Tuesday, October 25

Announcements

+ Crowdsourcing the Midterm
— http://www.drsusansim.org/teaching/inf111/pligg

* Homework 5
— Skip lab portion
— Use anything you want to draw the diagrams for the take
home portion

Inf111/CSE121

Slide

Software Process Models

Software Process

» A Software Process Model is a simplified
representation of the software process, presented
from a specific perspective.

— General and abstract

» Software Process is a set of activities whose goal is

the development or evolution of software
— Specific and enacted

 Like the difference between class and object/instance

Inf111/CSE121 slide

Dimensions of Variation

* Phased or iterative

* Plan-based or incremental
« Continuous testing or late testing

» Feedback
* Risk management

Inf111/CSE121

Slide

Waterfall Model

requirements

“=1 maintain

Diagram © Steve Easterbrook, University of Toronto
Inf111/CSE121

Slide

Waterfall Model

» Points in Favor

— Some things must occur before others in the process, it

makes sense to have code before test, requirements before
design etc.

— It works as a model because it’s essentially true
* Points Against
— No project or design has ever proceeded this way

— Very difficult to lock down details before proceeding to next
step

Inf111/CSE121

Slide

Evolutionary Model

Release 1

design | code | test [ntegrate] oam | Bl paevelor
(each release adds more
elease 2 functionality)
_Pi design | code | test |inf=gra'e| 0&M |
release 3

—)I design ‘ code I test |im¢gmu| 0&M |

release 4.

] design [code | test [integrate[oam |

version 1

reqts | design | code | test |integrate| oam |

lessons legrnt
version 2

[reats [design | cotte [fest [integrate] oam |
i 1 lefrnt
Evolutionary development versian 3 lessons lejrn

(each version incorporates | regts ‘ design | code | test |im¢g.-af¢|
new requirements)

Diagram © Steve Easterbrook, University of Toronto
Inf111/CSE121

Slide

Evolutionary Model

» Points in Favor

— Accommodates throw-away prototyping
— Allows for lessons from each version to be incorporated into

the next
+ Points Against

— Hard to plan for versions beyond the first
— Lessons may be learned too late

— Process is not visible

— Systems are often poorly structured

— Special tools and techniques may be required

Inf111/CSE121 Slide

Defermme. goals, Evaluate
alternuffves, alternatives
constraints and risks

i
mp!ememahcn Pplan

wr*‘”d

acceptance
test

3
e ogion

ste®
xest

Develop
and
test

Diagram © Steve Easterbrook, University of Toronto
Inf111/CSE121

Slide

Spiral Model

* Points in Favor
— Incorporates prototyping and risk analysis
* Points Against

— Cannot cope with unforeseen changes (e.g. new business
objectives)
— Not clear how to analyze risk

Inf111/CSE121 Slide

Question

* What is the difference between iterative and
incremental?

Inf111/CSE121 slide

Thursday, October 28

Rational Unified Process

* RUP is a software (development | design) process
that is:
— Use case-driven
— Architecture-centric
— lterative and incremental

Inf111/CSE121 slide

Rational Unified Process

Inception I Elaboration Construction Transition
Discioli
Modeling T
o
Analysis and Design it
Test
D R
Supporting Disciplir
Configuration and TR e
Change DR s
Project
t
preliminary | iter | iter | iter | iter iter iter | iter
iteration(s) #n | #n+l | #n42 | #mo | #me
Inf111/CSE121 Slide
* Inception

— Approximate vision, business case, scope, vague estimates

+ Elaboration
— Refined vision, iterative implementation of the core
architecture, resolution of high risks, identification of most
requirements and scope, more realistic estimates
+ Construction
— lterative implementation of lower risk and easier elements,
preparation for deployment
» Transition
— Beta tests, deployment

Inf111/CSE121 slide

Agile Methods

« Currently, very popular in industry
« Agile means being able to move quickly
— Mentally quick and resourceful
» Develop software iteratively and incrementally
* Manage risk by managing scope
— Strong customer focus
» Continuous feedback
— Between developers, managers, and customers

« Can not plan for all possible changes, instead
embrace change

Inf111/CSE121 slide

Commonly Used Agile Methods

+ SCRUM

— Emphasis is on managing the project
* Extreme Programming (XP)

— Guides development and management
» Others

— Lean

— Crystal

Inf111/CSE121 slide

Manifesto for Agile Software Development

‘We are uncovering better ways of developing
software by doing it and helping others do it.
Through this work we have come to value:
Individuals and interactions over processes and tools
Working software over comprehensive documentation
Customer collaboration over contract negotiation
Responding to change over following a plan

That is, while there is value in the items on
the right, we value the items on the left more.

Kent Beck James Grenning Robert C. Martin
Mike Beedle Jim Highsmith Steve Mellor
Arie van Bennekum Andrew Hunt Ken Schwaber
Alistair Cockburn Ron Jeffries Jeff Sutherland
Ward Cunningham Jon Kern Dave Thomas
Martin Fowler Brian Marick

Agile is not entirely new

* lterative and incremental process models have
existed for a long time
— Spiral model by Barry Boehm (1985)
» Evolutionary software development
— Mentioned by Fred Brooks in “No Silver Bullet” (1987)
» Frequent deliveries and feedback
— EVO by Tom Gilb (1985)

Inf111/CSE121 slide

Current Differences

» Popularity
— Initiated by software developers
— Now taken up by executives
* New Techniques and Tools
— Test-driven development
— Refactoring
— User stories
* Growing Community with Shared Terminology
* Infrastructure
— Coaches, training, certification, courses, conferences

Inf111/CSE121 slide

Current Reasons for Popularity

« Effectiveness

» Results

» Compatibility with web applications
« Cool factor

Inf111/CSE121 slide

Extreme Programming (XP)

.

.

Four Values
— Communication, simplicity, feedback, and courage
The Principles

— Concrete applications of the principles
+ Rapid feedback; assume simplicity; incremental change;
embracing change; quality work

Four Basic Activities
— Coding, testing, listening, and designing
Twelve Practices

Inf111/CSE121 slide

Extreme Practices

If code reviews are good, we'll review all the time (pair programming).

If testing is good, everybody will test all the time (unit testing).

If design is good, we’ll make it part of everybody’s daily business (refactoring).
If simplicity is good, we'll always leave the system with the simplest design that
supports the functionality (the simplest thing that could possibly work).

If architecture is important, everybody will work defining and refining the
architecture all the time (metaphor).

If integration testing is important, then we’ll integrate and test several times a
day (continuous integration).

If short iterations are good, we’ll make the iterations really, really short— seconds
and minutes and hours, not weeks and months and years (the Planning Game).

Inf111/CSE121 slide

Twelve Key Practices of XP

Programmer Practices

Simple Design
Test-driven development
Refactoring

Pair programming
Collective code ownership
Continuous integration
Coding standards

Management
Practices

Planning Game
Small releases
40-hour week

Customer Practices

On-site customer
Metaphor

Inf111/CSE121

Slide

Scrum

» Derived from the rugby term “scrum”

— Despite appearances, is a organized test of strength and

skill

* Work is done in sprints (iterations) that form releases

* Key Roles: Scrum Master and Product Owner (On-

Site Customer)

» Key Practices: Daily stand-up meeting, time-boxing,
and burn-down chart

Inf111/CSE121

Slide

Scrum Schematic

Daily Scrum
Meeting

Backlog tasks 30 days
expanded
Sprint Backlog by team

7

Potentially Shippable
Product Backlog Product Increment
As prioritized by Product Owner

Source: Adagted from Agie Sotware.
Dovebgment wih Scrum by Ken
Schwaber and Mike Beede

Inf111/CSE121 Slide

Steps in the Scrum Process

* Product Owner identifies backlog task items (User
Stories)
* Releases are planned
— Scrum team estimates the cost of user stories
— Product Owner prioritizes user stories
« A sprint begins with a Sprint Planning Meeting
— User Stories are broken down into tasks with time estimates

— Anyone doing work is involved, including testers, system
administrators, documentation writers

« Every day begins with a daily stand-up meeting
» A sprint ends with a Sprint Review Meeting

Inf111/CSE121 slide

Scrum Master

* A project management role
* Chairs the meetings

« Tracks progress

* Maintains burn down chart

* Work allocation is based on historical performance
— Number of story points per release
— Number of hours per sprint

Inf111/CSE121 slide

Task Board

| — R

-! ;To Do mebead

Inf111/CSE121 Slide

Burn Down Chart

Inf111/CSE121 Slide

Misconceptions About Agile

Myth: Agile is undisciplined
— Fact: Agile is disciplined, but not in a traditional way
Myth: Agile is not suitable for large teams

— Fact: Agile can be used on large teams, but requires a more
overhead than plan-based approaches

Myth: Agile is not suitable for geographically-
distributed teams

— Fact: Agile does work in these settings, if you have the
discipline, infrastructure, and organizational support.

Myth: Agile means no documentation

— Fact: You can use as much or as little documentation as you
need on agile.

Myth: Agile means no architecture
Myth: Agile means no planning

Inf111/CSE121 slide

