INF 111/ CSE 121

Homework 2: Design Patterns and Code Generation using Rational
Software Development Platform
Laboratory Date: Monday, October 10, 2011
Take Home Due: Thursday, October 20, 2011

Name

Student Number

Laboratory Time

Objectives

* Create a Class Diagrams using the Design Patterns feature in Rational Software
Development Platform

e Generate Java code from a Class Diagram in Rational Software Development
Platform

¢ Modify and run a Java application in Rational Software Development Platform

Preamble

In this lab, we will learn how to create a UML Class diagram from existing Java source code. We
will also learn how to create Class Diagrams including Design Patterns in Rational Software
Development Platform. Specifically, we will be using the Observer Design Pattern. Finally, we will
learn how to generate Java code from a UML Diagram and how to run Java applications using the
Rational tool.

Grading Checklist (30 points)

By the end of the laboratory session, you need to demonstrate to the TA that you can do the
following tasks. The TA will check off the items below that you have completed and collect this
cover page from you.

Create a Class Diagram from Lunar Lander code

Create a class Diagram showing the Observer Design Pattern, and all attributes
and methods for the concrete classes

Generate Java code from the Class Diagram

Add Java code and run an application using the Observer pattern

Implement the update method for the Observer that prints the employee’s
names

Oooo 00

TA Initials:

1/14

INF 111/ CSE 121

Instructions for the Laboratory
Task 1: Familiarize yourself with the scenario.

INF111 Software Inc, a company which develops software for grocery stores, has recently started to
implement an emergency preparedness plan for protecting its employees from emergencies such as
fires or earthquakes. INF111 Software Inc needs to know the list of employees who are in the
building at any moment, so that this list could be used to alert employees and take emergency
actions accordingly.

INF111 Software Inc has provided a badge, which has an RFID tag located on the back, to each
employee. RFID readers have been installed in the two entrances of the company. Every time an
employee enters to the building the RFID reader will read the employee’s RFID tag and it will add
the employee’s first and last name in the list of people who came to work.

Your task is to create an application that will receive the employee’s name and add it to a list. Each
time and employee’s name is added, you should print the number of employees and the list of
employee’s names that are in the building.

While thinking about the design of your implementation, you have determined that you should keep
track of the list of people and trigger two events when a new element is added. You have decided
that you can use the Observer Pattern to create this application, where the list of employees will
have the Subject role and the classes that handle the counting of employees and the printing of
names will have the Observer role.

Knowing that Rational Software Development Platform provides support to design applications using
Design Patterns and also provides support to generate code, you decided to model your system with
this tool and then add your customized code to meet the requirements.

Task 2: Set up a Project in Rational Software Development Platform

For this task, you will create a class diagram to include the Observer Design Pattern.

a) Make sure you have the directory "UMLDiagrams” in your H directory. If not, create it.
b) Start Rational Software Development Platform.

fa IBM Rational Systems Developer ¥6.0.1 & IBM Rational Systems Developer
@ Java » | @ 1BMRSD Product Updater [
@) LISP-Prolog-Scheme » || @ Readme

¢) Change the Workspace location to H:\UMLDiagrams\workspace

. |
Workspacelannches m1

Select a workspace

1BM Rational Software Development Platform stores your projects in a directory called a workspace.
Select the workspace directory to use for this session.

Workspace: I H:{UMLDiagramsiworkspace j Browse...

™ Use this as the default and do not ask again

OK I Cancel

2/14

INF 111/ CSE 121

d) Create a new Project. Go to File -> New -> Project

©Modeling B RatonalSoftwvare DevelopmentiPlation

#8 Edit Mavigate Search Project Modeling Run Window Help

[tew Attt [g projeat. |
1

e) Select the UML Project wizard. Click Next.

() [z Yoz

Select a wizard

Create a new UML modeling project F <>

Wizards:

(39 Java Project
i, @ Managed Make C++ Project

RN LML Project

.22, Madelinn

< Back I Mext > I Finish I Cancel |

f) In the Project name field, enter “ClassDiagramWithPatterns”. Click Next.

C UMM Heling PIojeCt:

UML Modeling Project
A new UML modeling project with a readied empty model well suited For modeling. F <>

M A
Project name: | ClassDiagramwithPatterns|
Project contents
IV Use default
Directory; I H:\UMLDiagrams\workspaceClassDiagram'WithPatterns Browse, .. I

< Back I Mext = I Einish I Cancel I

g) In the File name field, enter “ClassDiagramWithObserver”. Click Finish.

3/14

INF 111/ CSE 121

Create UML Model
Create 2 new ML model r-<>
File types: Templates:
& UML Modeing s Blank Model
5 Corba Template Model
3 Enterprise IT Design Model
Ja Use Case Model
55 450 Model 5
Description:
‘Create a blank UL model.
File name:
| ClassDiagramwithObserver
Destination folder
| ClassDiagramwithPatterns Browse. .

Default
[V Create dsfault diagram i the new model.

Default diagram type: [Freeform Disgram v

Task 3: Create a Design Pattern in Rational Software Development Platform

a) Open the Pattern Explorer View. To do that, go to Window -> Show View -> Pattern

Explorer.
Help
MNew Window
Open Perspective » |02 - 8 o 7 | A==
[0 Bookmarks
Customize Perspective... E Console
Save Perspective As... @ Diagram Navigator

Reset Perspective

Close Perspective l}: Inheritance Explorer

Close All Perspectives 5] Model Explorer
Navigation » @ Model Query Results
% outline alt+Shift+Q, O
New Model Explorer -
&% Palette
Preferences 3 Pattern Authoring

W pattern Explorer

b) In the Pattern Explorer, expand Design Patterns, expand Behavioral, and expand Observer.
Select ConcreteSubject. Right click on it. Select Apply Pattern.

ore L $ v =0|[%
Design Patterns
=" Behavioral
<= Chain of Responsibility
<=5 Command
<= Interpreter
< Iterator
5 Mediator
< Memento
[=]-z2' Observer
e ConcreteSubisct
® concre Show Pattern Documentation
o ke
<= Strategy

¢) In the Pattern Instance Target, select ClassDiagramWithObserver as the Location. Click
Next.

4/14

INF 111/ CSE 121

bl PAEEObrE P

Pattern Instance Target
s |
Select the location where the pattern instance will be created. P L: |

r

Location:

Selected location: I ClassDiagramwithObserver

[V Create pattern instance on diagram: | ClassDiagramWWithObserver::Main

Yiew Pattern Documentation

< Back | Mext = | Einish I Cancel I

d) In the Pattern Parameters window, specify the Value “ListOfEmployees” for the
ConreteSubject parameter and the Value “EmployeesCounter” for the ConcreteObserver
parameter. Click on Add Value and specify the Value “EmployeesNamesPreview.” Click
Finish.

© ApplyPattemeObservera

Pattern Parameters
—}
Specify values For pattern parameters. o — _}

b

Pattern parameter values:

| Parameter Name l Type | Multiplicity J/ﬁ.le
ConcreteSubject © Class 1 (] ListOfEmployees

(C] EmployeesCounter
EmployeesNamesPreviewl

ConcreteObserver © Class 0.*
© dlass 0.*

B8

Add Value gelete Value |

—ConcreteObserver parameter description

ConcreteObserver maintains a reference to a ConcreteSubject object. It stores state that should stay consistent with
the subject's. It implements the Observer updating interface to keep its state consistent with the subject's.

View Pattern Documentation I

< Back [dext > | Einish I Cancel |

5/14

INF 111/ CSE 121

e) You will see the following pattern in your class diagram.

«Pattern Instance»
<> Observer

Pattern Parameters
Observer
ConcreteSubject [1]: @ [C]ListOfEmployees
ConcreteObserver [*]: @ [EmployeesCounter EmployeeshamesPreview

f) In the Model Explorer, you will see that 3 classes have been created. Drag and drop each of
the three classes to your diagram.

[=1-=% ClassDiagramWWithPatterns

[=1-$8d ClassDiagramwithObserver.emx *

= -@} ClassDiagramWithObserver

D Main
)
G «ConcreteObservers EmployeesNamesPreview
(® <«ConcreteSubjects ListOFEmployees
<> «Pattern Instances Observer
i (UML2)

[[[+

g) Your will see the Observer Pattern Instance and also one ConcreteSubject and two
ConcreteObserver classes in your diagram.

«Pattern Instance»
<> Observer

Pattern Parameters

Observer
ConcreteSubject [1]: @ [ClListOfEmployees
ConcreteObserver [*]: @ [©]EmployeesCounter EmployeesNamesPreview
«abstraction»
«abstraction»
«ConcreteObserver» i
(® EmployeesCounter «abstractions «ConcreteObserver»
f (® EmployeesNamesPreview
LLse»
«use»
«ConcreteSubject» |
(@ ListOfEmployees

6/14

INF 111/ CSE 121

h) Add all the attributes and methods to each class as shown in the following diagram.

«Pattern Instance»
<> Observer

Pattern Parameters
Observer

[Concretesubject [1]: @SListOfEmployees
ConcreteObserver [*]: @[EmployeesCounter EmployeesNamesPreview |

«abstraction» .
«abstraction»

«abstraction» «ConcreteObserver»

«ConcreteObservers»
(® EmployeesNamesPreview

(® EmployeesCounter

o list : ListOfEmployees
® EmployeesCounter (list : ListOfEmployees) | EmployeesCounter

o list : ListOfEmployees
@ EmployeesNamesPreview (list : ListOfEmployees) : EmployeesNamesPreview

«use»
«Lse»

«ConcreteSubject»
@ ListOfEmployees

o listOfPeople : java.util. ArrayList

o phservers : java.util. ArrayList

@ add (s : String) : void

@ iterator () : java.util.Iterator

@ addObserver { o : java.util.Observer) : void

@ removeObserver (o java.util.Observer) : void
@ notifyObservers () : void

Note: To see the complete signature of the methods. Select one class. Right click. Select Filters ->
Show Signature.

** NOTE: Notice that in ListOfEmployees class, you have two variables of type java.util.ArrayList.
To create an attribute of a primitive type ArrayList, click on the Class name until you see a pop up
menu to add new Attribute. Click on "Add mew Attribute” button. Once a textbox appears for you,
type in the attribute, keep typing both name and the type as seen in the picture below. Once you do
this, you will have an ArrayList as a type in a primitive type group which you can use when creating
attributes with other methods. Do the same for java.util.Observer.

7@ addObserver (s : String)

«ConcreteSubject»
(3 ListOfEmployees

o listOfPeople——java-uti-AraylList

rva ot =
o (observer : java.util. rrayList |1
@3 L St

7/14

INF 111/ CSE 121

Task 4: Generate Java code from the Class Diagram using Design Patterns in Rational
Software Development Platform

Now that you designed your application, you can generate the Java code for it using the Rational
tool.

a) Select the model ClassDiagramWithObserver. Right click and select Transform -> Run
Transformation -> UML to Java.

[=]-1=% ClassDiagramwithPatternsTest
[=)-$gd ClassDiagramwithObserverTest.emx *

S| {& ClassDiagramWithObserverTest ‘
83 PrimitiveTypes Add UML »

[main Add Diagram »

© «ConcreteObserver Add Shorteut
@ «Concretesubjects»
#- @ «ConcreteObserver Visualize »
[#]-420 «Pattern Instances
2 (UML) [Rename F2
=% UseCase_ClassDiagrams Refactor »

UseCase_ClassDiagramsTest
= - d Find/Replace...

Import Model Library...

oz : :
= Outline &2 . Inheritance Explorer
a ~heriance Exporer] ¥ Run validation

% Model Query...

=] Show Properties Yiew Run Transformation » E]g UML to C++

Properties B3 UML to CORBA

ER UML to Java

Bl uML to xsD

b) Click on “Create new Target Container.” In the Create a Java project window, enter
ClassDiagram_CodeGenerated. Click Finish.

e =12
! Run this Transformation
My

o Select a Java project as the t e are EF

Create a Java project

P
| Create aJava project in the workspace or in an external location. "j
Name: |UML to Java

Source:]CIassDiagramWith

[~ Use the selected sourcef Project name: |CIassDiagram_CodeGenerated

I™ Make the selected sourgl [Location

& Create project in workspace
Target Ionperties] Collectiorg

UML Element
l— Director :IH:‘UJ“L[\agr-am::‘w space

[~ Project layout

" Create project at external location

& Use project folder as root for sources and class files

" Create separate source and output Folders

Configure Defaults...

Create new Target Container.

¢) Inthe Run Transformation window, click Apply and Run.

8/14

INF 111/ CSE 121

= z . 2
EERIRransformation; @
Run this Transformation E
=)
Name: IUML to Java
Source: |CIassDiagramWithPatterns

-

I~ Make the selected source the saved source

Target vaoperties Cullections] Mappingl Common
UML Element

I

=B ClassDiagram_CodeGenerated

Apply. Revert
Run Cancel

d) Notice that the Java code has been generated for the classes you had in your diagram.
Inspect the code that has been generated in each class.

SR=ClassDiagram_CodeGenerated
=} {default package)
+-3) EmployeesCounter.java
[+ '@ EmployeesiamesPreview, java
+-13) ListOfEmployees.java

Task 5: Add the Java code to run an application using the Observer Pattern

As you can see in each class, the generated Java code matches with the properties and method
signatures you specified in you class diagram. The code generation is a very helpful feature because
you already have the code with all the structure of your classes. However, you need to add the
specific functionality that you want each method to execute. Now, you will add the code that is
needed to run the application based on the created structure.

Add source code to Classes

Using the Model explorer make the following changes in the Java classes.

a) Class: ListOfEmployees.java

e The declaration of the private properties listOfPeople and observers is already in the
source code. You should modify this declaration to add the initialization of the
ArrayList in each case. The properties should look like:

private ArrayList listOfPeople = new ArrayList();

private ArrayList observers = new ArrayList();

e Method: add. Add the following lines:

9/14

INF 111/ CSE 121

listOfPeople.add(s);
notifyObservers();

e Method: iterator. Replace return null for:
return listOfPeople.iterator();

e Method: addObserver. Add the following line:
observers.add(0);

e Method: removeObserver. Add the following lines:
observers.remove(0);

e Method: notifyObservers. Add the following lines:

// loop through and notify each observer
Iterator i = observers.iterator();
while(i.hasNext()) {
Observer o = (Observer) i.next();
o.update(this,o0);

b) Class: EmployeesCounter.java.
e Import java.util.Iterator in the class.

e Method: EmployeesCounter. Add the following lines:

this.list = list;
list.addObserver(this);

e Method: update. Add the following lines:
iflo==list){
System.out.printin("The contents of the list of employees have changed.");
int counter = 0;
Iterator i = list.iterator();
while(i.hasNext()) {
String line = (String) i.next();
counter++;
b

System.out.printin("The total number of employees in the building is: " + counter);

by

¢) Class: EmployeesNamesPreview.java
e Method: EmployeesNamesPreview. Add the following lines:

this.list = list;
list.addObserver(this);

Create class to run the application using the Observer Pattern

10/14

INF 111/ CSE 121

d) Create a Class called

TestObserverPattern. Right click

on

the

project

ClassDiagram_CodeGenerated. Select New -> Other. Select Java -> Class. Click Next.

JNEWY

Select a wizard

Create a Java class

Wizards:

(== Example EMF Model C
B Java
G

& Interface

(39 Java Project

#5 Package

£ Source Folder
(% Java Run/Debug
(= JUnit
[=1- (= Modeling
[@) Class Diagram

24 Static Method Seq
524 Topic Diagram
oo 1M1 Madel

I~ show All Wizards.

Sequence Diagram

reation Wizards [A]]

uence Diagram

< Back I Next > I Finish | Cancel |

e) Enter the name of the Class: TestObserverPattern. Click Finish.

PEWSOVARAGEE]

Java Class
/i) The use of the default package is discouraged. @
Source Folder: | ObserverPattern_CodeGenerated Browse...
Package: | (default) Browse...
I™ Enclosing type: | Srowse, .
Name: | TestObserverPattern|
Modifiers: @ pblc O defagt O private © protected

I abstract | final J™ | static
Superclass: | java.lang. Object
Interfaces:
Which method stubs would you like to create?

I™ public static void main{Stringl] args)

I Constructors from superclass

J¥ Inherited abstract methods

<Back Hext | Frish | Cancel
f) Add the following method to the class.

public static void main(
String employeel =
String employee2 =
String employee3 =
String employee4 =
String employee5 =

String [] args) {
"Peter Anteater";
"Bucky Badger";
"Buster Bronco";
"Donald Duck";

"Herbie Husker";

11/14

INF 111/ CSE 121

String employee6 = "Blizzard Husky";

ListOfEmployees list = new ListOfEmployees();

list.add(employeel); list.add(employee?2); list.add(employee3);
list.add(employee4);

//counter and preview add themselves to the listOfPeople
EmployeesCounter counter = new EmployeesCounter(list);
EmployeesNamesPreview preview = new EmployeesNamesPreview (list);

System.out.println("An employee has entered to the building:");
list.add(employee5);
System.out.printin("");

System.out.println("An employee has entered to the building:");
list.add(employee6);
System.out.printin("");

b

Run the application using the Observer Pattern

g) Select the class TestObserverPattern and go to Run -> Run as -> Java Application

m Window Help
| 0] Internal Tools [&
0.\:/ Run Last Launched Ctrl+F11 D StringPreview.j... E
%, Debug Last Launched Fi1
I Run History >
Y =51 1 3ava Applet
Debug History ¥ Ju 3 JUnit Test

h) You should see the following output:

Properties | Tasks | & Console 52 Bookmarks

<terminated > TestObserverPattern (2) [Java Application] C:\Program Files\IBM\Ratione
Ain employee has entered to the building:

The contents of the list of employees have changed.
The total nwder of employees in the building is: S

Ain employee has entered to the building:
The contents of the list of employees have changed.
The total nuber of employees in the building is: 6

Task 6: Implement the update method for the Observer EmployeesNamesPreview

a) Implement the update method in the EmployeesNamesPreview Class, so that you will print
in the screen the names of the people who are in the building each time one employee is
added to the list. Hint: You should use the method update in EmployeesCounter.java as a
reference.

b) After you finished with the implementation, run the program. You should have an output
similar to the one showed in the following screen.

12/14

INF 111/ CSE 121

"vProperties Tasks (EConsole 53’-52""»_B>ool<lnarl<s|

<terminated> TestObserverPattern (2) [Java Application] C:\Program Files\IBMiRatior
An employee has entered to the building:

The contents of the list of employees have changed.
The total nuwber of employees in the building is: S
The contents of the list of employees have changed.
The employees who are in the building are:

Peter Anteater

Bucky Badger

Buster Bronco

Donald Duck

Herbie Husker

An employee has entered to the building:

The contents of the list of employees have changed.
The total nuwaber of employees in the building is: 6
The contents of the list of employees have changed.
The employees who are in the building are:

Peter Anteater

Bucky Badger

Buster Bronco

Donald Duck

Herbie Husker

Blizzard Husky

13/14

INF 111/ CSE 121

Take Home

1. (40 points) Identify two design patterns used in DVDVendor. For each design pattern:
i) Create a class diagram containing classes and interfaces involved in the pattern.

® Use a class diagram of each design pattern in the lecture slides as a template for
arranging the classes and relationships.

® Use either Note or Stereotype to show the role of each class or template in the
design pattern.

® For each classes and interface, you don’t need to include all attributes and
methods. However you need to include attributes and methods that are involved
in the pattern.
ii) Explain how the pattern in the DVDVendor software works. What system or user
event causes them to be triggered?

14/14

