
Tuesday, October 25

Slide Inf111/CSE121

Announcements
• Crowdsourcing the Midterm

– http://www.drsusansim.org/teaching/inf111/pligg

• Homework 5
– Skip lab portion
– Use anything you want to draw the diagrams for the take

home portion

Software Process Models

Slide Inf111/CSE121

Software Process
• A Software Process Model is a simplified

representation of the software process, presented
from a specific perspective.
– General and abstract

• Software Process is a set of activities whose goal is
the development or evolution of software
– Specific and enacted

• Like the difference between class and object/instance

Slide Inf111/CSE121

Dimensions of Variation
• Phased or iterative
• Plan-based or incremental
• Continuous testing or late testing
• Feedback
• Risk management

Slide Inf111/CSE121

Waterfall Model

Diagram © Steve Easterbrook, University of Toronto

Slide Inf111/CSE121

Waterfall Model
• Points in Favor

– Some things must occur before others in the process, it
makes sense to have code before test, requirements before
design etc.

– It works as a model because it’s essentially true
• Points Against

– No project or design has ever proceeded this way
– Very difficult to lock down details before proceeding to next

step

Slide Inf111/CSE121

Evolutionary Model

Diagram © Steve Easterbrook, University of Toronto

Slide Inf111/CSE121

Evolutionary Model
• Points in Favor

– Accommodates throw-away prototyping
– Allows for lessons from each version to be incorporated into

the next
• Points Against

– Hard to plan for versions beyond the first
– Lessons may be learned too late
– Process is not visible
– Systems are often poorly structured
– Special tools and techniques may be required

Slide Inf111/CSE121

Spiral Model

Diagram © Steve Easterbrook, University of Toronto

Slide Inf111/CSE121

Spiral Model
• Points in Favor

– Incorporates prototyping and risk analysis
• Points Against

– Cannot cope with unforeseen changes (e.g. new business
objectives)

– Not clear how to analyze risk

Slide Inf111/CSE121

Question
• What is the difference between iterative and

incremental?

Thursday, October 28

Slide Inf111/CSE121

Rational Unified Process
• RUP is a software (development | design) process

that is:
– Use case-driven
– Architecture-centric
– Iterative and incremental

Slide Inf111/CSE121

Rational Unified Process

Slide Inf111/CSE121

UP Phases
• Inception

– Approximate vision, business case, scope, vague estimates
• Elaboration

– Refined vision, iterative implementation of the core
architecture, resolution of high risks, identification of most
requirements and scope, more realistic estimates

• Construction
– Iterative implementation of lower risk and easier elements,

preparation for deployment
• Transition

– Beta tests, deployment

Slide Inf111/CSE121

Agile Methods
• Currently, very popular in industry
• Agile means being able to move quickly

– Mentally quick and resourceful
• Develop software iteratively and incrementally
• Manage risk by managing scope

– Strong customer focus
• Continuous feedback

– Between developers, managers, and customers

• Can not plan for all possible changes, instead
embrace change

Slide Inf111/CSE121

Commonly Used Agile Methods
• SCRUM

– Emphasis is on managing the project
• Extreme Programming (XP)

– Guides development and management
• Others

– Lean
– Crystal

Slide Inf111/CSE121

Agile is not entirely new
• Iterative and incremental process models have

existed for a long time
– Spiral model by Barry Boehm (1985)

• Evolutionary software development
– Mentioned by Fred Brooks in “No Silver Bullet” (1987)

• Frequent deliveries and feedback
– EVO by Tom Gilb (1985)

Slide Inf111/CSE121

Current Differences
• Popularity

– Initiated by software developers
– Now taken up by executives

• New Techniques and Tools
– Test-driven development
– Refactoring
– User stories

• Growing Community with Shared Terminology
• Infrastructure

– Coaches, training, certification, courses, conferences

Slide Inf111/CSE121

Current Reasons for Popularity
• Effectiveness
• Results
• Compatibility with web applications
• Cool factor

Slide Inf111/CSE121

Extreme Programming (XP)
• Four Values

– Communication, simplicity, feedback, and courage
• The Principles

– Concrete applications of the principles
• Rapid feedback; assume simplicity; incremental change;

embracing change; quality work

• Four Basic Activities
– Coding, testing, listening, and designing

• Twelve Practices

Slide Inf111/CSE121

Extreme Practices
• If code reviews are good, we’ll review all the time (pair programming).
• If testing is good, everybody will test all the time (unit testing).
• If design is good, we’ll make it part of everybody’s daily business (refactoring).
• If simplicity is good, we’ll always leave the system with the simplest design that

supports the functionality (the simplest thing that could possibly work).
• If architecture is important, everybody will work defining and refining the

architecture all the time (metaphor).
• If integration testing is important, then we’ll integrate and test several times a

day (continuous integration).
• If short iterations are good, we’ll make the iterations really, really short– seconds

and minutes and hours, not weeks and months and years (the Planning Game).

Slide Inf111/CSE121

Twelve Key Practices of XP
Programmer Practices Simple Design

Test-driven development
Refactoring
Pair programming
Collective code ownership
Continuous integration
Coding standards

Management
Practices

Planning Game
Small releases
40-hour week

Customer Practices On-site customer
Metaphor

Slide Inf111/CSE121

Scrum
• Derived from the rugby term “scrum”

– Despite appearances, is a organized test of strength and
skill

• Work is done in sprints (iterations) that form releases
• Key Roles: Scrum Master and Product Owner (On-

Site Customer)
• Key Practices: Daily stand-up meeting, time-boxing,

and burn-down chart

Slide Inf111/CSE121

Slide Inf111/CSE121

Scrum Schematic

Slide Inf111/CSE121

Steps in the Scrum Process
• Product Owner identifies backlog task items (User

Stories)
• Releases are planned

– Scrum team estimates the cost of user stories
– Product Owner prioritizes user stories

• A sprint begins with a Sprint Planning Meeting
– User Stories are broken down into tasks with time estimates
– Anyone doing work is involved, including testers, system

administrators, documentation writers
• Every day begins with a daily stand-up meeting
• A sprint ends with a Sprint Review Meeting

Slide Inf111/CSE121

Scrum Master
• A project management role
• Chairs the meetings
• Tracks progress
• Maintains burn down chart

• Work allocation is based on historical performance
– Number of story points per release
– Number of hours per sprint

Slide Inf111/CSE121

Task Board

Slide Inf111/CSE121

Burn Down Chart

Slide Inf111/CSE121

Misconceptions About Agile
• Myth: Agile is undisciplined

– Fact: Agile is disciplined, but not in a traditional way
• Myth: Agile is not suitable for large teams

– Fact: Agile can be used on large teams, but requires a more
overhead than plan-based approaches

• Myth: Agile is not suitable for geographically-
distributed teams
– Fact: Agile does work in these settings, if you have the

discipline, infrastructure, and organizational support.
• Myth: Agile means no documentation

– Fact: You can use as much or as little documentation as you
need on agile.

• Myth: Agile means no architecture
• Myth: Agile means no planning

