time
lag between an update in a replica and its propagatill cause
stale reads in other replicas. Also, concurrentatgslin different
replicas may cause conflicts that have to be abagteentually.
Optimistic replication provides high availabilityybno guarantee
on consistency.

Pessimistic and optimistic replications are the extremes in the
consistency and availability tradeoff as shownigufe 1(c).

2.4 Tradeoff in Memory Caching

Cache memories are high-speed memories in betweeCPU
and main memory in a computer system to hold théqums of the
main memory currently being used by the CPU. Canbémory is
usually much faster than main memory but much smaths
dictated by its cost. Memory pages requested byGR& are
loaded in the cache memory from the main memoriy,dbes not
already exist in the cache. As new pages comeadrcéithe old
pages may have to be replaced according to crifer@, LRU,
LFU). The benefit of cache comes from the propeftylocality
of reference”, which means the address space twsbd in near
future is likely to be the current address spade performance
of cache memory is measured in terms of hit rdtie, probability
of finding a memory request in the cache. Stud®$iive shown
that the hit ratio increases with the cache siadially adding a

small amount of cache increases the hit ratio 8agmitly, but at a

certain point the hit ratio becomes saturated aresaot increase
significantly with the addition of more cache. Td@ve in Figure

1(d) illustrates the tradeoff between cache hibrahd cache size
in a cache memory system.

3. TOM: THE BASIC TRADEOFF MODEL

In this section we present the basic tradeoff mad#V (Tradeoff
Model) that gives the properties of tradeoff curvasd the
constraints for a tradeoff to exist in a systemM @as described
in our earlier work [1].

3.1 Morality: GG, BB, GB and BG

A (binary) tradeoff is a relationship between trenéfits of two
aspects of a system. However, the metric used tasume a
property and to draw the tradeoff curve does notgs indicate a
benefit. Instead it may indicate the lack of thendf@. In the
earnings-leisure tradeoff curve in Figure 1(a), endollars earned
alongY-axis and more leisure time aloXgaxis are both benefits.
But In the software testing tradeoff example inufegg1(b), more
residual bugs alony-axis and more time-to-market aloxgaxis
are both measures for lack of benefits. The benafie along the
reverse directions of the axes, namely, less rasidugs and less
time-to-market.

We define the morality of a tradeoff curve basedtmgoodness
or badness of the properties along the axes ottinee. An axis
has agood morality if it measures the goodness of a propémy,

the benefit increases along the (positive) axis.ti@nother hand
an axis has &ad morality if it measures the badness of a
property, i.e., the benefit decreases along the. aki tradeoff
curve is said to have @ood-Good (GG) mortality if the benefits
increase along both thé andY axes of the curve. The earnings-
leisure tradeoff curve of Figure 1(a) and the egtion tradeoff
curve of Figure 1(c) are examples of GG tradeofiveuln these
examples aX increases the benefits leisure time and consigtenc
increase and a¥ increases the benefits earnings and availability
also increase.

In aBad-Bad (BB) morality tradeoff curve the benefits decrease
along both the axes. The software testing tradaaffe of Figure
1(b) is a BB tradeoff curve, since the benefitsalieng the reverse
direction of both the axes. Similarly inGood-Bad (GB) tradeoff
curve the benefit increases along eaxis, but decreases along
the Y-axis. In aBad-Good (BG) tradeoff curve the benefit
decreases along théaxis, but increases along theaxis. The
memory cache tradeoff in Figure 1(d) is an exampieBG
tradeoff curve.

3.2 Monotonicity: Increasing or Decreasing
Whatever the morality of curve is, in order fortdt be a tradeoff
curve it has to fulfill the basic tradeoff conditicincrease in one
benefit will cause a decrease in the other benkfita result in a
GG tradeoff curve axX increases to increase one benefit,
necessarily decreases to decrease the other béreditconstraint
betweenX and Y dimensions of a GG tradeoff curve can be
characterized asMonotonically Decreasing (MD). In a BB
tradeoff curve asX decreases to increase one benéfitwill
increase to decrease the other. This also give®rotonically
decreasing constraint. Conversely, in a GB tradeaffre asX
increases to increase a bene¥itwill increase to decrease the

other benefit. A GB tradeoff curve can be charanter as
Monotonically Increasing (MI). Similarly in a BG tradeoff
curve, asX decreases to increase a ben#fityill also decrease to
decrease the other benefit. This also gives a nooiuzlly
increasing curve.

3.3 Tradeoff Constraints

By combining the morality and the monotonicity pedfes we

now define the basic constraint of tradeoff. Faraaleoff to exist

between two GG or BB propertiésandY of a system, there must

be a monotonically decreasing relationship betwisem. Eq. 1

expresses this constraint mathematically.
Y=f(X) and ¥ (Eq. 1)

dX

On the other hand the tradeoff constraint for twB Gr BG

propertiesX andY of a system is for them to have a monotonically

increasing relationship, which is given by Eq. 2.

v=f(x) and >0
dx

(Ea. 2)
Both X andY are dependent on each other and their dependgncy i
defined by Eq. 1 or Eqg. 2. As such, fandY axes may not have
any particular dependent or independent charaetésiz In other
words changing value along any axis will cause thiger to
change accordingly.

An actual tradeoff curve may not be as smooth dedliin shape
as the curves in Figure 1. But there still can liemdeoff as long
as the appropriate constraint of Eq. 1 or Eq. 20l

4. TOMCAD: TOM WITH CAPACITY AND

DEMAND

In this section we extend TOM to TOMCAD, which cands the

effect of capacity and demand of a system withbtsc tradeoff
described in the previous section. Let us revisig software

testing tradeoff example of Figure 1(b). The ma@stihg is done
on a software, the more bugs are found and resoMeck testing

can be achieved by testing the software for a lopgeiod. But

the longer the testing period, the later the timenarket for the

product. The result is a tradeoff between the timesarket of the

software and the residual bugs. Since this is @eb#, it is not

possible to reduce residual bugs and time-to-maakéhe same
time. This tradeoff scenario has some underlyirguamptions in

it. Two important assumptions are that the systers & fixed

capacity and demand. The capacity of a softwatetesystem is
how much code the team can test per unit time, lwhg

determined by the size of the testing team. Onother hand the
demand on a software testing system is the silgeofode base to
be tested, which is given by the number of feattmase tested. It
is possible to decrease both the residual bugstlaadime-to-

market of the product by either increasing the tesime (the

capacity) or decreasing the number of featurehérsbftware (the
demand). The tradeoff given by the curve in Figlfie) assumes
a particular capacity and demand of the system.

4.1 Family of Tradeoff Curves

We will illustrate the effects of capacity and demaon the
software testing example with the curves in FigRir&uppose in
the development of a particular software systenrvethtare M;
different features to be tested by a team of BizeThe tradeoff

between residual bugs and time-to-market of thevswé is given
by the curveR;. For a target time-to-market of the product, the
achievable residual bugsys given by the poinp; on the curve.
If this amount of residual bugs is not acceptablthe release and
it has to be at mogb, moving along curvér, up to pointp, by
increasing the time-to-market 1@ can achieve this residual bugs
target. But if it is required to meet the residbals target of/,
without changing the time-to-market target>af an alternative
could be to increase the testing team size. Fonéve team size,
for every time-to-market the amount of residual $ugill be
lower than the previous team size. This will giveew tradeoff
curve for this increased capacity and the new cumlliebe closer
to the origin from its previous location. For soteam sizeN, >

N; bothx; andy, target for time-to-market and residual bugs can
be achieved at poimi; on the new curv®,. On the other hand
decreasing the capacity of the testing team wilventine tradeoff
curve away from the origin. For some team gize< N, the new
tradeoff curve will beR;. This gives a family of tradeoff curves
based on the capacity of the system.

Residual Bugs
A

More Features
(Demand ++)

Larger Team
(Capacity ++)

Y1 R3

Y2 R,

» Time-to-Market

Xz

Figure 2. Capacity and Demand in Testing Tradeoff

The above analysis is done by varying the capaity keeping
the demand fixed. The same result can be achiey&édping the
capacity fixed and varying the demand for new fesglbut in
reverse direction. Increasing demand will movetthdeoff curve
away from the origin, while decreasing demand wilbve the
curve towards the origin. If curv®, represents a number of
featuresM; and team siz&\;, curve R, may represent a number
features oM, < M; andR; may represent a number of features of
M5 > M; for the fixed team sizh;.

4.2 Capacity

The capacityC of a system is the amount of resources available t
perform its designated tasks. In a system makingadeoff
between two benefitX andY, it is possible to gain more of both
the benefits by increasing the capacity of theesystWe assume
X andY to be in a GG tradeoff relationship in this disios. The
constraint among, Y andC, whereC = f(X,Y), can be given

as Eg. 3.
%€ - 0and 50 (Eq.3)
oX oY

Since increasingC allows obtaining more of botX andY, the
new XY tradeoff curve will move away from the origin. Nathat
this is just the opposite from the software testiiagleoff example
in the previous section, since the morality of Hofware testing
tradeoff curve (it is BB) is just the opposite.

Notice that the relationship betweeéh and eitherX or Y is
monotonically increasing. The morality of the cuigesB sinceX
or Y is a benefit (good) and more capacity indicatesenmst
(bad). But a curve with GB morality, which is alsmnotonically
increasing, is the property of a tradeoff curve.(By This results
in a three-dimensional tradeoff amoXgyY andC.

Figure 3(a) shows a family oXY tradeoff curves for various
capacities ofC, C; being the lowest capacity ar@ being the
highest. Suppose the system is operating at cgp@sitand at
tradeoff pointP;. By increasing capacity tG, the system moves
to a newXY tradeoff curve. During the move from the original
curve to the new curve, it is possible to increasevithout
changingX at pointP; or to increaseX without changingY at
point P4 or increase boti andY by moving to poinP,.

X

(a) Capacity in 2D
Figure 3. Capacity in Tradeoff

(b) Capacity in 3D

The relationship amony, Y and C can be illustrated in the 3D
graph of Figure 3(b), withC as the z-axis. This is the 3D
equivalent of the 2D graphs in Figure 3(a). Thelef between
X andY asC varies is determined by the surfd@®RS.

4.3 Demand

Some systems may have a variable amount of demgmasied on
them. The demand on a system is the volume of itakks to
perform. Increasing the demand on the system nayceeboth of

the basic benefitX andY. The constraint among the demand on

the systenD, X andY, where D = f(X,Y), can be given as Eq.

(Ea. 4)

As Eq. 4 specifies, increasirig reduces one or both of andY,
so the new tradeoff curve will move towards thegri The
relationship among, Y andD will have curves similar to Figure
3(a) and 3(b) except the direction®fwill be reverse from that of

The relationship betweeB and eitherX or Y is monotonically
decreasing. The morality of this curve is GG sidxcandY are

benefits (good) and more demand implies more rez¢good). A
GG morality curve, which is also monotonically dessing, is the
property of a tradeoff curve (Eg. 1). This addearth dimension
D to the tradeoff amon}, Y andC.

4.4 Capacity and Demand

Given fixed X and Y, the relationship between capaciyand
demand D of the system is a two-dimensional
relationship. In order to handle more demand, wittehangingX

tradeoff

and, the system needs more capacity. This is a moiaaibn
increasing relationship between the capacity (katj demand
(good). Eg. 5 gives the constraint betw&2andD of a system,
whereC = f (D).

€0 (Eq. 5)
oD

4.5 Four-way Tradeoff
Combining Eqg. 1, 3, 4 and 5, the complete set afldoff
constraints among GG properti¥sandY, the capacityC and the
demandD on the system is given by Eq. 6.

f(X,Y,C,D)=0 where

oY oCc oC

—<0, >0, —>0,
oxX oX oY

a—D<O, a—D<O and a—c>0
oX oYy oD

(Eq. 6)

Figure 4. Four-way Tradeoff

Figure 4 illustrates the combined four-dimensiorteddeoff
relationship. The dimensions for each surface efigure areX,
Y andC. Each surface represents the tradeoff am¥ng andC
for a particulaD. The surfaces represent the demang<D, and
D; respectively, wher®; < D, < Ds.

5. TOMCAD IN DISTRIBUTED SYSTEMS
Section 2.3 and Figure 1(c) describes the tradéeffveen
availability and consistency in a replicated systeévfarious
middleware and frameworks are available to perfaroontinuous
tradeoff between the two extremes of the figureCTATunable
Availability and Consistency Tradeoffs) [10][11] isuch a
middleware toolkit for building replicated servicds provides a
means to make a controlled and systematic trademiffeen the
consistency and availability of the service by vwagythe level of
inconsistency among the replicas. FRACS (FlexibéplRation
Architecture for a Consistency Spectrum) [12] i®twer TACT-
like framework, which provides tradeoff between heit
performance or availability and consistency in iegied systems.
The techniques in TRAPP (Tradeoff in Replicatioedfsion and
Performance) [7] enable tradeoff between perforrearamd
precision in data caching.

In this section we apply our tradeoff model onrilistted systems
built using TACT and analyze the resulting tradeoffrom the
analysis we show how to dynamically allocate systesources
when demand changes with time, in a way that maisita QoS
guarantee to the user of the system.

51 TACT

In the TACT system model, as illustrated in Figbrghe TACT
middleware sits in between the application anddhg store in
each replica in order to manage the replicationtqua. The
replicas can directly communicate with each oth&rclient,
intending to use the service, can submit a querpny of the
replicas.

TACT controls consistency vs. availability tradeai follows.
Each replica maintains measures of current inctersty and
maximum tolerable inconsistency between the dat& amd that
of other replicas in the system. For every clieaguest to a
replica (a read or a write operation), if perforgithe operation
does not cause the current inconsistency to extteedaximum
tolerable inconsistency, the operation is done llpagithin the
replica. Inconsistency is introduced in the sysighen a write
operation is performed locally while letting thetalan this replica
diverge from the others. If performing an operaticeuses the
current inconsistency to exceed the maximum tolerab
inconsistency, the replica will first synchronizeetaccumulated
write operations with one or more other replicas aeduce the
current level of inconsistency in it.

\/

1 >< v
Application Al Application Application

Y

TACT TACT AC

at

Figure5. TACT System Model

It is inevitable that components of an Internetlescervice will
occasionally fail. The failure model of TACT hanslisvo types of
failure: replica failure and network partitioningny attempt to
perform synchronization from a replica during alue will be
unsuccessful if it cannot communicate with the nexfreplicas.
This will cause the replica to reject any subseguemte
operations from the clients, since it cannot do wehout
remaining in the tolerable inconsistency bound, iluthe
component is repaired.

The higher the tolerable inconsistency bound, thighdr the

chances that a failed component will be repairedhsytime a
replica reaches the bound, hence the lower the auoftrejected
write requests and hence the higher the availgbflihis creates a
tradeoff between the consistency and the avaitgbibif the

system.

5.2 Analytical Model of TACT

We now build an analytical model of a TACT-basedtem
consisting of the relationship among the relevaystesn
parameters. From the model we then determine #uetiffs in the
system. Our model assumes Order Error [11] as th#ienfor
measuring inconsistency. This metric specifies thenber of
write operations a replica can accumulate beforgclsionizing
with the rest. In TACT the read operations are gwhandled
locally, so they do not contribute to systems aality during a
failure in other parts of the system. Hence onlg thrites are

considered as client requests in our analysis. r@adel has the
following parameters for the system:

« N=Number of replicasN >0

e E = Order Error tolerated in each of the replicas,
1<E<ow

e D =Total client demand in terms of number of wripes
unit time arriving across the set of replicd3,> 0

e L = Total lost or rejected writes per unit time a&sall
the replicasQ< L <D

e C=Total capacity utilization to serve the demaadss
all replicas

For simplicity we assume that the lost operatiobhy do not
consume any system resources. So the effectivedetaand on
the system isD — L writes per unit time. This demand must be
supplied by allN replicas, so the total capacity of the system
needs isN(D-L). Since we are using TACT, each replica

accumulates its operations into batches of Ez&hese batches
are transmitted to and effectively dealt with bg tther replicas
as a single operation. So the resulting requiragacity is
reduced by a factor &. Thus the actual capacity utilizati@is
given by Eq. 7.
C=E(D—L) (Eq. 7)
E
We will now give an example of particular valueattiban satisfy
Eqg. 7. Consider a configuration in which the systeas 3 replicas
(N=3), the allowed order error in each replica i€£5%), there is a
total of 100 write operations per minute arrivirtgadl the replicas
(D=100), and a total of 5 of them are lost due ttufas in the
system [(=5). The resulting capacity utilization of the ®ystis
computed to be 57 write operations per minu@=57). The
combined capacity of all the replicas needs totleast 57 write
operations per minute. In the rest of the analy&@swill assume
that the capacity is exactly given by Eq. 7.

E andL are measures of badness, thus giving a BB tradkoff
order to transform it into a GG tradeoff we canetake inverse of
the measures. The inversefandL are the benefits consistency
and availability. We will replac& andL with X andY where

e« X =Consistency of the systeld,< X <1

e Y= Availability of the systemp<Y <1
When there is no order error in the syste<(1), i.e., every
operation is synchronized immediately, the systesn fully
consistent andX = 1. Whereas when order error is arbitrarily
large (E =), the system is totally inconsistent adti=0. So
E is transformed t&, for some constankK > 0, by Eq. 8.

y o K+l £ K@=X)+1
K+E X

On the other hand the availability of the system,dafined in
TACT, is the ratio between the number of fulfilleejuests and
the total requests. v is transformed t& by Eq. 9.

D-L

(Ea. 8)

Y= (Eq.9)

= L=D(@-Y)

Combining Eg. 7, 8 and 9 we get Eq. 10, a combietationship
among the system properties consistery availability Y,
capacityC, demand and number of replicas.

_ NDXY (Eq. 10)
K@-X)+1

5.3 Tradeoff Analysis

Based on the analytical model of TACT given in E@, we now

derive the pair-wise monotonicity relationships agahe GG

propertiesX andY along with the capacitg and demand® of the

system. Eq. 11 lists the obtained relationships.

oY __C(K+1) _ 0%Y _2C(K +1) S

X 7 <0 NV
X NDX X NDX

dC _ NDY(K +1) oC _ NDX

X [K@-X)+1]? Y K@-X)+1
6£:_C(K+1_<O 6£:_C[K(1—X)+l]<0
X NX 2Y oY NXY?2

aC _ NXY

oC __ NX¥Y (Eq. 11)
D K@-X)+1

The set of equations of Eqg. 11 satisfies the trfidemstraints of
TOMCAD given in Eg. 6. This confirms that thereaidour-way
tradeoff among the consistency, availability, céiyeend demand
of a service built using TACT.

5.4 Automating Service Quality

With the change in the system dynamics as the salfisome of
the system parameters change, the analytical nadded. 10 and
the tradeoff relationships of Eg. 11 can be usedetermine the
values for the remaining parameters of the systénis model can
also be used to determine how to adjust the paemet
automatically to maintain a certain QoS guarantethé user of
the system, as we will now illustrate in the neattggraph.

Suppose that initially the system with capacity(C) is required
to provide a particular minimum QoS specified angistencyx;
(X) and availabilityy; (Y) while the total demand id; (D). The
actual initial values foK andY arex, andy,, such thak, >x; and
¥>>y;. The QoS requirements férandY are clearly satisfied by
the initial values. Now suppose that due to a sydalure the
capacity is reduced to, such thatc, < ¢;. Consequently, the
system can make a tradeoff betw&eandX and reduceX down
to x; and/or make a tradeoff betwe€nandY and reduce&y down
to y; to cope with the reduced capacity. If at this polre client
demand increases t such thatd, > d,, this will try to pushX
and/or Y down. But sincex; andy; are the minimum QoS
required, the available options are either notebthe demand
increase or to add more resources to the systeaiseC to some
amountc; such thats; > ¢, as required by th€ andD tradeoff.

This approach leads to satisfying QoS by adjustieguired
parameters. The amount of adjustment required\isngby the
pair-wise tradeoff relationship between the releévanality and
the parameter.

6. CONCLUSION

In this paper we present TOMCAD, a tradeoff modheit tcan be
applied to various kinds of distributed systemsiider to identify
and understand the tradeoffs going on in the systdi®@MCAD

implies that a tradeoff between any two qualitiésacystem is
actually a four-way tradeoff. The capacity and deenand of the
system introduce two additional dimensions to thsidtradeoff

between system qualities, such as reliability, labdity, security,
performance and scalability. So in any tradeoff lgsia it is
important to take the additional two dimension®iatcount and
consider how they might affect the tradeoff sitoatiWe also
show that by having a tradeoff model and the tréfdmpiations, it
is possible to automatically control system paramsetand
resource allocation to maintain a certain QoS fmahe service.

7. REFERENCES

[1] Raihan Al-Ekram, Ric Holt and Chris Hobbs, Applg a
Tradeoff Model (TOM) to TACT. Proceedings of thed2n
International Conference on Availability, Reliabjli and
Security, April 2007.

[2] Rafael Alonso, NJ Daniel Barbara and Hector dzar
Molina, Data caching issues in an information estal
system. ACM Transactions on Database Systems,18(B),
September 1990.

[3] Philip Bernstein and Nathan Goodman, The Failand
Recovery Problem for Replicated Databases. Procgedif
the 2nd Annual ACM symposium on Principles of
Distributed Computing, 1983.

[4] Chi-Chao Chang, Grzegorz Czajkowski, Chris Hbtzél,
Deyu Hu and Thorsten von Eicken, Security versus
performance tradeoffs in RPC implementations. Rrditeys
of the 8th ACM SIGOPS European Workshop on Support
for composing distributed applications, SeptemI98L

[5] Rivka Ladin, Barbara Liskov, Liuba Shrira andarfay
Ghemawat, Providing high availability using lazplieation.
ACM Transactions on Computer Systems, Vol. 10(4),
November 1992.

[6] J. D. Musa and A. F. Ackerman, Quantifying sefte
validation: when to stop testing? IEEE Software).\G{3),
May 1989.

[7] C. Olston and J. Widom, Offering a PrecisionfBenance
Tradeoff for Aggregation Queries over ReplicatedtedDa
Proceedings of the 26th International ConferenceVery
Large Data Bases, September 2000.

[8] Yasushi Satio and Marc Shapiro, Optimistic Regdion.
ACM Computing Survey, Vol. 37(1), March 2005.

[9] Alan Jay Smith, Cache Memories. ACM Computing\&ys,
Vol. 14(3), September 1982.

[10] Haifeng Yu and Amin Vahdat, Building Replicdtinternet
Services Using TACT: A Toolkit for Tunable Availdiby
and Consistency Tradeoffs. Proceedings of the 2nd
Workshop on Advanced Issues of E-Commerce and
WeBBased Information Systems, June 2000.

[11] Haifeng Yu and Amin Vahdat, Design and Evalmatof a
Conit-Based Continuous Consistency Model for Reypdid
Services. ACM Transactions on Computer Systems,. Vol
20(3), August 2002.

[12] Chi Zzhang and Zheng Zhang, Trading Replication
Consistency for Performance and Availability: anaptive
Approach. Proceedings of the 23rd International f@@mce
on Distributed Computing Systems, 2003.

[13] Joab Jackson, Open-source Bug Hunt
http://mww.gcn.com/online/voll_no1/40053-1.html

Results.

