
Tuesday, October 18

Configuration Management 
(Version Control)



Slide Inf111/CSE121

How Version Control Works
• Place the official version of source code into a central 

repository, or database
• Programmers check out a working copy into their 

personal sandbox or working copy
• When finished and fully tested, programmers check 

in their code back to the repository
Repository

Ahmed’s Sandbox Emma’s Sandbox

a.java,v
b.java,v

a.java
b.java

a.java
b.java

Server

Ahmed’s Computer Emma’s Computer

Slide Inf111/CSE121

subversion Commands
• checkout

– Retrieving a file from the repository
• commit

– Putting changes back into repository
• update

– Refresh the local or working copy copy with any changes 
since checkout

• http://www.cs.put.poznan.pl/csobaniec/Papers/svn-
refcard.pdf



Slide Inf111/CSE121

Conflict Detection and Management

• On check in, official repository copy is compared with 
new copy
– Check version number 

• If repository and working copy versions are the same, accept 
the changes

• If repository version is newer, reject commit operation.

• Need to update working copy before check in
– Includes a synchronization step to merge changes from two 

files (new repository version and modified file from working 
copy)

Slide Inf111/CSE121

Conflict Detection and Management

• Merge algorithm
– Line by line comparison 
– Changes to different lines are OK
– Changes to same lines labeled as a conflict

• Both versions written to the working copy copy
• Choose which line by editing manually

– No guarantee of code correctness after merge
• On a successful check in, save new version of files 

with a set of backwards references to changes
• Can apply detection selectively

– Binary files only use version numbers or timestamps
– No conflict detection applied to files that are ignored



Slide Inf111/CSE121

Operations are Atomic
• Checkout, update, and commit operations are like 

database transactions, they are all or nothing
– In case of network error, machine crash, etc.
– Avoids partial operations

• Operations work on directories
– Recursively applied to files

• Every commit transaction is assigned a number, 
indicating a version of the directory
– In other words, Version N and Version M of a file may be the 

same

Slide Inf111/CSE121

Updates
• Update command is applied to the directory
• Three possible outcomes for each file

– U - updated, repository version newer than working copy
– G - merged, changes don’t overlap
– C - conflict, you need to resolve

• After resolving, tell subversion client that you have 
done so



Slide Inf111/CSE121

What to check in
• Code that compiles cleanly and has been tested

• Don't check in files that are automatically created 
from others
– e.g. .class files

• Do check in:
– Your own little test programs
– And their expected output
– Readme files, notes, build logs, etc.
– Anything else you created by hand

Slide Inf111/CSE121

When to check in
• Version control is not a backup system

– Your computer should have one of those
• Don't check in just because you're taking a break 

– Check in files when they are stable
– e.g. After adding a new feature

• Or when you have to switch machines
– e.g. From home to school or vice versa



Slide Inf111/CSE121

Comments
• Upon check in, you will have the opportunity to add a 

comment
– USE THIS FEATURE!

• You’re going to wish you did when you try to revert 
back to an earlier version

Slide Inf111/CSE121

More Uses for Version Control
• Protecting you from yourself

– Backing out changes
– Finding where errors were injected

• Working with a team
– Simultaneous file sharing
– More complex products

• Multiple versions, platforms

• Recording an audit trail
– Hey boss, I’ve been working…
– Linus Torvalds vs. SCO



Slide Inf111/CSE121

Tagging
• Use tags to label a group of files

– Makes it easy to check out a release or configuration
• Using a particular version as the baseline for a series of 

versions
• Reasons for branching

– Experimental code
– Bug fix chains

• Happens at the repository, not your working copy

Thursday, October 20



No Silver Bullet: Essence and Accident in 
Software Engineering 

What is a silver bullet in myth?



What is a silver bullet in software?

“There is no single development, in either 
technology or management technique, 
which by itself promises even one order 

of magnitude improvement in 
productivity, in reliability, in simplicity.”



Why might we expect a silver bullet in 
software?

What are accidental difficulties in 
software?

What are essential difficulties in software?



“I believe the hard part of building 
software to be the specification, design 
and testing of this conceptual construct, 

not the labor of representing it and 
testing the fidelity of the representation.”

“We still make syntax errors, to be sure; 
but they are fuzz compared to the 

conceptual errors in most systems.”



What are the four inherent properties of 
essential difficulties in software?

Complexity
Conformity

Changeability
Invisibility



Complexity

“…a scaling-up of a software entity is not 
merely a repetition of the same 

elements in larger size; it is necessarily 
an increase in the number of different 

elements.” 



“…descriptions of a software entity that 
abstract away its complexity often 

abstract away its essence. Mathematics 
and physical sciences made great 
strides…by constructing simplified 

models… It does not work when the 
complexities are the essence.”

Conformity



“The physicist labors on; however, in a 
firm faith that there are unifying 

principles to be found…”

“No such faith comforts the software 
engineer. Much of the complexity he 
must master is arbitrary complexity, 

forced without rhyme or reason by the 
human institutions and systems to 

which his interfaces must conform.” 

Changeability



“In short, the software product is 
embedded in a cultural matrix of 

applications, users, laws, and machine 
vehicles. These all change continually, 

and their changes inexorably force 
change upon the software product.”

Invisibility



“The reality of software is not inherently 
embedded in space. Hence it has not 

ready a geometric representation in that 
way that land has maps…”

“In spite of progress in restricting and 
simplifying the structure of software, 

they remain inherently unvisualizable.”

What are some of the software 
technologies that have solved only 

accidental difficulties?



High-level languages
Unified programming environments

Artificial intelligence
Expert systems

“Automatic” programming
Programming verification

What are the four promising attacks on 
the conceptual essence?



Buy versus build
Requirements refinement and rapid 

prototyping
Incremental development-- grow, not build 

software
Great designers


