
Homework 6: JUnit

Name : ___

Student Number : ___

Laboratory Time : ___

Objectives

• Create JUnit Test Cases in Eclipse
• Create JUnit Test Suites in Eclipse
• Run JUnit Test Cases and Suites in Eclipse

Preamble

JUnit is a unit-testing framework for Java. It provides a common and reusable structure that is
required for developing automate and repeatable unit tests for Java classes. JUnit provides a
base class called TestCase that can be extended to create series of tests for your classes, an
assertion library that can be used to evaluate the results of the tests, and test drivers, both
command line and GUI based, called TestRunner to run the test cases you create.

The recent version of the Eclipse JDT already has JUnit Plug-in built in to make creating and
running test cases more convenient. The plug-in includes a wizard for assisting in creating testing
a test case and test suite, and an environment for running them.

In this lab, you will learn how to set up a project for creating JUnit tests. Then you will create
test cases and a test suite, and run them.

Grading Checklist

By the end of the laboratory session, you need to demonstrate to the TA that you can do the
following tasks. The TA will check off the items below that you have completed and collect this
cover page from you.

 JUnit library is in the project’s build path
 Test case for GUIEnvironment class has been created and asserts added to init

method body
 The test case for GUIEnvironment runs successfully (may find errors in

GUIEnvironment)
 Test case for Processor class has been created and assert added to calculate

method body
 The test case for Processor runs successfully (may find errors in Processor)
 Test suite created and works

TA Initials: ____

INF 111 / CSE 121

 1/16

INF 111 / CSE 121

 2/16

Instructions for the Laboratory

Task 1: Set up a new project and create JUnit Test Cases for the GUIEnvironment
class

For this task, you will set up a new project and include the provided classes in the project. Then
you will create a test case to test the GUIEnvironment class. In JUnit convention, a test class is
created for every application class, and every non-trivial method is tested.

a) Download and uncompress LunarLanderHW7.zip, which contains GUIEnvironment.java
and other Java files.

b) Create a new Java project in Eclipse called inf111_JUnit. In a New Java Project diaglog,
select the option to “Use project folders as root for sources and class files”

1.Import GUIEnvironment.java and other Java files in the zip file into a default
(unnamed) package. You can do this by right clicking on the project and then
selecting Import → General → File System. You need to select the directory
where you have Java files residing. You can use Eclipse's file filtering capabilities
here.

2.Create a new package and name it lunarLanderPackage (note the lowercase ‘l’)

INF 111 / CSE 121

 3/16

3.Use the refactoring feature to move the Java files from the default package into the
lunarLanderPackage that you just created.

c) Create a JUnit Test Case Class.
1.First, to bring up the New JUnit Test Case Wizard, select the lunarLanderPackage

package. Then, select File → New → JUnit Test Case.
2.Name the class by putting the name GUIEnvironmentTest in the name test box.
3.Select setUp() and tearDown() boxes to automatically generate skeleton of these

methods. The setUp() and tearDown() methods are run before and after each
test case is run.

4.For "Class under test", enter GUIEnvironment. Eclipse should find GUIEnvironment
class in the lunarLanderPackage and should select it (Browse..). Then press Next.

INF 111 / CSE 121

 4/16

5.Now you can select methods for which test method stubs will be created. Select
init().

6.Press Finish.
7.A dialog should pop up to ask whether JUnit library should be added to the build

path. Select “Perform the following action:” and OK

8.A new class, GUIEnvironmentTest, that extends junit.framework.TestCase is
created with generated method stubs.

d) Implement a test case function in GUIEnvironmentTest to test the GUIEnvironment class.
1.In GUIEnvironmentTest, create a new class variable, lunarLanderEnvironment as a

private variable of the type GUIEnvironment.
GUIEnvironment lunarLanderEnvironment;

2.Implement the setUp() method to initialize variables.
lunarLanderEnvironment = new GUIEnvironment();

3.Implement the tearDown() method to clear the variable.
lunarLanderEnvironment = null;

4.Implement the testInit() to check that GUIEnvironment initialization method is
working correctly.
lunarLanderEnvironment.init();
assertFalse(lunarLanderEnvironment.getHit());
assertNotNull(lunarLanderEnvironment.getSpaceCraft());

5.Add in testInit() two assertions to validate that Clock and Sensor (properties of

INF 111 / CSE 121

 5/16

GUIEnvironment) are not null.

If you get a compilation error, be sure to import the required packages, including
junit.framework.Assert package.

You can find more information on the assert API in the JUnit JavaDocs at http://www.junit.org/
junit/javadoc/3.8.1/index.htm

Task 2: Running GUIEnvironmentTest as a JUnit test case

In this task, you will run the test case in GUIEnvironmentTest as a JUnit Test Case.

a) Right click at GUIEnvironmentTest, and select Run → JUnit Test.
b) You should see the result of your test case in JUnit view. If the view does not appear,

show the JUnit view by selecting Window → Show View → Other → Java → JUnit.

Task 3: Create JUnit Test Case for the Processor class
(You may want to skip this task if you are running behind on time)

a) Now repeat Task 1, step d) to create a test case for the calculate method in the
Processor class. Implement a test case function in ProcessorTest to test the Processor
class.

1.Create three new class variables, lunarLanderEnvironment as a private variable of
the type GUIEnvironment, spaceCraft as a private variable of the type SpaceCraft
and processor a private variable of the type Processor.
GUIEnvironment lunarLanderEnvironment;
SpaceCraft spaceCraft;
Processor processor;

2.Implement the setUp() method to initialize variables.
processor = new Processor();
lunarLanderEnvironment = new GUIEnvironment();
lunarLanderEnvironment.init();
spaceCraft = lunarLanderEnvironment.getSpaceCraft();

INF 111 / CSE 121

 6/16

JFrame app = new JFrame();
app.setDefaultCloseOperation (JFrame.EXIT_ON_CLOSE);
app.getContentPane().add (lunarLanderEnvironment);
app.setSize (800,800);
app.setBackground (Color.WHITE);
app.setLocation (0,0);
app.addKeyListener (lunarLanderEnvironment);
app.setVisible (true);

3.Implement the tearDown() method to clear the variable.
lunarLanderEnvironment = null;
spaceCraft = null;
processor = null;

4.Implement the testCalculate() to check that the calculate method is working
correctly.
int rotation;
rotation = spaceCraft.getRotation();
//simulates right key pressed
lunarLanderEnvironment.setKeyPressed(KeyEvent.VK_RIGHT
);
p r o c e s s o r . c a l c u l a t e (s p a c e C r a f t ,
lunarLanderEnvironment);
assertEquals(rotation + spaceCraft.getRotationRate(),
spaceCraft.getRotation());

5.Run ProcessorTest as a JUnit Test Case (See Task 2).

If you get a compilation error, be sure to import the required packages, including
junit.framework.Assert package. Other classes that are needed to be imported are
java.awt.event.KeyEvent, java.awt.Color and javax.swing.JFrame class.

Task 4: Creating a Test Case Suite

In this task, you will create a test case suite for the test cases created in Task 1 and Task3. A test
case suite allows more convenient test case execution and will allow you to run all your test
cases at once.

a) Create a Test Suite by selecting the lunarLanderPackage package, and then selecting
File→ New → Other → Java → JUnit-> JUnit Test Suite.

INF 111 / CSE 121

 7/16

b) In the next screen, name the Test Suite “LunarLanderAllTests”, and include your test
cases created in the Task 1 and Task 3 (GUIEnvironmentTest and also ProcessorTest if
you had time) into the test suite by selecting the check boxes in front of the appropriate
classes. Then click Finish.

c) Run the test suite by selecting the Test Suite class, and then Right Click → Run → JUnit
Test

INF 111 / CSE 121

 8/16

Appendix

You can also manually add the JUnit library, junit.jar, to the project’s build path using the
following steps.

a) Right click the project and select Properties. The properties dialog box as shown below
should appear.

b) Select Java Build Path on the left panel and bring the Libraries tab forward.
c) Click on “Add External JARs…” button.
d) In the JAR Selection dialog box, find the plugins directory under Eclipse’s installation

directory (C:\Opt\eclipse). Then locate the JUnit folder. The current version of JUnit
should be org.junit_3.8.1. From that directory, select junit.jar, as in the figure below.

INF 111 / CSE 121

 9/16

Testing (90 points)

In this part of the homework, you will be finishing off the test suite for the Self-Check Out code.
Some test cases have been provided for you. There are three use cases at the end of this
document that specify the expected behavior of the software. You should cover all the sub-
variations in your integration test cases.

1. Unit Tests. (20 points) Create JUnit tests for the following classes:
• UPC.java
• PackagedProduct.java

Be sure to test with a variety of valid and invalid UPC codes. As well, these tests should be in the
same package as the application code. You can use the tests classes BulkProductTest.java and
BICTest.java as examples to implement your own unit tests.

2. Integration Tests. (60 points) Create the following integration tests for the system:
• Adding packaged products
• Sequences of adding and bagging events
• Adding combinations of bulk and packaged items
• Purchasing large numbers of items

The first test can be added to the SelfCheckOutTest.java class in the IntegrationTest package.
The remaining tests should be put in the same package using as many or as few additional
classes as you desire.

•
3. Test Suite. (5 points) Create a test suite so that all the tests will run automatically. You
should include all the test cases that were provided and the unit and integration tests that you
created.

4. Commenting the Code. (5 points) Document your tests cases using informative, high-
quality comments in the code. You should explain what you are testing for and how you are
going about doing so. Where appropriate, you should include Javadoc comments.

Deliverables

Your deliverables are your JUnit test cases and a written report describing your changes. Be sure
to include a list of classes and methods that were changed or added, so the TA can examine your
work.

INF 111 / CSE 121

 10/16

Handing In Your Assignment

Your assignment must be submitted electronically to checkmate.ics.uci.edu. You will submit two
files.

1. Your report in Report.doc or Report.pdf. The report should describe your changes to
the code and any other information that you want the TA to know about. In other words,
if you want credit for your work, you should describe it here.
2. A zip file containing all of the application and test code for the Self-Check Out system.

Do not zip these two files into one big .zip file.

INF 111 / CSE 121

 11/16

USE CASE 1 Self-Check OutSelf-Check Out
Goal in Context Buy packaged and bulk items using the Self-Check Out

system
Buy packaged and bulk items using the Self-Check Out
system

Preconditions User has chosen the packaged and bulk item that will buyUser has chosen the packaged and bulk item that will buy
Success End Condition User entered all the items, bagged them and paid for themUser entered all the items, bagged them and paid for them
Failed End Condition User could not enter all the items in the system and could

not pay for them
User could not enter all the items in the system and could
not pay for them

Primary, secondary Actors UserUser
Trigger User starts the transactionUser starts the transaction
DESCRIPTION Step Action

1 Per each item:
1.1 User adds item
1.2 User bags item
2 User pays for items
3 The system prints receipt

EXTENSIONS Step Branching Action
1.1a User adds a packaged item:

Extend use case: 2. Add Packaged Item
1.1b User adds a bulk item:

Extend use case: 3. Add Bulk Item
SUB-VARIATIONS Branching Action

1.1 If the previous item has not been bagged, the system
will not allow to add the item and will show an
exception

1.1 If the user just paid for items, the system will not
allow the user to add an item and will show an
exception. The user should start a new transaction

1.2 If the new item has already been bagged, the system
will not allow to bag the item again and will show
an exception

2 If no items have been added, the system will not
allow to pay and will show an exception

2 If there is any problem with the payment, the system
will show an exception

3 If there is any problem while printing the receipt, the
system will show an exception

INF 111 / CSE 121

 12/16

INF 111 / CSE 121

 13/16

USE CASE 2 Add Packaged ItemAdd Packaged Item
Goal in Context Add a packaged item to the transactionAdd a packaged item to the transaction
Preconditions User started the transactionUser started the transaction
Success End Condition Packaged item is added to the transactionPackaged item is added to the transaction
Failed End Condition Packaged item is not added to the transactionPackaged item is not added to the transaction
Primary, secondary Actors UserUser
Trigger User adds a packaged itemUser adds a packaged item
DESCRIPTION Step Action

1 The system requests the Universal Product Code
2 User enters the Universal Product Code
3 The system validates the Universal Product Code
4 The system looks for the Universal Product Code in

the Database of products
5 The system adds the item to the transaction
6 Add cost to total cost and weight to total weight

EXTENSIONS Step Branching Action

SUB-VARIATIONS Branching Action
3 If the value of UPC is null, the system will show an

exception
3 If the length of UPC is different than 12 digits, the

system will show an exception
3 If the checksum of UPC is not valid, the system will

show an exception
4 If the product is not found in the Database, the

system will show an exception

INF 111 / CSE 121

 14/16

USE CASE 3 Add Bulk ItemAdd Bulk Item
Goal in Context Add a bulk item to the transactionAdd a bulk item to the transaction
Preconditions User started the transactionUser started the transaction
Success End Condition Bulk item is added to the transactionBulk item is added to the transaction
Failed End Condition Bulk item is not added to the transactionBulk item is not added to the transaction
Primary, secondary Actors UserUser
Trigger User adds a bulk itemUser adds a bulk item
DESCRIPTION Step Action

1 The system requests the Bulk Item Code
2 User enters the Bulk Item Code
3 The system requests the weight for the bulk item
4 User enters the weight for the bulk item
5 The system validates the Bulk Item Code
6 The system looks for the Bulk Item in the Database

of products
7 The system validates the weight for the bulk item
8 The system adds the item to the transaction
9 Calculate partial cost for the bulk item. Multiply the

price by weight
10 Add partial cost to total cost and weight to total

weight
EXTENSIONS Step Branching Action

SUB-VARIATIONS Branching Action
5 If the value of BIC is null, the system will show an

exception
5 If the length of BIC is different than 5 digits, the

system will show an exception
6 If the product is not found in the Database, the

system will show an exception
7 If the value of weight is null, the system will show

an exception
7 If the value of weight is not a double number

properly formatted, the system will show an
exception

INF 111 / CSE 121

 15/16

INF 111 / CSE 121

 16/16

