
Automating Service Quality with TOMCAD (Tradeoff Model
with Capacity and Demand)

Raihan Al-Ekram, Ric Holt

University of Waterloo
{rekram,holt}@swag.uwaterloo.ca

Chris Hobbs

Nortel, Canada
cwlh@nortel.com

Susan Sim

University of California, Irvine
ses@ics.uci.edu

ABSTRACT
Large distributed networked software systems are built to provide
competing qualities such as reliability, availability, security,
performance and scalability to their clients. In certain situations
these qualities must be traded off, sacrificing some qualities to
some extent to improve others. This paper presents TOMCAD (a
Tradeoff a Model with Capacity and Demand) for such tradeoffs
and gives various properties and constraints that apply to such
situations. With this approach, we show how to dynamically
allocate system resources when demand changes with time, in a
way that maintains required objectives for some service qualities.
We demonstrate how this model applies to a family of distributed
systems that trades off data consistency to gain availability.

Keywords
Tradeoff, QoS, TACT.

1. INTRODUCTION
Large distributed networked software systems are built with
competing qualities such as performance, scalability, reliability,
availability and security to the user of their services. In general,
all these qualities cannot be maximized at the same time. For
example making remote procedure calls secure hampers their
performance [4], increasing the performance of information
retrieval on the web by caching comes at the cost of staleness [2]
and providing high availability for mail or bulletin board services
using lazy replication causes inconsistency among the replicas [5].
Tradeoff is inevitable between different quality attributes in such
situations.

Tradeoff refers to a compromise between two or more different
benefits. It happens in a situation when maximizing both the
benefits at the same time is not possible to achieve. One of them
can be sacrificed to some extent for gaining more of the other. A
tradeoff is finding a right balance between both the benefits.

In this paper we establish a set of terminology and vocabulary to
characterize tradeoffs. We discuss various concepts relevant to a
system making some tradeoff and the relationship between them.
We present a general model of tradeoff TOMCAD (a Tradeoff a
Model with Capacity and Demand) in our effort to analyze and
understand the nature of tradeoffs in software systems. The

TOMCAD model has various properties and constraints that apply
to a tradeoff situation. We also illustrate how to use the model to
fulfill different QoS goals in a system with dynamically changing
load and failure characteristics. We demonstrate the applicability
of the model on a family of distributed systems built using the
TACT (Tunable Availability and Consistency Tradeoffs) [10][11]
or other TACT-like [7][12] middleware, that provides a
systematic tradeoff between availability and data consistency of
the service.

2. TRADEOFF EXAMPLES
This section introduces tradeoff in the area of economics, software
engineering, distributed systems and computer architecture in
terms of the examples illustrated in Figure 1.

Earnings

Leisure
Time

$80

8 Hrs2 Hrs

$60

$20

6 Hrs
(a) Earnings-Leisure Tradeoff

Residual Bugs

Time-to-
Market

(b) Tradeoff in Software Testing
Availability

Consistency

10
0%

100%

Optimistic

Pessimistic

(c) Tradeoff in Replication

Cache Size

Hit Ratio

(d) Tradeoff in Memory Caching

Figure 1. Tradeoff Examples

2.1 Earnings-Leisure Tradeoff
There is a tradeoff between how much money someone can earn
in a day and how much time he can spend in leisure. For a given
amount of time a day, say 8 hours, he can spend all of the time
working and earning money. Or he can spend some of it in leisure
with his children. For fixed hourly pay, say $10/hr, every
additional earning of $10 requires a sacrifice of an hour of leisure
time. This tradeoff relationship between the dollars earned and the
leisure time is depicted in the curve shown in Figure 1(a).

2.2 Tradeoff in Software Testing
Bugs are inevitable in a software system. A study [13] found an
average of 0.33 bugs per KLOC in Linux Kernel 2.6, while
Apache had an average of 0.25 bugs per KLOC. It is quite
impossible to release a flawless software with many thousands of
lines of code in it. The number of bugs in a software can be

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ASE Workshop on Automating Service Quality, November 2007,
Atlanta, Georgia, USA. © 2007 ACM ISBN: 978-1-59593-878-7
/07/11...$5.00

4

reduced by doing more testing before releasing it. Hence the
managers in a software development project have to make a
tradeoff decision between the time-to-market of the product and
the acceptable residual bugs in the release. According to the
software reliability growth models [6] more bugs are detected per
unit time at the early stage of the testing period compared to the
late stage, giving a software testing tradeoff curve as shown in
Figure 1(b).

2.3 Tradeoff in Replication
Replication is a technique used to increase the reliability and
availability of software systems. In a replicated system multiple
copies of the software and hardware resources are maintained.
The replication management protocol gives the illusion of a single
system to its clients while the client requests are served by the
replicas concurrently. In case of failures, the system can still
continue to operate as long as there are some replicas operational,
thus increasing the availability of the system. However replication
introduces the issue of inconsistency among the replicas. The
internal states of the replicas can diverge from each other as they
process client requests concurrently. In order to limit the
inconsistency among the replicas it is necessary to periodically
synchronize them with each other.

There are two classes of replication techniques, namely
pessimistic and optimistic. In pessimistic replication [3], any state
changing operation in a replica (e.g., an update) is synchronously
propagated to all other replicas maintaining a single copy
consistency throughout the system. In a wide-area setting like the
Internet, due to high network latency, frequent synchronization
can cause increased client response time and lead to request
timeouts in the clients. Also, due to link unreliability, access to
the replicas may be denied when part of the network becomes
temporarily unreachable. Hence pessimistic replication provides
strong consistency but no guarantee on availability. On the other
hand in optimistic replication [8], any kind of operation in a
replica is allowed to proceed without any priori synchronization.
Synchronization is done asynchronously in background. The time
lag between an update in a replica and its propagation will cause
stale reads in other replicas. Also, concurrent updates in different
replicas may cause conflicts that have to be aborted eventually.
Optimistic replication provides high availability but no guarantee
on consistency.

Pessimistic and optimistic replications are the two extremes in the
consistency and availability tradeoff as shown in Figure 1(c).

2.4 Tradeoff in Memory Caching
Cache memories are high-speed memories in between the CPU
and main memory in a computer system to hold the portions of the
main memory currently being used by the CPU. Cache memory is
usually much faster than main memory but much smaller, as
dictated by its cost. Memory pages requested by the CPU are
loaded in the cache memory from the main memory, if it does not
already exist in the cache. As new pages come in the cache old
pages may have to be replaced according to criteria (e.g., LRU,
LFU). The benefit of cache comes from the property of “locality
of reference”, which means the address space to be used in near
future is likely to be the current address space. The performance
of cache memory is measured in terms of hit ratio, the probability
of finding a memory request in the cache. Studies [9] have shown
that the hit ratio increases with the cache size. Initially adding a

small amount of cache increases the hit ratio significantly, but at a
certain point the hit ratio becomes saturated and does not increase
significantly with the addition of more cache. The curve in Figure
1(d) illustrates the tradeoff between cache hit ratio and cache size
in a cache memory system.

3. TOM: THE BASIC TRADEOFF MODEL
In this section we present the basic tradeoff model TOM (Tradeoff
Model) that gives the properties of tradeoff curves and the
constraints for a tradeoff to exist in a system. TOM was described
in our earlier work [1].

3.1 Morality: GG, BB, GB and BG
A (binary) tradeoff is a relationship between the benefits of two
aspects of a system. However, the metric used to measure a
property and to draw the tradeoff curve does not always indicate a
benefit. Instead it may indicate the lack of the benefit. In the
earnings-leisure tradeoff curve in Figure 1(a), more dollars earned
along Y-axis and more leisure time along X-axis are both benefits.
But In the software testing tradeoff example in Figure 1(b), more
residual bugs along Y-axis and more time-to-market along X-axis
are both measures for lack of benefits. The benefits are along the
reverse directions of the axes, namely, less residual bugs and less
time-to-market.

We define the morality of a tradeoff curve based on the goodness
or badness of the properties along the axes of the curve. An axis
has a good morality if it measures the goodness of a property, i.e.,
the benefit increases along the (positive) axis. On the other hand
an axis has a bad morality if it measures the badness of a
property, i.e., the benefit decreases along the axis. A tradeoff
curve is said to have a Good-Good (GG) mortality if the benefits
increase along both the X and Y axes of the curve. The earnings-
leisure tradeoff curve of Figure 1(a) and the replication tradeoff
curve of Figure 1(c) are examples of GG tradeoff curve. In these
examples as X increases the benefits leisure time and consistency
increase and as Y increases the benefits earnings and availability
also increase.

In a Bad-Bad (BB) morality tradeoff curve the benefits decrease
along both the axes. The software testing tradeoff curve of Figure
1(b) is a BB tradeoff curve, since the benefits lie along the reverse
direction of both the axes. Similarly in a Good-Bad (GB) tradeoff
curve the benefit increases along the X-axis, but decreases along
the Y-axis. In a Bad-Good (BG) tradeoff curve the benefit
decreases along the X-axis, but increases along the Y-axis. The
memory cache tradeoff in Figure 1(d) is an example of BG
tradeoff curve.

3.2 Monotonicity: Increasing or Decreasing
Whatever the morality of curve is, in order for it to be a tradeoff
curve it has to fulfill the basic tradeoff condition: increase in one
benefit will cause a decrease in the other benefit. As a result in a
GG tradeoff curve as X increases to increase one benefit, Y
necessarily decreases to decrease the other benefit. This constraint
between X and Y dimensions of a GG tradeoff curve can be
characterized as Monotonically Decreasing (MD). In a BB
tradeoff curve as X decreases to increase one benefit, Y will
increase to decrease the other. This also gives a monotonically
decreasing constraint. Conversely, in a GB tradeoff curve as X
increases to increase a benefit, Y will increase to decrease the

5

other benefit. A GB tradeoff curve can be characterized as
Monotonically Increasing (MI). Similarly in a BG tradeoff
curve, as X decreases to increase a benefit, Y will also decrease to
decrease the other benefit. This also gives a monotonically
increasing curve.

3.3 Tradeoff Constraints
By combining the morality and the monotonicity properties we
now define the basic constraint of tradeoff. For a tradeoff to exist
between two GG or BB properties X and Y of a system, there must
be a monotonically decreasing relationship between them. Eq. 1
expresses this constraint mathematically.

0)(<=
dX

dY
andXfY (Eq. 1)

On the other hand the tradeoff constraint for two GB or BG
properties X and Y of a system is for them to have a monotonically
increasing relationship, which is given by Eq. 2.

0)(>=
dX

dY
andXfY (Eq. 2)

Both X and Y are dependent on each other and their dependency is
defined by Eq. 1 or Eq. 2. As such, the X and Y axes may not have
any particular dependent or independent characterization. In other
words changing value along any axis will cause the other to
change accordingly.

An actual tradeoff curve may not be as smooth and ideal in shape
as the curves in Figure 1. But there still can be a tradeoff as long
as the appropriate constraint of Eq. 1 or Eq. 2 holds.

4. TOMCAD: TOM WITH CAPACITY AND
DEMAND
In this section we extend TOM to TOMCAD, which combines the
effect of capacity and demand of a system with the basic tradeoff
described in the previous section. Let us revisit the software
testing tradeoff example of Figure 1(b). The more testing is done
on a software, the more bugs are found and resolved. More testing
can be achieved by testing the software for a longer period. But
the longer the testing period, the later the time-to-market for the
product. The result is a tradeoff between the time-to-market of the
software and the residual bugs. Since this is a tradeoff, it is not
possible to reduce residual bugs and time-to-market at the same
time. This tradeoff scenario has some underlying assumptions in
it. Two important assumptions are that the system has a fixed
capacity and demand. The capacity of a software testing system is
how much code the team can test per unit time, which is
determined by the size of the testing team. On the other hand the
demand on a software testing system is the size of the code base to
be tested, which is given by the number of features to be tested. It
is possible to decrease both the residual bugs and the time-to-
market of the product by either increasing the team size (the
capacity) or decreasing the number of features in the software (the
demand). The tradeoff given by the curve in Figure 1(b) assumes
a particular capacity and demand of the system.

4.1 Family of Tradeoff Curves
We will illustrate the effects of capacity and demand on the
software testing example with the curves in Figure 2. Suppose in
the development of a particular software system there are M1
different features to be tested by a team of size N1. The tradeoff

between residual bugs and time-to-market of the software is given
by the curve R1. For a target time-to-market x1 of the product, the
achievable residual bugs is y1 given by the point p1 on the curve.
If this amount of residual bugs is not acceptable in the release and
it has to be at most y2, moving along curve R1 up to point p2 by
increasing the time-to-market to x2 can achieve this residual bugs
target. But if it is required to meet the residual bugs target of y2
without changing the time-to-market target of x1, an alternative
could be to increase the testing team size. For the new team size,
for every time-to-market the amount of residual bugs will be
lower than the previous team size. This will give a new tradeoff
curve for this increased capacity and the new curve will be closer
to the origin from its previous location. For some team size N2 >
N1 both x1 and y2 target for time-to-market and residual bugs can
be achieved at point p3 on the new curve R2. On the other hand
decreasing the capacity of the testing team will move the tradeoff
curve away from the origin. For some team size N3 < N1 the new
tradeoff curve will be R3. This gives a family of tradeoff curves
based on the capacity of the system.

Residual Bugs

Time-to-Market

R1

R2

R3
p3

p1

More Features
(Demand++)

Larger Team
(Capacity++)

x1

y1

y2
p2

x2
Figure 2. Capacity and Demand in Testing Tradeoff

The above analysis is done by varying the capacity and keeping
the demand fixed. The same result can be achieved by keeping the
capacity fixed and varying the demand for new features but in
reverse direction. Increasing demand will move the tradeoff curve
away from the origin, while decreasing demand will move the
curve towards the origin. If curve R1 represents a number of
features M1 and team size N1, curve R2 may represent a number
features of M2 < M1 and R3 may represent a number of features of
M3 > M1 for the fixed team size N1.

4.2 Capacity
The capacity C of a system is the amount of resources available to
perform its designated tasks. In a system making a tradeoff
between two benefits X and Y, it is possible to gain more of both
the benefits by increasing the capacity of the system. We assume
X and Y to be in a GG tradeoff relationship in this discussion. The
constraint among X, Y and C, where),(YXfC = , can be given

as Eq. 3.

00 >
∂
∂>

∂
∂

Y

C
and

X

C (Eq. 3)

Since increasing C allows obtaining more of both X and Y, the
new XY tradeoff curve will move away from the origin. Note that
this is just the opposite from the software testing tradeoff example
in the previous section, since the morality of the software testing
tradeoff curve (it is BB) is just the opposite.

6

Notice that the relationship between C and either X or Y is
monotonically increasing. The morality of the curve is GB since X
or Y is a benefit (good) and more capacity indicates more cost
(bad). But a curve with GB morality, which is also monotonically
increasing, is the property of a tradeoff curve (Eq. 2). This results
in a three-dimensional tradeoff among X, Y and C.

Figure 3(a) shows a family of XY tradeoff curves for various
capacities of C, C1 being the lowest capacity and C6 being the
highest. Suppose the system is operating at capacity C3 and at
tradeoff point P1. By increasing capacity to C4 the system moves
to a new XY tradeoff curve. During the move from the original
curve to the new curve, it is possible to increase Y without
changing X at point P3 or to increase X without changing Y at
point P4 or increase both X and Y by moving to point P2.

X

Y

C3>C2

C4>C3

C5>C4

C6>C5

C2>C1

C1

P1(x1, y1)

P2(x2, y2)

P3(x1, y2)

P4(x2, y1)

X

Y

C

C2

C3

C4

C5

C1

C6

Q

R

S

P

P1(x1,y1,C3)

P2(x2,y2,C4)

(a) Capacity in 2D (b) Capacity in 3D

Figure 3. Capacity in Tradeoff

The relationship among X, Y and C can be illustrated in the 3D
graph of Figure 3(b), with C as the z-axis. This is the 3D
equivalent of the 2D graphs in Figure 3(a). The tradeoff between
X and Y as C varies is determined by the surface PQRS.

4.3 Demand
Some systems may have a variable amount of demand imposed on
them. The demand on a system is the volume of task it has to
perform. Increasing the demand on the system may reduce both of
the basic benefits X and Y. The constraint among the demand on
the system D, X and Y, where),(YXfD = , can be given as Eq.

4.

00 <
∂
∂<

∂
∂

Y

D
and

X

D (Eq. 4)

As Eq. 4 specifies, increasing D reduces one or both of X and Y,
so the new tradeoff curve will move towards the origin. The
relationship among X, Y and D will have curves similar to Figure
3(a) and 3(b) except the direction of D will be reverse from that of
C.

The relationship between D and either X or Y is monotonically
decreasing. The morality of this curve is GG since X and Y are
benefits (good) and more demand implies more revenue (good). A
GG morality curve, which is also monotonically decreasing, is the
property of a tradeoff curve (Eq. 1). This adds a fourth dimension
D to the tradeoff among X, Y and C.

4.4 Capacity and Demand
Given fixed X and Y, the relationship between capacity C and
demand D of the system is a two-dimensional tradeoff
relationship. In order to handle more demand, without changing X

and Y, the system needs more capacity. This is a monotonically
increasing relationship between the capacity (bad) and demand
(good). Eq. 5 gives the constraint between C and D of a system,
where)(DfC = .

0>
∂
∂
D

C (Eq. 5)

4.5 Four-way Tradeoff
Combining Eq. 1, 3, 4 and 5, the complete set of tradeoff
constraints among GG properties X and Y, the capacity C and the
demand D on the system is given by Eq. 6.

whereDCYXf 0),,,(=

,0,0,0 >
∂
∂>

∂
∂<

∂
∂

Y

C

X

C

X

Y

00,0 >
∂
∂<

∂
∂<

∂
∂

D

C
and

Y

D

X

D (Eq. 6)

Figure 4. Four-way Tradeoff

Figure 4 illustrates the combined four-dimensional tradeoff
relationship. The dimensions for each surface in the figure are X,
Y and C. Each surface represents the tradeoff among X, Y and C
for a particular D. The surfaces represent the demands D1, D2 and
D3 respectively, where D1 < D2 < D3.

5. TOMCAD IN DISTRIBUTED SYSTEMS
Section 2.3 and Figure 1(c) describes the tradeoff between
availability and consistency in a replicated system. Various
middleware and frameworks are available to perform a continuous
tradeoff between the two extremes of the figure. TACT (Tunable
Availability and Consistency Tradeoffs) [10][11] is such a
middleware toolkit for building replicated services. It provides a
means to make a controlled and systematic tradeoff between the
consistency and availability of the service by varying the level of
inconsistency among the replicas. FRACS (Flexible Replication
Architecture for a Consistency Spectrum) [12] is another TACT-
like framework, which provides tradeoff between either
performance or availability and consistency in replicated systems.
The techniques in TRAPP (Tradeoff in Replication Precision and
Performance) [7] enable tradeoff between performance and
precision in data caching.

In this section we apply our tradeoff model on distributed systems
built using TACT and analyze the resulting tradeoffs. From the
analysis we show how to dynamically allocate system resources
when demand changes with time, in a way that maintains a QoS
guarantee to the user of the system.

7

5.1 TACT
In the TACT system model, as illustrated in Figure 5, the TACT
middleware sits in between the application and the data store in
each replica in order to manage the replication protocol. The
replicas can directly communicate with each other. A client,
intending to use the service, can submit a query to any of the
replicas.

TACT controls consistency vs. availability tradeoff as follows.
Each replica maintains measures of current inconsistency and
maximum tolerable inconsistency between the data in it and that
of other replicas in the system. For every client request to a
replica (a read or a write operation), if performing the operation
does not cause the current inconsistency to exceed the maximum
tolerable inconsistency, the operation is done locally within the
replica. Inconsistency is introduced in the system when a write
operation is performed locally while letting the data in this replica
diverge from the others. If performing an operation causes the
current inconsistency to exceed the maximum tolerable
inconsistency, the replica will first synchronize the accumulated
write operations with one or more other replicas and reduce the
current level of inconsistency in it.

Data

Application

TACT

Client Client Client Client ClientClient

Application

TACT

Application

TACT

Data Data

Figure 5. TACT System Model

It is inevitable that components of an Internet scale service will
occasionally fail. The failure model of TACT handles two types of
failure: replica failure and network partitioning. Any attempt to
perform synchronization from a replica during a failure will be
unsuccessful if it cannot communicate with the required replicas.
This will cause the replica to reject any subsequent write
operations from the clients, since it cannot do so without
remaining in the tolerable inconsistency bound, until the
component is repaired.

The higher the tolerable inconsistency bound, the higher the
chances that a failed component will be repaired by the time a
replica reaches the bound, hence the lower the number of rejected
write requests and hence the higher the availability. This creates a
tradeoff between the consistency and the availability of the
system.

5.2 Analytical Model of TACT
We now build an analytical model of a TACT-based system
consisting of the relationship among the relevant system
parameters. From the model we then determine the tradeoffs in the
system. Our model assumes Order Error [11] as the metric for
measuring inconsistency. This metric specifies the number of
write operations a replica can accumulate before synchronizing
with the rest. In TACT the read operations are always handled
locally, so they do not contribute to systems availability during a
failure in other parts of the system. Hence only the writes are

considered as client requests in our analysis. Our model has the
following parameters for the system:

• N = Number of replicas, 0>N
• E = Order Error tolerated in each of the replicas,

∞≤≤ E1
• D = Total client demand in terms of number of writes per

unit time arriving across the set of replicas, 0>D
• L = Total lost or rejected writes per unit time across all

the replicas, DL ≤≤0
• C = Total capacity utilization to serve the demands across

all replicas

For simplicity we assume that the lost operations (L) do not
consume any system resources. So the effective total demand on
the system is LD − writes per unit time. This demand must be
supplied by all N replicas, so the total capacity of the system
needs is)(LDN − . Since we are using TACT, each replica

accumulates its operations into batches of size E. These batches
are transmitted to and effectively dealt with by the other replicas
as a single operation. So the resulting required capacity is
reduced by a factor of E. Thus the actual capacity utilization C is
given by Eq. 7.

)(LD
E

N
C −= (Eq. 7)

We will now give an example of particular values that can satisfy
Eq. 7. Consider a configuration in which the system has 3 replicas
(N=3), the allowed order error in each replica is 5 (E=5), there is a
total of 100 write operations per minute arriving at all the replicas
(D=100), and a total of 5 of them are lost due to failures in the
system (L=5). The resulting capacity utilization of the system is
computed to be 57 write operations per minute (C=57). The
combined capacity of all the replicas needs to be at least 57 write
operations per minute. In the rest of the analysis we will assume
that the capacity is exactly given by Eq. 7.

E and L are measures of badness, thus giving a BB tradeoff. In
order to transform it into a GG tradeoff we can take the inverse of
the measures. The inverse of E and L are the benefits consistency
and availability. We will replace E and L with X and Y where

• X = Consistency of the system, 10 ≤≤ X
• Y = Availability of the system, 10 ≤≤ Y

When there is no order error in the system (1=E), i.e., every
operation is synchronized immediately, the system is fully
consistent and 1=X . Whereas when order error is arbitrarily
large (∞=E), the system is totally inconsistent and 0=X . So
E is transformed to X, for some constant 0>K , by Eq. 8.

X

XK
E

EK

K
X

1)1(1 +−=⇒
+
+= (Eq. 8)

On the other hand the availability of the system, as defined in
TACT, is the ratio between the number of fulfilled requests and
the total requests. So D is transformed to Y by Eq. 9.

)1(YDL
D

LD
Y −=⇒

−= (Eq. 9)

Combining Eq. 7, 8 and 9 we get Eq. 10, a combined relationship
among the system properties consistency X, availability Y,
capacity C, demand D and number of replicas N.

8

1)1(+−
=

XK

NDXY
C (Eq. 10)

5.3 Tradeoff Analysis
Based on the analytical model of TACT given in Eq. 10, we now
derive the pair-wise monotonicity relationships among the GG
properties X and Y along with the capacity C and demand D of the
system. Eq. 11 lists the obtained relationships.

0
)1(

2
<+−=

∂
∂

NDX

KC

X

Y 0
)1(2

32

2

>+=
∂
∂

NDX

KC

X

Y

0
]1)1([

)1(
2

>
+−
+=

∂
∂

XK

KNDY

X

C 0
1)1(

>
+−

=
∂
∂

XK

NDX

Y

C

0
_1(

2
<+−=

∂
∂

YNX

KC

X

D 0
]1)1([

2
<+−−=

∂
∂

NXY

XKC

Y

D

0
1)1(

>
+−

=
∂
∂

XK

NXY

D

C (Eq. 11)

The set of equations of Eq. 11 satisfies the tradeoff constraints of
TOMCAD given in Eq. 6. This confirms that there is a four-way
tradeoff among the consistency, availability, capacity and demand
of a service built using TACT.

5.4 Automating Service Quality
With the change in the system dynamics as the values of some of
the system parameters change, the analytical model of Eq. 10 and
the tradeoff relationships of Eq. 11 can be used to determine the
values for the remaining parameters of the system. This model can
also be used to determine how to adjust the parameters
automatically to maintain a certain QoS guarantee to the user of
the system, as we will now illustrate in the next paragraph.

Suppose that initially the system with capacity c1 (C) is required
to provide a particular minimum QoS specified as consistency x1
(X) and availability y1 (Y) while the total demand is d1 (D). The
actual initial values for X and Y are x2 and y2, such that x2 > x1 and
y2 > y1. The QoS requirements for X and Y are clearly satisfied by
the initial values. Now suppose that due to a system failure the
capacity is reduced to c2 such that c2 < c1. Consequently, the
system can make a tradeoff between C and X and reduce X down
to x1 and/or make a tradeoff between C and Y and reduce Y down
to y1 to cope with the reduced capacity. If at this point the client
demand increases to d2 such that d2 > d1, this will try to push X
and/or Y down. But since x1 and y1 are the minimum QoS
required, the available options are either not to let the demand
increase or to add more resources to the system to raise C to some
amount c3 such that c3 > c2 as required by the C and D tradeoff.

This approach leads to satisfying QoS by adjusting required
parameters. The amount of adjustment required is given by the
pair-wise tradeoff relationship between the relevant quality and
the parameter.

6. CONCLUSION
In this paper we present TOMCAD, a tradeoff model that can be
applied to various kinds of distributed systems in order to identify
and understand the tradeoffs going on in the systems. TOMCAD
implies that a tradeoff between any two qualities of a system is
actually a four-way tradeoff. The capacity and the demand of the
system introduce two additional dimensions to the basic tradeoff

between system qualities, such as reliability, availability, security,
performance and scalability. So in any tradeoff analysis it is
important to take the additional two dimensions into account and
consider how they might affect the tradeoff situation. We also
show that by having a tradeoff model and the tradeoff equations, it
is possible to automatically control system parameters and
resource allocation to maintain a certain QoS goal for the service.

7. REFERENCES
[1] Raihan Al-Ekram, Ric Holt and Chris Hobbs, Applying a

Tradeoff Model (TOM) to TACT. Proceedings of the 2nd
International Conference on Availability, Reliability and
Security, April 2007.

[2] Rafael Alonso, NJ Daniel Barbara and Hector Garcia-
Molina, Data caching issues in an information retrieval
system. ACM Transactions on Database Systems, Vol. 15(3),
September 1990.

[3] Philip Bernstein and Nathan Goodman, The Failure and
Recovery Problem for Replicated Databases. Proceedings of
the 2nd Annual ACM symposium on Principles of
Distributed Computing, 1983.

[4] Chi-Chao Chang, Grzegorz Czajkowski, Chris Hawblitzel,
Deyu Hu and Thorsten von Eicken, Security versus
performance tradeoffs in RPC implementations. Proceedings
of the 8th ACM SIGOPS European Workshop on Support
for composing distributed applications, September 1998.

[5] Rivka Ladin, Barbara Liskov, Liuba Shrira and Sanjay
Ghemawat, Providing high availability using lazy replication.
ACM Transactions on Computer Systems, Vol. 10(4),
November 1992.

[6] J. D. Musa and A. F. Ackerman, Quantifying software
validation: when to stop testing? IEEE Software, Vol. 6(3),
May 1989.

[7] C. Olston and J. Widom, Offering a Precision-Performance
Tradeoff for Aggregation Queries over Replicated Data.
Proceedings of the 26th International Conference on Very
Large Data Bases, September 2000.

[8] Yasushi Satio and Marc Shapiro, Optimistic Replication.
ACM Computing Survey, Vol. 37(1), March 2005.

[9] Alan Jay Smith, Cache Memories. ACM Computing Surveys,
Vol. 14(3), September 1982.

[10] Haifeng Yu and Amin Vahdat, Building Replicated Internet
Services Using TACT: A Toolkit for Tunable Availability
and Consistency Tradeoffs. Proceedings of the 2nd
Workshop on Advanced Issues of E-Commerce and
WeBBased Information Systems, June 2000.

[11] Haifeng Yu and Amin Vahdat, Design and Evaluation of a
Conit-Based Continuous Consistency Model for Replicated
Services. ACM Transactions on Computer Systems, Vol.
20(3), August 2002.

[12] Chi Zhang and Zheng Zhang, Trading Replication
Consistency for Performance and Availability: an Adaptive
Approach. Proceedings of the 23rd International Conference
on Distributed Computing Systems, 2003.

[13] Joab Jackson, Open-source Bug Hunt Results.
http://www.gcn.com/online/vol1_no1/40053-1.html

9

