
1

Tuesday, October 4

Slide 2Inf111/CSE121

Announcements
• www.singularsource.net

– Donate to my short story contest

• UCI Delta Sigma Pi
– Accepts business and ICS students
– See Facebook page for details

2

Design Patterns

Slide 4Inf111/CSE121

Design Patterns
• Reusable design component
• First codified by the Gang of Four in 1995

– Erich Gamma, Richard Helm, Ralph Johnson, and John
Vlissides

• Concept taken from architecture
– “A Pattern Language” by Christopher Alexander
– “…a three-part rule, which expresses a relation between a

certain context, a problem, and a solution.”

• Original Gang of Four book described 23 patterns
– More have been added
– Other authors have written books

3

Slide 5Inf111/CSE121

Design Patterns Template
• Context

– General situation in which
the pattern applies

• Problem
– The main difficulty being

tackled
• Forces

– Issues or concerns that
need to be considered.
Includes criteria for
evaluating a good solution.

• Solution
– Recommended way to solve

the problem in the context.
The solution “balances the
forces”

• The following are optional

• Antipatterns
– Common mistakes to avoid

• Related Patterns
– Similar patterns; could be

alternated solutions or work
with the pattern

• References
– Source of pattern
– Who developed or

inspired the pattern

Slide 6Inf111/CSE121

Gang of Four Design Patterns
• Creational Patterns

– Abstract Factory
– Builder
– Factory Method
– Prototype
– Singleton

• Structural Patterns
– Adapter
– Bridge
– Composite
– Decorator
– Façade
– Flyweight
– Proxy

• Behavioral Patterns
– Chain of Responsibility
– Command
– Interpreter
– Iterator
– Mediator
– Memento
– Observer
– State
– Strategy
– Template Method
– Visitor

4

Slide 7Inf111/CSE121

Patterns in Java
• Chain of Responsibility

– Exception handling
– Try/catch/throw blocks

• Iterator
– Container classes

• Observer
– Listeners in GUIs

Slide 8Inf111/CSE121

Gang of Four Design Patterns
• Creational Patterns

– Abstract Factory
– Builder
– Factory Method
– Prototype
– Singleton

• Structural Patterns
– Adapter
– Bridge
– Composite
– Decorator
– Façade
– Flyweight
– Proxy

• Behavioral Patterns
– Chain of Responsibility
– Command
– Interpreter
– Iterator
– Mediator
– Memento
– Observer
– State
– Strategy
– Template Method
– Visitor

5

Slide 9Inf111/CSE121

The Observer Pattern
•Context

– When an association is created between two classes, the code
for the classes becomes inseparable.

– If you want to reuse one class, then you also have to reuse the
other.

•Problem
– How do you reduce the interconnection between classes,

especially between classes that belong to different modules or
subsystems?

•Forces
– You want to maximize the flexibility of the system to the

greatest extent possible

Slide 10Inf111/CSE121

The Observer Pattern
• Solution

WeatherViewer

* ******

Observers are
notified when a new
prediction is readyForecaster

Observable

«ConcreteObservable» «ConcreteObserver»

«Observable»

addObserver
notifyObservers

«interface»
«Observer»

update

* ****** «interface»
Observer

6

Slide 11Inf111/CSE121

Observer
•Antipatterns (Don’t do this)

– Connect an observer directly to an observable so that they both
have references to each other.

– Make the observers subclasses of the observable.

•Reference
– Gang of Four

Slide 12Inf111/CSE121

Observer in Java
• Observer interface and Observable class exist

– java.util.Observer and java.util.Observable

• But people usually implement their own
– Usually can’t or don’t want to sub-class from Observable
– Can’t have your own class hierarchy and multiple inheritance

is not available
– Has been replaced by the Java Delegation Event Model

(DEM)
• Passes event objects instead of update/notify

• Listener is specific to GUI classes

7

Thursday, October 4

Slide 14Inf111/CSE121

Announcements
• Tuesday is not Remembrance Day nor Veteran’s Day

– But you still get the day off

8

Slide 15Inf111/CSE121

The Façade Pattern
•Context

– Often, an application contains several complex packages.
– A programmer working with such packages has to manipulate

many different classes

•Problem
– How do you simplify the view that programmers have of a

complex package?

•Forces
– It is hard for a programmer to understand and use an entire

subsystem
– If several different application classes call methods of the

complex package, then any modifications made to the package
will necessitate a complete review of all these classes.

Slide 16Inf111/CSE121

The Façade Pattern
•Solution

9

Slide 17Inf111/CSE121

The Façade Pattern
• Solution

– Provide a simple interface to a complex subsystem.
– Decouple the classes of the subsystem from its clients and

other subsystems, thereby promoting subsystem
independence and portability

Slide 18Inf111/CSE121

Using the Façade Pattern
• Hides implementation details
• Promotes weak coupling between the subsystem and

its clients.
• Reduces compilation dependencies in large software

systems

• Does not add any functionality, it just simplifies
interfaces

• Does not prevent clients from accessing the
underlying classes.

10

Slide 19Inf111/CSE121

Façade Example

Slide 20Inf111/CSE121

The Singleton Pattern
•Context

– It is very common to find classes for which only one instance
should exist (singleton)

•Problem
– How do you ensure that it is never possible to create more than

one instance of a singleton class?

•Forces
– The use of a public constructor cannot guarantee that no more

than one instance will be created.
– The singleton instance must also be accessible to all classes

that require it

11

Slide 21Inf111/CSE121

The Singleton Pattern
• Solution

Slide 22Inf111/CSE121

Singleton
• Example

WindowMgr

theWindowMgr

WindowMgr «private»
getInstance

if (theWindowMgr==null)
 theWindowMgr= new WindowMgr();

return theWindowMgr;

«Singleton»
theInstance

getInstance

Constructor for WindowMgr is private
getInstance is public and static
theWindowMgr is private and static

This is the code for getInstance

Pattern

Instantiation
of Pattern

12

Slide 23Inf111/CSE121

Singleton Design Pattern
public class WindowMgr {
 private static WindowMgr theWindowMgr;
 private String windowLabel;

 private WindowMgr (){
}

 // Lazy instantiation
 public static synchronized WindowMgr getInstance(){
 if (theWindowMgr == null){
 theWindowMgr = new WindowMgr();
 }
 return theWindowMgr;
 }

...
}

Slide 24Inf111/CSE121

Singleton Design Pattern
public class WindowMgr {
 // Eager instantiation
 private static WindowMgr theWindowMgr = new WindowMgr();
 private String windowLabel;

 private WindowMgr (){
}

 public static synchronized WindowMgr getInstance(){
 return theWindowMgr;

 }

...
}

13

Slide 25Inf111/CSE121

Questions
• Why do you need the getInstance method? Why isn’t

it enough to just make theWindowMgr static (i.e. one
per class)?
– This results in extra instances of WindowMgr, but still only

one underlying theWindowMgr

• Why do you need an instance of WindowMgr at all?
Why not just make all the methods static?
– May need an instance, e.g. as an observer, for callbacks
– More flexible when you discover later that you don’t want

WindowMgr to be a singleton any more

Slide 26Inf111/CSE121

Drawbacks
• Need to add synchronization to getInstance

– Race condition could occur in if block

• Sub-classing becomes complicated
– Private constructor violates normal Java design principles
– Could change constructor to protected, but that would violate

the security provided
• Make a sub-class that is identical to parent
• Can have lots of pseudo-WindowMgrs running around

– Alternatively, each sub-class has own getInstance method

• Also need to prevent cloning by overriding Cloneable
interface

• Erich Gamma doesn’t like Singleton any more

14

Slide 27Inf111/CSE121

Singleton Design Pattern
• Related Patterns

– Factory and Façade

• Reference
– Gang of Four

Slide 28Inf111/CSE121

Strategy Design Pattern
• Context

– Define a family of algorithms, so they are interchangeable.

• Also Known As
– Policy

• Problem
– How to design for varying, but related algorithms or policies?

How to design for the ability to change the algorithms or
policies?

• Solution
– Define each algorithm/policy/strategy in a separate class

with a common interface

15

Slide 29Inf111/CSE121

Strategy Design Pattern
• Structure

Slide 30Inf111/CSE121

Example

16

Slide 31Inf111/CSE121

Example

Slide 32Inf111/CSE121

Strategy Design Pattern
• Participants

– Strategy interface, concrete Strategy, and Context/client

• Consequences
– Provides an alternative to subclassing the Context class to

get a variety of algorithms or behaviors
– Eliminates large conditional statements
– Provides a choice of implementations for the same behavior
– Increases the number of objects
– All algorithms must use the same Strategy interface

• Implementation
– Can use an Abstract Factory to create a Strategy

17

The Importance of Ignorance

Slide 34Inf111/CSE121

Context
• Everyone is ignorant about something-- often many

things
• The first step in becoming an intelligent ignoramus is

to understand ignorance

18

Slide 35Inf111/CSE121

Armour’s Orders of Ignorance
• Zeroth Order Ignorance (0OI): Lack of ignorance.

– I have 0OI when I provably know something.

• First Order Ignorance (1OI): Lack of knowledge.
– I have 1OI when I do not know something.

• Second Order Ignorance (2OI): Lack of awareness.
– I have 2OI when I do not know that I do not know something.

• Third Order Ignorance (3OI): Lack of Process.
– I have 3OI when I do not know of a suitably efficient way to

find out that I do not know that I do not know something.

• Fourth Order Ignorance (4OI): Meta ignorance.
– I have 4OI when I do not know about the Five Orders of

Ignorance.

Slide 36Inf111/CSE121

Zeroth Order Ignorance (0OI)
• Lack of Ignorance

– I have Zeroth Order Ignorance (0OI) when I know something
and can demonstrate my lack of ignorance in some tangible
form.

– 0OI is provable and proven knowledge that is deemed
“correct” by some qualified agency. In software this means
that the knowledge is invariably factored into usable form. In
all forms of knowledge there must be some external “proof”
element that qualifies the knowledge as being correct.

– Examples
• Trivia
• Building a system that satisfies the user
• Ability to sail

19

Slide 37Inf111/CSE121

First Order Ignorance (1OI)
• Lack of Knowledge

– I have First Order Ignorance (1OI) when I do not know
something and I can readily identify that fact. 1OI is basic
ignorance or lack of knowledge.

– Example
• Speaking Russian

Slide 38Inf111/CSE121

Second Order Ignorance (2OI)
• Lack of Awareness

– I have Second Order Ignorance (2OI) when I do not know
that I do not know something. That is to say, not only am I
ignorant of something (I have 1OI), I am unaware of what it
is I am ignorant about. I do not know enough to know what it
is that I do not know.

– Example
• I cannot give a good example of 2OI, of course.
• Do you need a will or a trust?

20

Slide 39Inf111/CSE121

Third Order Ignorance (3OI)
• Lack of Process

– I have Third Order Ignorance (3OI) when I do not know of a
suitably efficient way to find out that I do not know that I do
not know something, which is lack of a suitable knowledge-
gathering process.

– This presents me with a major problem: If I have 3OI, I do
not know of a way to find out that there are things that I do
not know that I do not know. Therefore, I cannot change
those things that I do not know that I do not know into either
things that I know, or at least things that I know that I do not
know, as a step toward converting the things that I know that
I do not know into things that I know.

– Example
• Design
• Investigative journalism

Slide 40Inf111/CSE121

Fourth Order Ignorance (4OI):
• Meta Ignorance

– I have Fourth Order Ignorance (4OI) when I do not know
about the Five Orders of Ignorance.

– I do not have this kind of ignorance, and now neither do you.

– Knowledge is highly and intrinsically recursive-- to know
about anything, you must first know about other things which
define what you know.

21

Slide 41Inf111/CSE121

Asking Questions
• Reveals

– Ignorance
– Intelligence

• Reduces
– Ignorance
– Assumptions

• Examples
– Richard Feynman
– Dan Berry

