
1

Inf111/CSE121:
Software Tools and Methods

Fall Quarter, 2011
Susan Elliott Sim
ses@ics.uci.edu

Slide 2Inf111/CSE121

FAQs
• Is there lab today?

– No.

• Are discussions mandatory?
– We don’t take attendance, but we do tell you how to do the

homework. It’s hard to do well in this course without
attending discussion.

• What textbooks do I have to buy?
– Buy Larman (Applying UML and Patterns)
– Rest will be available electronically

2

Slide 3Inf111/CSE121

Course Home Page
• URL

– http://www.drsusansim.org/teaching/inf111/
– Linked from my home page
– Linked from EEE

• Syllabus and slides will be posted there
– In advance, when possible, but generally not

Slide 4Inf111/CSE121

Course Overview
• Organizational details
• What this course is about

3

Slide 5Inf111/CSE121

Objectives for the Course
• Modern software development methods

– Agile, automated testing, RUP

• Increase your exposure to a number of software tools
– Eclipse, subversion, JUnit, Rational Developer Workbench

• Give you experience working with methods
– Ideas more important the particular tool.

• Hands on
• Interactive
• Lots of work, but you’ll learn useful skills.

– All of these tools and methods (or ones similar to them) are
used in industry.

– Good for your resume

Slide 6Inf111/CSE121

Why do we need tools and methods?

• As teams and projects become larger, practices that
worked with 1 or 2 people don’t work any more

• Most students:
– Use an IDE
– Use the file system to manage projects
– Print statements used for debugging
– No install support

• Problem: Approach doesn’t scale
– More people, bigger code, different versions, multiple

platforms (development and delivery)

4

Slide 7Inf111/CSE121

Example: Longhorn Project
• 5000 developers (excludes non-tech staff)
• 40 million lines of code

– 16 million added in the last three years

• Daily builds and regression testing
– Takes 3 working days from the time you submit changes

until you receive an executable back

• ~1.7 testers to every programmer
• Needs to be backwards compatible
• Installation needs to work on millions of machines

Slide 8Inf111/CSE121

Challenges
• Logistics

– How do you design a process that will allow 5000 people to
work together at the same time?

– How do you test so much code? For so many platforms?
• Design

– How do you do design on a system with 40 million lines of
code?

– How do you maintain conceptual (architectural) integrity?

5

Slide 9Inf111/CSE121

Course Mechanics
• Lectures

– T Th 8:00 – 9:20am

• Discussion
– Attend 1 per week, 2 sections (M)
– Materials will not be distributed electronically

• Laboratories
– Attend 1 per week, 3 sections (M)
– Attend the section that you are registered in for grading

Slide 10Inf111/CSE121

How to Find Me
• Email

– Susan Elliott Sim (ses@ics.uci.edu)
– To ensure a response, include “Inf111” or “CSE121” in the

subject and send from a UCI account

• IM
– benevolentprof on gtalk and msn (don’t send email here!)

• Twitter
– @benevolentprof

• Office
– DBH 5226

• Office hours
– T Th 9:30-10:30am
– Other times available by appointment

6

Slide 11Inf111/CSE121

Textbooks
• Larman

– UML
– Design patterns
– Buy this book

• van Vliet
– 44/52 text
– Background
– Motivation

• Assorted Papers
– No Silver Bullet
– Scrum

• Syllabus contains
assigned readings by
topic
– May not discuss all

readings in class
– Readings will be on the

examinations

Slide 12Inf111/CSE121

Discussion
• Discussions are for:

– Reviewing material
– Presenting tools
– Discussing assignments
– Discussing readings
– Preparing for tests
– Reviewing tests and assignments

7

Slide 13Inf111/CSE121

Laboratories
• For getting help
• For grading in-class portion of homework

– Work needs to be completed by the END of the lab session

• Attend the section that you are registered in

Slide 14Inf111/CSE121

Grading
• Laboratories 60% (best 6/7)
• Midterm 15%
• Final Exam 25%

8

Slide 15Inf111/CSE121

Homework Assignments
• 7 Assignments

– One per week, except for first, midterm, and last week of
quarter

– Exception: Coding dojo

• Format of assignment
– Laboratory portion
– Take home portion

• Distributed on Mondays
• Due on Thursday of following week at 11pm

– No late assignments accepted

• Submit using checkmate.ics.uci.edu

Slide 16Inf111/CSE121

…Assignments
• Using software tools

– Get accustomed to tools early
– All tools installed in CS lab
– Freeware tools can be downloaded and installed at home
– Specific tools will be required, e.g. Rational Software

Architect, not Visio

• Assignments will be submitted electronically
– Include diagrams, tool logs, if required

• Quality is more important than length
• Express yourself clearly

– Be concise!
– Be specific!

9

Slide 17Inf111/CSE121

…Assignments
• A forum has been created on the MessageBoard for

assignments
– Post your questions there
– The TAs, other students, and I will post answers,

suggestions, and additional information

• We will go into “silent running” during the last 24
hours before an assignment is due
– Questions asked before the cut-off will be answered by us
– You can always answer each others’ questions

– Not reasonable to ask TAs to stay up all night to answer
questions

– Provide some motivation to start early

Slide 18Inf111/CSE121

Midterm and Final Exams
• Primarily based on readings
• Make-up exams only for documented medical

reasons
• Will be “crowdsourced”

10

Slide 19Inf111/CSE121

Policies
• Use your UCI account

– Because of privacy
– Needs to be activated if you are new

• If you need accommodations due to a disability, talk
to me
– see also: UCI Disability Center

• Re-grading
– See the TA or Reader first, then me if it is not resolved to

your satisfaction
– Within 1 week, accompanied by a clear explanation of what

needs to be re-considered and why
– Entire question will be considered (grade may go up or

down)

Slide 20Inf111/CSE121

Cheating
• Letter in your UCI file
• Course grade lowered, possibly to F

• No team work on assignments
• Discussing an assignment is OK, copying the solution

is not

• Things that are copied from books or Web pages
need to be quoted and the source must be given

11

Ask Questions

Tuesday, September 27

12

Slide 23Inf111/CSE121

Announcements
• Charity Scrum Course

– https://sites.google.com/site/payitforwardcsm/

• Free Food
– Wednesday, September 28
– 10:30 - 11:45 am
– Bren Hall 6011

• Please read Brooks for Thursday

UML

13

Slide 25Inf111/CSE121

Unified Modeling Language
• Let’s look at each of the words in the name
• Unified

– Two important methodologists Rumbaugh and Booch
decided to merge their approaches in 1994.

• They worked together at the Rational Software Corporation
– In 1995, another methodologist, Jacobson, joined the team

• His work focused on use cases
– In 1997 the Object Management Group (OMG) started the

process of UML standardization

Slide 26Inf111/CSE121

Models
• Models are abstract representations

– Contain essential characteristics and omit non-essential
details

• “Essential” depends on the problem domain
– There are no perfect representations

• Models can be representations of the world
– Domain models
– Requirements

• Models can be representations of software
– Specifications
– Design
– Systems

14

Slide 27Inf111/CSE121

Why make models?
• Systems are complex and hard to understand

– The world, organizations, relationships, software

• Models can make certain aspects more clearly visible
than in the real system

• What can you do with models?
– Express your ideas and communicate with other engineers
– Reason about the system: detect errors, predict qualities
– Generate parts of the real system: code, schemas
– Reverse engineer the real system to make a model

Slide 28Inf111/CSE121

What constitutes a good model?
•A model should…

– Provide abstraction
– Render the problem in a format amenable to reasoning

• use a standard notation
• be understandable by clients and users
• lead software engineers to have insights about the system
• make the problem solvable computationally

– Be good enough

15

Slide 29Inf111/CSE121

Modeling Languages
• Natural language

– Extremely expressive and flexible
– Very poor at capturing the semantics of the model
– Better used for elicitation, and to annotate models for

communication
• Semi-formal notation

– Captures structure and some semantics
– Can perform (some) reasoning, consistency checking, animation,

etc.
• Examples: diagrams, tables, structured English, etc.

– Mostly visual - for rapid communication with a variety of
stakeholders

• Formal notation
– very precise semantics, extensive reasoning possible
– Every detailed models (may be more detailed than we need)

Slide 30Inf111/CSE121

Visual Languages
• Words = symbols
• Syntax = rules for combining symbols, drawing and

layout of language
– Example: Sheet music, tic-tac-toe
– Example: Visual Basic is a visual programming language

16

Slide 31Inf111/CSE121

UML
• UML is a semi-formal visual modeling language

– Semantics are not completely specified by standard
– It has extension mechanisms
– It has an associated textual language

• Object Constraint Language (OCL)
– Well suited for object-oriented designs

Slide 32Inf111/CSE121

Types of UML Diagrams
Structure

• Class diagrams
• Object diagram
• Package diagram
• Composite structure diagram
• Component diagram
• Deployment Diagram

Behavior

• Activity diagram
• Use case diagram
• State machine diagram
• Interaction diagrams

– Sequence diagram
– Communication diagram
– Interaction overview

diagram
– Timing diagram

17

Slide 33Inf111/CSE121

Types of UML Diagrams
Structure

• Class diagram
• Object diagram
• Package diagram
• Composite structure diagram
• Component diagram
• Deployment diagram

Behavior

• Activity diagram
• Use case diagram
• State machine diagram
• Interaction diagrams

– Sequence diagram
– Communication diagram
– Interaction overview

diagram
– Timing diagram

UML- Structure Diagrams

18

Slide 35Inf111/CSE121

Class Diagram

• A UML class corresponds to a Java class.

Slide 36Inf111/CSE121

Classes, Attributes, and Operations
• Public (nothing or +)
• Protected (#)
• Private (-)

19

Slide 37Inf111/CSE121

Class Diagrams

• Name
– Name:type

• Attributes
– visibility name: type multiplicity = default

{property-string}

• Operations
– visibility name (parameter-list) : return-type

{property-string}
– direction name: type = default

Slide 38Inf111/CSE121

Attribute Syntax
visibility name: type multiplicity = default

{property-string}
– optional visibility: + public, - private, # protected
– name: the name of this attribute
– optional type: data type of this attribute
– optional default: initial value of attribute
– optional property string: OCL, e.g. ordered, readonly

• Examples:
firstName
-middleName
lastName: String
-age: int = 0
birthSign: String = "Gemini"

20

Slide 39Inf111/CSE121

Property String
• Any information that cannot be expressed in the

diagram notation can be included as text
– Example: constraints

• Example:
customerNumber: int { >=0 }

• All diagram elements can be annotated with
constraints

• Can be:
– Natural language text
– Object Constraint Language
– Predefined properties

• Examples on next two slides
– Any other text

Slide 40Inf111/CSE121

Property Strings on Attributes
• changeable (default)

– Value of attribute can be changed
– May want to list legal/possible values

• addOnly
– Can add possible values, but can’t change existing ones

• frozen
– Can’t add or change

21

Slide 41Inf111/CSE121

Operation Syntax
visibility name (parameter-list) : return-type

{property-string}

• optional visibility: + public, - private, # protected
• name: the name of this operation
• optional parameters-list: parameters to this operation
direction name: type = default

– optional direction: in, out, inout
– name
– optional type
– optional default

• optional type: return type of operation
• optional property string

Slide 42Inf111/CSE121

Operation Syntax
• Examples:

getFirstName()
+getMiddleName(): String
-setLastName(name: String)
+paintPortrait(inout c: Canvas, subject: Person)

22

Slide 43Inf111/CSE121

Property Strings on Operations
• sequential

– Only one call to a method within an instance

• concurrent
– Multiple simultaneous calls to a method within an instance

may occur

• guarded
– Multiple simultaneous calls to a method within an instance

may occur but only one at a time will be executed

• isQuery
– Operation doesn’t change the value of any attributes

Thursday, September 29

23

Slide 45Inf111/CSE121

Class Diagram

Slide 46Inf111/CSE121

Associations

• Relations between classes
• Roles

– analogous to names of instance variables
• Multiplicities

– 0, 1, *, 0..1, 1..*, 5..6, and so on
– says how many objects each object knows
– would be realized through arrays, Sets, Lists, and so on

• Navigability
– bidirectional: each class references the other
– unidirectional: A knows B, but B doesn’t know A
– no arrow heads: means either “bidirectional” or “not specified”

1 *
leftRole rightRole

24

Slide 47Inf111/CSE121

Multiplicities
• Descriptive

– Optional (0 or more)
– Mandatory (at least 1)
– Single-valued (upper bound)
– Multi-valued (upper bound of >1, usually *)

• Symbolic
– 0..1 (zero or one, i.e. optional)
– 1 (or another number, exactly the number specified)
– 2..4 (range)
– * (zero or more, no upper limit; n in Rational)

Slide 48Inf111/CSE121

Role Name vs. Association Name

Person Toaster

n0..1

+owner

n0..1

Person Toaster

n0..1 n0..1

owns

25

Slide 49Inf111/CSE121

Types of Association
• Inheritance

– Generalization
– Realization

• Aggregation
• Composition

Slide 50Inf111/CSE121

Some Mnemonics
• Generalization = is-a
• Composition = has-a
• Aggregation = part-of

• Examples:
– Toaster is-a Appliance
– Toaster has-a slot
– Member part-of club

26

Slide 51Inf111/CSE121

Inheritance
• Generalization correspond to the Java keyword

"extends"
– Generalizations are drawn with a solid line and a white

triangular arrow touching the superclass.

• Realization correspond to the Java keyword
"implements"
– Realizations are drawn with a dashed line and a white

triangular arrow touching the interface.

• UML itself is not restricted to single inheritance.
However, you would not use multiple inheritance if
you plan to implement in Java.

Slide 52Inf111/CSE121

Inheritance
• It is common practice to arrange the diagram so that:

– Generalization and Realization arrows point upward
– If one class has many subclasses, the Generalization arrows

overlap

27

Slide 53Inf111/CSE121

Types of Associations
• Composition = Black diamond: parts are created with

the whole and stay with exactly one whole until both
are destroyed together.

• Aggregation = White diamond: parts can join the
whole and later leave; one part could be part of more
than one whole.
– Some operations will be recursively applied to the parts of a

whole

Slide 54Inf111/CSE121

•A composition is a strong kind of aggregation
• if the aggregate is destroyed, then the parts are destroyed as well

Association Type: Composition

***** SlotToaster

*
PistonEngine

*
PagesBook

28

Slide 55Inf111/CSE121

Example Aggregation

Slide 56Inf111/CSE121

Association Type: Aggregation
•Aggregations are special associations that represent
‘part-whole’ relationships.

• The ‘whole’ side is often called the assembly or the aggregate
• This symbol is a shorthand notation association named isPartOf

* BeesSwarm

29

Slide 57Inf111/CSE121

When to use an aggregation

•As a general rule, you can mark an association as an
aggregation if the following are true:

– You can state that
• the parts ‘are part of’ the aggregate
• or the aggregate ‘is composed of’ the parts

– When something owns or controls the aggregate, then they also
own or control the parts

•Use with care

Slide 58Inf111/CSE121

Types of Associations
• Aggregation = White diamond: parts can join the

whole and later leave; one part could be part of more
than one whole.

• Composition = Black diamond: parts are created with
the whole and stay with exactly one whole until both
are destroyed together.
– Like aggregation but with extra requirements for managing

the lifetime of internals

30

Slide 59Inf111/CSE121

Association Type: Aggregation
•Aggregations are special associations that represent
‘part-whole’ relationships.

• The ‘whole’ is often called the assembly or the aggregate
• This symbol is a shorthand notation association named isPartOf

Slide 60Inf111/CSE121

•A composition is a strong kind of aggregation
• if the aggregate is destroyed, then the parts are destroyed as well

Association Type: Composition

***** SlotToaster

*
PistonEngine

*
PagesBook

31

Slide 61Inf111/CSE121

When to use a composition

•An association is a composition if the whole has sole
responsibility for the memory associated with a part

– In Java, the whole must prevent garbage collection of the part
– In C/C++, the whole allocs/frees memory for the part

•As a general rule, you can mark an association as a
composition if the following are true:

– You can state that
• the parts ‘are part of’ the whole
• or the whole ‘is composed of’ the parts

– When something owns or controls the whole, then they also own
or control the parts

•Use with care

Slide 62Inf111/CSE121

Associations and Properties
• Associations are

another way of
representing properties

32

Slide 63Inf111/CSE121

Association Classes
• When you want to add properties or operations to an

association, use an association class.
– Frequently simpler to promote associate class to full class

Slide 64Inf111/CSE121

Class Diagram

33

Slide 65Inf111/CSE121

More in Larman
• Keywords («guillemets»)

– Stereotypes
– Examples: calls, interface, permit,…

• Responsibilities
– Another compartment in class
– Items prefixed by --

• Template classes

Slide 66Inf111/CSE121

Examples

DataAccessObject

id : Int
...

doX()
...

exceptions thrown
DatabaseException
IOException

responsibilities
serialize and write objects
read and deserialize objects
...

«call»Window

a dependency on calling on operations of
the operations of a Clock

Clock

getTime()
...

«create»A

a dependency that A objects create B objects

B

...

«interface»
Timer

getTime()

Clock1

...

getTime()
...

34

Slide 67Inf111/CSE121

Hints for Class Diagrams
• Remember: models are for communication
• Remember: include only important stuff
• How do I find classes, attributes and so on?

– Classes often correspond to nouns
– Associations often correspond to verbs

• A class should
– Represent a coherent concept

• Principle: Low Coupling, High Cohesion
– Have a small, well-defined set of responsibilities
– Be named with a singular noun that says what each instance

of the class is
– Have no more than 10-20 operations

Slide 68Inf111/CSE121

Hints for Class Diagrams

• Class diagrams should
– have a single purpose
– have a title that expresses the purpose
– show only things that are relevant for this purpose

• Avoid
– cyclical dependencies, if possible
– generalization hierarchies with more than 5 levels
– crossing edges

35

Slide 69Inf111/CSE121

Hints for Class Diagrams
• Use colors judiciously

– to highlight and group things
– unless you have to print it in black-and-white!

• Lay out classes in a meaningful way
– similar classes close to each other
– top: closer to the user, bottom: closer to the data structures

Slide 70Inf111/CSE121

Object Diagrams
• Show instantiation or specification of classes
• Associated with a particular use or instance of the

model
• Differences between Classes and Objects

– Name:class is underlined
– Attributes and operations included as needed
– Fields have data added

• Useful for showing interactions between interfaces,
abstract classes, etc.
– Where functionality is not clear until instantiation

36

Slide 71Inf111/CSE121

Example: Class to Object Diagrams

Person Toaster

n0..1 n0..1

owns

ProctorSilex
:Toaster

Cinderella
:Person

owns

Slide 72Inf111/CSE121

Package Diagrams
• Package is a grouping construct

– Most commonly used for class diagrams, but can be used
with any UML diagram or elements

– Used to create a hierarchy or higher level of abstraction
– Corresponds to package in Java

• Each package represents a namespace
– Like Java, can have classes with same name in different

packages

37

Slide 73Inf111/CSE121

Representing Packages

Slide 74Inf111/CSE121

Design Example: Genealogy
• Shows relationships between family members

– Often depicted as a family tree
• A family tree is a visual language

38

Slide 75Inf111/CSE121

Class Diagram for Genealogy

2

child

Person

name

placeOfBirth
dateOfBirth
placeOfDeath
dateOfDeath
placeOfMarriage
dateOfMarriage
dateOfDivorce *

parent

0..1

0..1 wife

husband

{husband.sex
 = #male}

{wife.sex
 = #female}

{parent->forAll(p1,p2:
 p1 <> p2
 implies p1.sex <> p2.sex)}

sex

Slide 76Inf111/CSE121

The Cartwright Family

39

Slide 77Inf111/CSE121

Slide 78Inf111/CSE121

Possible Refinements

Person
name
placeOfBirth
dateOfBirth
placeOfDeath
dateOfDeath

Union
placeOfMarriage
dateOfMarriage
dateOfDivorce

parents
0..1

child
*

child*** malePartner* 0..1child

**

femalePartner 0..1

Woman Man

Person
name

placeOfBirth
dateOfBirth
placeOfDeath
dateOfDeath

Union
placeOfMarriage
dateOfMarriage
dateOfDivorce

parents
0..1

child
*

*

partner 0..2

sex

{partner->forAll(p1,p2 |
 p1 <> p2
 implies p1.sex <> p2.sex)}

40

Slide 79Inf111/CSE121

Thoughts on These Solutions
• Can’t represent same-sex marriage (or same-sex

unions)
• A person is only allowed to have two parents

– Step-parents
– Fostering
– Biotechnology-enabled parenting: sperm donor, egg donor

(with or without DNA), surrogate mother

• Sex is an M/F attribute

• Modeling is always political

