
Tuesday, November 15

1

Testing

Slide Inf111/CSE121

Testing
• Waterfall model show testing as an activity or box

– In practice, testing is performed constantly
• There has never been a project where there was too

much testing.
– Products always ship with some defects

• Test cases are a valuable resource
– Should be managed like code

Slide Inf111/CSE121

Review
• Name and describe four types of testing.

• What is the difference between black box and white
box testing?

Slide Inf111/CSE121

Quality Assurance Activities
• Verification

– Check product against specification
– Building the system right

• Validation
– Check product against world (stakeholder expectations)
– Building the right system

• van Vliet considers all quality assurance activities as
testing

Slide Inf111/CSE121

Testing Objectives
• Goal of testing is to make the software misbehave

– Failures tell you a lot more than successes
• Your reward is finding a bug, even if it’s your own code

– No prizes for test cases that pass
• Testing can only tell you about the presence of defects

– Need to use proofs and other checks to show correctness

Slide Inf111/CSE121

The Tester’s Role on Agile Projects

Testers in their traditional role Tester role in an agile project

 A separate QA group
 Tests are derived from detailed
requirements and specifications
 QA may or may not participate in
planning sessions, but is not usually
informed about design considerations
until after they have been finalized

 Is part of the team and attends all
team sessions
 Is an integral part of the planning
game
 Practices pair testing, i.e.
collaborates with the developers to get
good tests

http://www.ucalgary.ca/~ageras/wshop/abstracts/2003/role-agile-tester.htm

Thursday, November 18

Automated Testing using JUnit

Slide Inf111/CSE121

Automated Testing
• Idea: Testing is repetitive. Get a computer to do the

work for you.
– Computers are good at repetitive sequences and don’t get

bored.
– More reliable and robust than testing by hand.

• Benefits
– Can test frequently at little additional cost
– Greater confidence in the code

• Costs
– Tests need to maintained along with code

• e.g. refactoring

Slide Inf111/CSE121

JUnit
• Framework for performing unit testing on Java

programs
– Test cases are sub-classed from an interface

• Available as a stand-alone application and built into
Eclipse
– Cppunit available for C++ code, httpunit for web pages

• Framework executes the test cases and records the
results
– Displays results in a GUI
– “Keep the bar green to keep the code clean.”

Slide Inf111/CSE121

Unit Testing
• A unit test typically tests one class in the system

– A unit test suite contains many test cases
• Each test case typically tests one method in the

system
• There can be many test cases for each method in the

system
• Each test case either succeeds or fails, there is no

gray area
• If a test case has an error, that is also a failure
• A test or test suite can be said to succeed to a certain

percentage

Slide Inf111/CSE121

How to use JUnit

• Each test class exercises one class in the system. Each test method exercises one method in the system. You also
write additional test methods to exercise combinations of system methods.

class C {
 method m1();
 method m2();
}

class D {
 method m3();
 method m4();
}

class CTest extends TestCase {
 method testM1();
 method testM2();
}

class DTest extends TestCase {
 method testM3();
 method testM4();
}

Slide Inf111/CSE121

How to use JUnit
• Each test method consists of a sequence of steps, and

some checks of the results.
• Once you have the unit tests written, you run them.

You could run them directly from main(), but it is easier
to use a test running utility
– Options: JUnit TestRunners or the Ant junit task.

Slide Inf111/CSE121

JUnit Methods
• assertEquals(x, y) – Test passes if x and y are equal

– x and y can be primitives or any type with an appropriate equals method
– Three argument versions exist for floating point numbers

• assertFalse(b) – Test passes if boolean value b is false
• assertTrue(b) – Test passes if boolean value b is true

• assertNull(o) – Test passes if object o is null
• assertNotNull(o) – Test passes if object o is not null

• assertSame(ox, oy) – Test passes if ox and oy refer to the same object
• assertNotSame(ox, oy) – Test passes if ox and oy do not refer to the same

object

Slide Inf111/CSE121

JUnit Test Runner Sequence
• Test runner is given a list of test classes
• For each test class

Create an instance of the test class
 For each test*() method
 Run setUp() method
 Run test method steps and checks
 If a check fails, an assertion is thrown and the test method
fails
 Run tearDown() method

• Test runner produces a report
• Some test runners work interactively

Slide Inf111/CSE121

Example from JUnit Primer
http://www.clarkware.com/articles/JUnitPrimer.html

Slide Inf111/CSE121

Checking for Duplicate Objects
• Why can’t you just use a different collection class?

– The need to check for an attempt to add a duplicate object will
arise with all collection classes.

– This is a conceptual problem, not a logic problem.
• Isn’t it expensive to have to iterate through the array

every time?
– It’s computationally expensive, but it’s a small price to pay to

prevent/catch human errors.
– Can be made cheaper with a different collection class.

Slide Inf111/CSE121

Things to Notice
• setUp() method makes some variables that are used in

the tests
– Officially called “fixtures”

• tearDown() frees memory, prevents results of one test
from affecting the next

• Only the first failure in a test method is reported
– Don’t do too much in a single test

• Missing test cases: a new cart should be empty, add
the same product twice, remove a product that was
already removed, test isEmpty(), etc.

Slide Inf111/CSE121

Slide Inf111/CSE121

Other Details
• Ordering of Test Cases

– Not guaranteed
• Could be in order of presentation in file
• Could be something else

– Can control by manually loading into a test suite
• More work and can be error prone, but more predictable

• Sequences of Tests
– Same as above

• Exceptions

• Customization
– Can write your own JUnit runners

Slide Inf111/CSE121

Tests with Exceptions

public void testRemoveItem(){
 try {
 _testCart.removeItem(_secondItem);
 fail("Should raise a product not found

exception");
 }
 catch (ProductNotFoundException pnfe){
 assertNotNull(pnfe);
 }
}

Slide Inf111/CSE121

More Information
• Eclipse Help

– Help -> Help Contents -> Java Development User Guide ->
Getting Started -> Basic Tutorial -> Writing and running JUnit
tests

• JUnit Home Page
– http://www.junit.org

• JUnit Primer
– http://www.clarkware.com/articles/JUnitPrimer.html

