Inf111/CSE121:;
Software Tools and Methods

Fall Quarter, 2011
Susan Elliott Sim
ses@ics.uci.edu

FAQs

* Is there lab today?
— No.
* Are discussions mandatory?

— We don'’t take attendance, but we do tell you how to do the
homework. It’s hard to do well in this course without
attending discussion.

* What textbooks do | have to buy?
— Buy Larman (Applying UML and Patterns)
— Rest will be available electronically

Inf111/CSE121 Slide 2

Course Home Page

« URL
— http://www.drsusansim.org/teaching/inf111/
— Linked from my home page
— Linked from EEE

+ Syllabus and slides will be posted there
— In advance, when possible, but generally not

Inf111/CSE121 Slide 3

Course Overview

» Organizational details
* What this course is about

Inf111/CSE121 Slide 4

Objectives for the Course

* Modern software development methods
— Agile, automated testing, RUP

* Increase your exposure to a number of software tools
— Eclipse, subversion, JUnit, Rational Developer Workbench

» Give you experience working with methods
— Ideas more important the particular tool.

 Hands on
* [nteractive

» Lots of work, but you'll learn useful skills.

— All of these tools and methods (or ones similar to them) are
used in industry.

— Good for your resume

Inf111/CSE121 Slide 5

Why do we need tools and methods?

» As teams and projects become larger, practices that
worked with 1 or 2 people don’t work any more

* Most students:

Use an IDE

Use the file system to manage projects
Print statements used for debugging
No install support

» Problem: Approach doesn’t scale

— More people, bigger code, different versions, multiple
platforms (development and delivery)

Inf111/CSE121 Slide 6

Example: Longhorn Project

» 5000 developers (excludes non-tech staff)

* 40 million lines of code
— 16 million added in the last three years

 Daily builds and regression testing

— Takes 3 working days from the time you submit changes
until you receive an executable back

» ~1.7 testers to every programmer
* Needs to be backwards compatible
* Installation needs to work on millions of machines

Inf111/CSE121 Slide 7

Challenges

* Logistics
— How do you design a process that will allow 5000 people to
work together at the same time?

— How do you test so much code? For so many platforms?
+ Design
— How do you do design on a system with 40 million lines of
code?

— How do you maintain conceptual (architectural) integrity?

Inf111/CSE121 Slide 8

Course Mechanics

* Lectures
— T Th 8:00 — 9:20am
+ Discussion
— Attend 1 per week, 2 sections (M)
— Materials will not be distributed electronically
+ Laboratories
— Attend 1 per week, 3 sections (M)
— Attend the section that you are registered in for grading

Inf111/CSE121 Slide 9

How to Find Me

* Email
— Susan Elliott Sim (ses@ics.uci.edu)

— To ensure a response, include “Inf111” or “CSE121” in the
subject and send from a UCI account

M
— benevolentprof on gtalk and msn (don’t send email here!)
« Twitter
— @benevolentprof
+ Office
— DBH 5226
+ Office hours
— T Th 9:30-10:30am
— Other times available by appointment

Inf111/CSE121 Slide 10

Textbooks

* Larman
- UML
— Design patterns
— Buy this book

* van Vliet
— 44/52 text
— Background
— Motivation

» Assorted Papers
— No Silver Bullet
— Scrum

Inf111/CSE121

» Syllabus contains
assigned readings by
topic

— May not discuss all
readings in class

— Readings will be on the
examinations

Slide 11

Discussion

* Discussions are for:
— Reviewing material

Presenting tools

Inf111/CSE121

Discussing assignments
Discussing readings

Preparing for tests

Reviewing tests and assignments

Slide 12

Laboratories

» For getting help
» For grading in-class portion of homework
— Work needs to be completed by the END of the lab session

+ Attend the section that you are registered in

Inf111/CSE121 Slide 13

Grading

» Laboratories 60% (best 6/7)
* Midterm 15%
* Final Exam 25%

Inf111/CSE121 Slide 14

Homework Assignments

« 7 Assignments

— One per week, except for first, midterm, and last week of
quarter

— Exception: Coding dojo

+ Format of assignment

— Laboratory portion

— Take home portion

Distributed on Mondays

* Due on Thursday of following week at 11pm
— No late assignments accepted

+ Submit using checkmate.ics.uci.edu

Inf111/CSE121 Slide 15

...Assignments

» Using software tools
— Get accustomed to tools early
— All tools installed in CS lab
— Freeware tools can be downloaded and installed at home

— Specific tools will be required, e.g. Rational Software
Architect, not Visio

» Assignments will be submitted electronically
— Include diagrams, tool logs, if required

* Quality is more important than length

» Express yourself clearly

— Be concise!
— Be specific!

Inf111/CSE121 Slide 16

...Assignments

» A forum has been created on the MessageBoard for
assignments
— Post your questions there

— The TAs, other students, and | will post answers,
suggestions, and additional information

« We will go into “silent running” during the last 24
hours before an assignment is due

Questions asked before the cut-off will be answered by us

You can always answer each others’ questions

Not reasonable to ask TAs to stay up all night to answer
questions

Provide some motivation to start early

Inf111/CSE121 Slide 17

Midterm and Final Exams

» Primarily based on readings

* Make-up exams only for documented medical
reasons

e Will be “crowdsourced”

Inf111/CSE121 Slide 18

Policies

» Use your UCI account
— Because of privacy
— Needs to be activated if you are new
+ If you need accommodations due to a disability, talk
to me
— see also: UCI Disability Center
* Re-grading
— See the TA or Reader first, then me if it is not resolved to
your satisfaction

— Within 1 week, accompanied by a clear explanation of what
needs to be re-considered and why

— Entire question will be considered (grade may go up or
down)

Inf111/CSE121 Slide 19

Cheating

+ Letter in your UCI file
» Course grade lowered, possibly to F

* No team work on assignments

» Discussing an assignment is OK, copying the solution
is not

« Things that are copied from books or Web pages
need to be quoted and the source must be given

Inf111/CSE121 Slide 20

10

Ask Questions

Tuesday, September 27

11

Announcements

* Charity Scrum Course

— https://sites.google.com/site/payitforwardcsm/
* Free Food

— Wednesday, September 28

— 10:30 - 11:45am

— Bren Hall 6011

+ Please read Brooks for Thursday

Inf111/CSE121 Slide 23

UML

12

Unified Modeling Language

» Let’s look at each of the words in the name
» Unified
— Two important methodologists Rumbaugh and Booch
decided to merge their approaches in 1994.
« They worked together at the Rational Software Corporation
— In 1995, another methodologist, Jacobson, joined the team
 His work focused on use cases

— In 1997 the Object Management Group (OMG) started the
process of UML standardization

Inf111/CSE121 Slide 25

Models

* Models are abstract representations

— Contain essential characteristics and omit non-essential
details

» “Essential” depends on the problem domain
— There are no perfect representations
* Models can be representations of the world
— Domain models
— Requirements
* Models can be representations of software
— Specifications
— Design
— Systems

Inf111/CSE121 Slide 26

13

Why make models?

» Systems are complex and hard to understand
— The world, organizations, relationships, software

* Models can make certain aspects more clearly visible
than in the real system

* What can you do with models?

Express your ideas and communicate with other engineers
Reason about the system: detect errors, predict qualities
Generate parts of the real system: code, schemas
Reverse engineer the real system to make a model

Inf111/CSE121 Slide 27

What constitutes a good model?

*A model should...

— Provide abstraction

—Render the problem in a format amenable to reasoning
+ use a standard notation
* be understandable by clients and users
* lead software engineers to have insights about the system
* make the problem solvable computationally

—Be good enough

Inf111/CSE121 Slide 28

14

Modeling Languages

* Natural language
— Extremely expressive and flexible
— Very poor at capturing the semantics of the model

— Better used for elicitation, and to annotate models for
communication

» Semi-formal notation
— Captures structure and some semantics

— Can perform (some) reasoning, consistency checking, animation,
etc.
+ Examples: diagrams, tables, structured English, etc.

— Mostly visual - for rapid communication with a variety of
stakeholders

* Formal notation
— very precise semantics, extensive reasoning possible
— Every detailed models (may be more detailed than we need)

Inf111/CSE121 Slide 29

Visual Languages

* Words = symbols

» Syntax = rules for combining symbols, drawing and
layout of language
— Example: Sheet music, tic-tac-toe
— Example: Visual Basic is a visual programming language

Inf111/CSE121 Slide 30

15

UML

« UML is a semi-formal visual modeling language
— Semantics are not completely specified by standard
— It has extension mechanisms

— It has an associated textual language
* Object Constraint Language (OCL)
— Well suited for object-oriented designs

Inf111/CSE121 Slide 31

Types of UML Diagrams

Structure Behavior
» Class diagrams » Activity diagram
* Object diagram * Use case diagram
» Package diagram » State machine diagram
» Composite structure diagram < Interaction diagrams
» Component diagram — Sequence diagram
+ Deployment Diagram — Communication diagram
— Interaction overview
diagram

— Timing diagram

Inf111/CSE121 Slide 32

16

Types of UML Diagrams

Structure Behavior
* Class diagram » Activity diagram
* Object diagram * Use case diagram
» Package diagram » State machine diagram
» Composite structure diagram < Interaction diagrams
* Component diagram — Sequence diagram
+ Deployment diagram — Communication diagram
— Interaction overview
diagram

— Timing diagram

Inf111/CSE121 Slide 33

UML- Structure Diagrams

17

Class Diagram

Librarylterm -
&title : String LibraryCatalog
&vcallNumber : Strin .

i 1 Sfinditem()
$checkOut() 0..n
“checkin()
$addHold() —
+borr ClientList
ﬁ 0.n “addNewClient()
Video SfindClientByNumber()
1
0..1 0..n
Book Client
& author : String &:name : String
&sclientNumber : int

A UML class corresponds to a Java class.

Inf111/CSE121

Slide 35

Classes, Attributes, and Operations

» Public (nothing or +)
* Protected (#)
* Private (-)

Call
¢public
fprotected
& private
Teimplementation

“callPublic()
T*callProtected()
&*callPrivate()

<calllmpl()

Inf111/CSE121

Slide 36

18

Class Diagrams

Class Class <<|nterface==
sattri interface
Epattributes Esattributes L
-attribute
“operations() ®operations() " -
operation
« Name
— Name: type

* Attributes
— visibility name: type multiplicity = default
{property-string}
» Operations
— visibility name (parameter-list) : return-type
{property-string}
- direction name: type = default

Inf111/CSE121

Slide 37

Attribute Syntax

visibility name: type multiplicity = default

{property-string}

— optional visibility: + public, - private, # protected

— name: the name of this attribute

— optional type: data type of this attribute

— optional default: initial value of attribute

— optional property string: OCL, e.g. ordered, readonly
+ Examples:

firstName

-middleName

lastName: String

-age:int=0

birthSign: String = "Gemini"

Inf111/CSE121

Slide 38

19

Property String

« Any information that cannot be expressed in the
diagram notation can be included as text
— Example: constraints
« Example:
customerNumber: int { >=0 }
+ All diagram elements can be annotated with
constraints
+ Can be:
— Natural language text
— Object Constraint Language
— Predefined properties
* Examples on next two slides
— Any other text

Inf111/CSE121 Slide 39

Property Strings on Attributes

+ changeable (default)
— Value of attribute can be changed
— May want to list legal/possible values

» addOnly

— Can add possible values, but can’t change existing ones

» frozen
— Can’'t add or change

Inf111/CSE121 Slide 40

20

Operation Syntax

visibility name (parameter-list) : return-type
{property-string}

 optional visibility: + public, - private, # protected

« name: the name of this operation

» optional parameters-list: parameters to this operation

direction name: type = default

optional direction: in, out, inout

name

optional type

optional default

 optional type: return type of operation

 optional property string

Inf111/CSE121 Slide 41

Operation Syntax

« Examples:
getFirstName()
+getMiddleName(): String
-setLastName(name: String)
+paintPortrait(inout c: Canvas, subject: Person)

Inf111/CSE121 Slide 42

21

Property Strings on Operations

» sequential
— Only one call to a method within an instance
« concurrent

— Multiple simultaneous calls to a method within an instance
may occur

* guarded

— Multiple simultaneous calls to a method within an instance
may occur but only one at a time will be executed

+ isQuery
— Operation doesn’t change the value of any attributes

Inf111/CSE121 Slide 43

Thursday, September 29

22

Class Diagram

Libraryltem :
&iitle : String LibraryCatalog
&callNumber : String |
ki i Sinditern()
ScheckOut() 0.n
Scheckin()
SaddHold() _
+horrowed ClientList
ﬁ 0-n “addNewClient()
el SfindClientByNumber()
1
0..1 0..n
Book Client

&.author : String

Inf111/CSE121

&sname : String
&:clientNumber : int

Slide 45

Associations

1

*

leftRole

¢ Relations between classes

¢ Roles

rightRole

— analogous to names of instance variables
* Multiplicities

- 0,1,%0.1,1..*,5..6, and so on

— says how many objects each object knows

— would be realized through arrays, Sets, Lists, and so on
* Navigability

— bidirectional: each class references the other

— unidirectional: A knows B, but B doesn’t know A

— no arrow heads: means either “bidirectional” or “not specified”

Inf111/CSE121

Slide 46

23

Multiplicities

» Descriptive
— Optional (0 or more)
— Mandatory (at least 1)
— Single-valued (upper bound)
— Multi-valued (upper bound of >1, usually *)

» Symbolic
— 0..1 (zero or one, i.e. optional)
— 1 (or another number, exactly the number specified)
— 2..4 (range)
— * (zero or more, no upper limit; n in Rational)

Inf111/CSE121 Slide 47

Role Name vs. Association Name

Person fowner | Toaster
D..1 n
owns
Person _ | Toaster
D..1 n
Owns
Person ’ Car
0.1 *
Inf111/CSE121 Slide 48

24

Types of Association

* Inheritance
— Generalization
— Realization

+ Aggregation
» Composition

Inf111/CSE121 Slide 49

Some Mnemonics

» Generalization = is-a
» Composition = has-a
» Aggregation = part-of

« Examples:
— Toaster is-a Appliance
— Toaster has-a slot
— Member part-of club

Inf111/CSE121 Slide 50

25

Inheritance

» Generalization correspond to the Java keyword
"extends"
— Generalizations are drawn with a solid line and a white
triangular arrow touching the superclass.
* Realization correspond to the Java keyword
"implements"
— Realizations are drawn with a dashed line and a white
triangular arrow touching the interface.
« UML itself is not restricted to single inheritance.
However, you would not use multiple inheritance if
you plan to implement in Java.

Inf111/CSE121 Slide 51

Inheritance

 |tis common practice to arrange the diagram so that:
— Generalization and Realization arrows point upward

— If one class has many subclasses, the Generalization arrows
overlap

Inf111/CSE121 Slide 52

26

Types of Associations

« Composition = Black diamond: parts are created with
the whole and stay with exactly one whole until both
are destroyed together.

» Aggregation = White diamond: parts can join the
whole and later leave; one part could be part of more
than one whole.

— Some operations will be recursively applied to the parts of a
whole

Inf111/CSE121 Slide 53

Association Type: Composition

*A composition is a strong kind of aggregation
« if the aggregate is destroyed, then the parts are destroyed as well

Toaster % Slot

Engine]‘— Piston

Inf111/CSE121 Slide 54

27

Example Aggregation

Order

Shippinginfo Book BillingInfo
& title : String

Inf111/CSE121 Slide 55

Association Type: Aggregation

*Aggregations are special associations that represent
‘part-whole’ relationships.

+ The ‘whole’ side is often called the assembly or the aggregate

» This symbol is a shorthand notation association named isPartOf

Swarm >——— | Bees

Inf111/CSE121 Slide 56

28

When to use an aggregation

*As a general rule, you can mark an association as an
aggregation if the following are true:
—You can state that
« the parts ‘are part of the aggregate
+ or the aggregate ‘is composed of the parts
—When something owns or controls the aggregate, then they also
own or control the parts

*Use with care

Inf111/CSE121 Slide 57

Types of Associations

» Aggregation = White diamond: parts can join the
whole and later leave; one part could be part of more
than one whole.

« Composition = Black diamond: parts are created with
the whole and stay with exactly one whole until both
are destroyed together.

— Like aggregation but with extra requirements for managing
the lifetime of internals

Inf111/CSE121 Slide 58

29

Association Type: Aggregation

*Aggregations are special associations that represent
‘part-whole’ relationships.

» The ‘whole’ is often called the assembly or the aggregate

» This symbol is a shorthand notation association named isPartOf

Order

Shippinglnfo Book BillingInfo
Betitle : String

Inf111/CSE121 Slide 59

Association Type: Composition

*A composition is a strong kind of aggregation
« if the aggregate is destroyed, then the parts are destroyed as well

*

Toaster o Slot

Engine]‘— Piston

Inf111/CSE121 Slide 60

30

When to use a composition

*An association is a composition if the whole has sole

responsibility for the memory associated with a part
—In Java, the whole must prevent garbage collection of the part
—In C/C++, the whole allocs/frees memory for the part

*As a general rule, you can mark an association as a
composition if the following are true:
—You can state that
« the parts ‘are part of the whole
« or the whole ‘is composed of the parts
—When something owns or controls the whole, then they also own
or control the parts

*Use with care

Inf111/CSE121 Slide 61

Associations and Properties

» Associations are

another way of
representing properties

Order

+ dateReceived: Date [0..1]
+ isPrepaid: Boolean [1]
+ lineltems: OrderLine [*] {ordered}

Date 0.1 * Oide + isPrepaid ——
+ dateReceived 1
...... 4 1
source
target

o,
...
..
v,

. lineltems
A % |, {ordered}

Orderline

INT1LSE1Z1 Sliae bz

31

Association Classes

When you want to add properties or operations to an
association, use an association class.
— Frequently simpler to promote associate class to full class

Person Toaster
T
|
|
|
Crwnership
&startDate
& endDate
Ownership
Persan &-startDate Toaster
&endDate
Inf111/CSE121 Slide 63
Libraryltem :
&title : String LibraryGatalog
&:callNumber : Strin .
o 1 “finditem()
$checkOut() 0.n
“checkin()
“addHold() ST
f +hor lentLis
0.n %addNewClient()
Video SfindClientByNumber()
1
0.1 0..n
Book Client
& author : String &:name : String
&:clientNumber : int
Slide 64

Inf111/CSE121

32

More in Larman

» Keywords («guillemets»)

— Stereotypes

— Examples: calls, interface, permit,...
* Responsibilities

— Another compartment in class

— ltems prefixed by --

+ Template classes

Inf111/CSE121 Slide 65
Window ST Clock e B
«call» N N A «create» T
o) getTime() °
a dependency on calling on operations of ‘ a dependency that A objects create B objects N
the operations of a Clock
DataAccessObject
id : Int «interface»
. Timer
getTime()
doX()
1
1
exceptions thrown !
DatabaseException !
I0Exception !
. Clock1
responsibilities
serialize and write objects
read and deserialize objects getTime()
Inf111/CSE121 Slide 66

33

Hints for Class Diagrams

« Remember: models are for communication
* Remember: include only important stuff

How do | find classes, attributes and so on?
— Classes often correspond to nouns
— Associations often correspond to verbs

+ A class should
— Represent a coherent concept
+ Principle: Low Coupling, High Cohesion
— Have a small, well-defined set of responsibilities

— Be named with a singular noun that says what each instance
of the class is

— Have no more than 10-20 operations

Inf111/CSE121 Slide 67

Hints for Class Diagrams

+ Class diagrams should

— have a single purpose

— have a title that expresses the purpose

— show only things that are relevant for this purpose
* Avoid

— cyclical dependencies, if possible

— generalization hierarchies with more than 5 levels

— crossing edges

Inf111/CSE121 Slide 68

34

Hints for Class Diagrams

» Use colors judiciously
— to highlight and group things
— unless you have to print it in black-and-white!
+ Lay out classes in a meaningful way
— similar classes close to each other
— top: closer to the user, bottom: closer to the data structures

Inf111/CSE121 Slide 69

Object Diagrams

» Show instantiation or specification of classes

» Associated with a particular use or instance of the
model

» Differences between Classes and Objects
— Name:class is underlined
— Attributes and operations included as needed
— Fields have data added

+ Useful for showing interactions between interfaces,
abstract classes, etc.
— Where functionality is not clear until instantiation

Inf111/CSE121 Slide 70

35

Example: Class to Object Diagrams

owns
Person _| Toaster
D..1 n
. owns .
Cinderella ProctorSilex
:Person :Toaster
Inf111/CSE121 Slide 71

Package Diagrams

+ Package is a grouping construct

— Most commonly used for class diagrams, but can be used
with any UML diagram or elements

— Used to create a hierarchy or higher level of abstraction
— Corresponds to package in Java
» Each package represents a namespace

— Like Java, can have classes with same name in different
packages

Inf111/CSE121 Slide 72

36

Representing Packages

util util
Date
util Date
Contents listed in box Contents diagramed in box

java
java::util e I

Date

Date

java::util::Date

Fully qualified package name Nested packages Fully qualified class name

oz onue 19

Design Example: Genealogy

» Shows relationships between family members

— Often depicted as a family tree
» A family tree is a visual language

Inf111/CSE121 Slide 74

37

Class Diagram for Genealogy

{husband.sex

= #male}

husband

Person

Inf111/CSE121

0..1

name
sex

placeOfBirth
dateOfBirth
placeOfDeath
dateOfDeath
placeOfMarriage
dateOfMarriage
dateOfDivorce

child

{wife.sex
= #female}

0..1 | wife parent | 2

{parent->forAll(p1,p2:
p1<>p2

implies p1.sex <> p2.sex)}

Slide 75

The Cartwright Family

Inf111/CSE121

Slide 76

38

Continued from the Swift c J?tht — 2 The Cartwriaht Family T
. . artwrig| e e Cartwrigl amily Tree

and Gulliver famlly trees 1780- ? Graphic based on the article "The Cartwright Clan and

Their Family Bonanza" by Dennis E. Power

| © 2000 Dennis Power

Graphic Design ® 2000 Dennis Power

Benjamin 1 2 - .
t——— Elizabth —_ Inger Marie
ca[t;g’;‘?“ ‘ Stoddard ——Borgstrom de Marginy
Adl Audra Tai “:”C " tu il h Moll
am oss! Sin osepl olly Sam
Cartwright Barkley Lee—— Cartwright g icartwrlght Buckhart BuckHart
1829 See Barkley 1836 1840- Law of the
Tree Plainsran
Joe Gar?
I
| | | Alexander Josphine Erica John
Ben Lucille Ingrid sloysius Sally North —__— Cartwright__ Cutis Cartwright Caine
Lee Achun Lee ‘ McGarrett Lee ‘ 1870 Bannion 1872
I 1 T 1 I
Adam Susan Stephen Mary Ellen Hugh Gerald Miles C. N Curt"B_urns" Wichita Jerome
Lee Chan McG arrett McGarrett North North Bannion [Bannion Billings MeDuff
"Banyon"” ? "Shoz-Dij
Rex Samantha
Roger Andrew King —____Cartwright
1880

. ;Rane" McDuff
T annon
h e C a rtW rl g ht Jeffrey ? Schuyler
McDuff later ? "Sky"

Clan
David |
Nelson Penny Clipper
“airboy" King King
David
Nelson jr
“airboy"
Inf111/CSE121 Slide 77
Person Person
name name
sex placeOfBirth
placeOfBirth dateOfBirth)
dateOfBirth placeOfDeath |child
placeOfDeath |child dateOfDeath
dateOfDeath [
{partner->forAll(p1,p2| Partner]0..2 |
p1<>p2
implies p1.sex <> p2.sex)} * Woman | | Man |
Union femalePartner[0..1 0..1|malePartner
0..1
placeOfMarriage parents « «
dateOfMarriage -
dateOfDivorce Union o
placeOfMarriage |—
X parents
dateOfMarriage
dateOfDivorce
Inf111/CSE121 Slide 78

39

Thoughts on These Solutions

« Can’t represent same-sex marriage (or same-sex
unions)

* A person is only allowed to have two parents
— Step-parents
— Fostering

— Biotechnology-enabled parenting: sperm donor, egg donor
(with or without DNA), surrogate mother

e Sex is an M/F attribute

Modeling is always political

Inf111/CSE121 Slide 79

40

