After the Scrum: Twenty Years of Working without
Documentation

Sukanya Ratanotayanon

Department of Informatics
University of California, Irvine

sratanot@uci.edu

ABSTRACT

Agile processes enable software development psofeateact to
rapid changes in the development environment. Hewehey
are often criticized for not creating and maintagistandard
documentation such as requirements and design dodation.
The lack of documentation can be detrimental fointaaning
knowledge, especially in the long run, becauseethsr no
explicit medium for communication to new people armdong
existing developers. This poses an important guestvhether
the use of agile processes in long run is feaslbl¢his paper,
we presented a field study of an organization llagtbeen using
an agile process for more than 20 years and hasseessful
in maintaining knowledge over that period. Insteddwritten
documentation, they use living documents, well-canted
communication, and working software are prioritizexs
mediums for maintaining knowledge. However, sucdsssot
easily achieved. There are important factors theibke the
organization to use the current practices succégsflihese
factors are: shared values, overlapping knowledgeng team
members, low turnover rate, and well-understoodireqents.

1. Introduction

Processes in the agile family have gained incrgasin
popularity recently due to the competitive envir@mn
and rapid changes in both technologies and regeinésn
The lightweight characteristic of agile processeabées
fast-paced development and rapid reaction to change
However, much skepticism toward agile processes has
been shown, especially by the proponents of plaeda
software processes, due to the lack of standard
documentation, which can be detrimental for mainitej
and distributing knowledge among project members
throughout a project’s life cycle.

Agile software processes do not produce and maintai
any high-level documents other than source code and
comments. Instead, it recommends communication and
collaboration among people in the project as a sedn
maintaining knowledge rather than using documeonati
The process suggests that documentation be creatéd
maintained only when necessary and only to fatdlita
communication. For example, the process advocates
documenting important knowledge that will help othe
understand the source code as comments. The fats t

Jigar Kotak

Department of Informatics
University of California, Irvine University of California, Irvine

jkotak@uci.edu

Susan Elliott Sim
Department of Informatics

ses@ics.uci.edu

there is no explicit medium for knowledge transfegr

and most important knowledge resides only withiare
members’ heads raise an important question. Is terrg

use of the agile approach feasible? This concern is
especially valid when the software project reaches
maintenance phase and the original developers ®f th
system are leaving or are no longer available.

Most field studies of agile projects have not
investigated this issue. They have studied projéuas
only recently adopted agile processes and haveséacan
how the agile processes were adopted [1], [2]. \Weeh
conducted a field study within a small organizattbat
has been using an agile process for more than &G.yia
this study, we interviewed all staff members whorave
involved in two particular software projects. Thiestf
software project is being implemented as a computer
system for the first time and is in the developmamdse.
The second project is one of the organization’sicedi
applications and is the third generation of compute
systems performing the same task. This second
application is in its maintenance phase and hasadyr
lost some of its original developers. However, even
without documentation, the remaining developersadle
to sustain the knowledge required to maintain their
software successfully.

At first blush, one would expect that scrums, or
frequent, informal face-to-face communication woblel
insufficient to sustain knowledge over decades. él@w,
this was not the case. We found that mediums throug
which knowledge is mainly retained and distributed:
living documents, well-connected communication, and
exemplar software systems. However, there are ebeum
of factors that enable this organization to usesdhe
communication mediums effectively, and these haded
successfully sustaining and distributing the knalgk
These factors are: shared values, overlapping letpe
among team members, a low turnover rate, and well-
understood requirements.

In the next section, we review related studies.e Th
method employed in our study and the charactesisifc
the organization and projects under study are pteddan

Section 3. Section 4 describes in detail the mesliused

to maintain and distribute knowledge in this orgation.
Section 5 analyzes the factors that enable them to
successfully use these mediums effectively. SecBon
presents concerns that the organization has about
maintaining its knowledge in the future. We conewlr
paper in Section 7.

2. Related Work

Agile processes are a family of lightweight proesss
that share a common framework called “Agile Manifés
established in early 2001 by the Agile Alliance.[3he
Agile Manifesto declares that agile processes value

= Individuals and interactions over processes anis$too

= Working software over comprehensive documentation,
= Customer collaboration over contract negotiation,

= Responding to change over following a plan.

In addition, a true agile process will have the
following characteristics: iterative, incrementaself-
organized by team member, and emergent [4]. Example
of famous agile processes are Extreme Programming
(XP), Scrum, Crystal, Adaptive Software Development
(ASD), Feature-Driven Development (FDD), and Lean
Development (LD).

Agile processes are popularly adopted by small $eam
building software that requires fast developmertd &ast
reaction to changes. Agile processes normally iider
communication and shared tacit knowledge as a mians
maintain and sustain knowledge in software projects
Documents are created only to facilitate the
communication and are updated only when necesSary [
This raises skepticism about the ability of agiteqesses
to maintain and distribute knowledge among team
members throughout the development life cycle.

Maintaining and distributing knowledge is crucial i
software development processes. This is espectiallyin
the case of maintenance, when sometimes a persoiswh
responsible for maintaining the system is not ingdlin
its development. Information has to be stored imeso
form in order to help the maintainer gain an unteding
of the system. Failure to address this issue cleald to a
“thin spread of application domain knowledge,” and
“communication and coordination breakdown” [6], alhi
eventually lead to the failure of the project.

In traditional plan-based processes [7-9], a stahdet
of documents associated with software development
phases is prescribed as the medium for communitétio
new people on the project, existing developers;sisad
other related software projects. These documentsised
to enforce conformity of coding standards, design
documents, and requirements, as well as to provide
mechanisms for tracking project features, statog,laigs.

The cost of producing and maintaining these
documents, however, poses a problem, especiatiynal
teams such as those practicing agile processesough
there are many advocates for using documentatioa as
means to transfer and sustain knowledge [10-12}etls
also evidence against the effectiveness of docisrest
means to maintain and distribute knowledge. Stustiesv
that, in practice, developers do not do a good ¢éb
documenting [13]. In addition, developers don'’tl fdet
it's worthwhile to update certain types of docunsent
Therefore, documents are not created and mainteaned
timely manner, and they become outdated [14, 1Bis T
inconsistency undermines the value of documentat®oa
means for maintaining knowledge in an organization.

3. Empirical Method and Field Site

In order to better understand how knowledge is
maintained and transferred without the benefit of
documentation, we conducted a field study of an
organization that has been using an agile developme
process for more than 20 years. This section ptesba
method employed in our study and the charactesisifc
the organization and projects studied.

3.1 Method

We conducted interviews with 9 technical and non-
technical staff members who were involved in two
specific software development projects. A detailed
description of the projects is presented in secd@ We
employed semi-structured interviewing techniquelsictv
involve a set of questions designed to cover thges of
topics. These questions are open-ended in order to
encourage subjects to talk at length about their
experiences and also help us learn about othetedela
issues. The questions, selected to promote conimrsa
fall into three categories: (i) their backgroundd aheir
roles in the project, (i) documents and informatio
required for their tasks, and (iii) the means usedbtain
required information and to record information adial
during their tasks.

Each subject was interviewed individually for 306(®
minutes. For each interview, there were two intamars:
the first interviewer took the role of ensuringttlad the
topics in the protocol were covered, and the second
interviewer, freed from focusing on the protocalgidised
on following up on interesting but unanticipatedhegks.
In addition to the notes taken during the interview
interviews were tape recorded.

3.2 Field Siteand Project Characteristics

The interviews were conducted at a small
administrative office at a university, which we wdall
“IStar.” IStar has a flat hierarchy and employs 14
individuals: 6 nontechnical staff and 8 technictdffs
Non-technical staff carry out IStar’s business. Hirecal

staff implement software to support IStar’'s worksach
division has its own manager, who reports to thedhef
the organization. At the time of the interviewsgrda were
7 full-time developers and 1 student programmethim
technical division.

Recently, the trend of software development inSta
has been to “move everything to the web”. All paper
based and client-server systems were being migrated
web applications in order to: (i) provide betterviee to
the students and staff, and (ii) eliminate addalocosts
attached to paperwork. We studied two specific web
application projects, WAL and WA2. WALl is a web
application for administrators to view and perfojoip-
related functions concerning a student's enrollmém2
is a web application that allows students and celons to
process requests for graduation. WAL is a versioano
existing client-server system developed in IStat thas
been ported to a web application and is alreadth@n
maintenance phase. WA2, on the other hand, is &/ new
created application that replaces a paper-bas¢ehsymd
recently went into production.

Although we interviewed only staff members who
were involved in WALl and WAZ2, the process employed
by both projects is the same for all software depelent
in IStar, and it has been used for more than 2@sydéde
agile processes employed are not one of the famgiles
processes, but IStar's own specific process. Weepexd
this process as an agile process because, in auddi
being a lightweight process, it presents the reguagile
attributes [4]:

Incremental: Developers do not elicit all the
requirements up front and implement the whole systée
once. They start with core requirements and then
implement these first. Additional features are attdger,
one at a time.

Iterative: An evolutionary prototype [16] is implemented
and used to clarify the requirements of the system.

Self-organizing: Developers are allowed to make their
own estimates and to determine how to handle the
assigned work.

Emergence: There is no predetermined plan created for
the projects. Only a rough deadline is estimatedefch
feature. The development is carried out by the rtieeth
staff, and management tracks the status of theegreja
frequent informal communication.

4. Maintaining Knowledge without Paper

The common opinion about documentation shared in
IStar, including the management team, is that tist of
creating and maintaining the documents is not wigh
usefulness. Therefore, rather than using docunientat
IStar chose alternative mediums for communicatind a
sustaining knowledge throughout its software lifete. In

this section we will describe the mediums utilizby
IStar.

4.1 Living Documentation

Rather than focusing on creating documentatiorarISt
believes in using “living documents” to maintaindan
transfer knowledge in software projects. The living
document refers to the staff members, especiallgnéer
employees,” who are technical and nontechnical staff
members who have been employed for more than 20
years.

Pioneer employees play an important role in
maintaining knowledge throughout the software tijele
in IStar due to their deep understanding of domain
knowledge assimilated during the years. We learoked
their importance for sustaining and passing along
important knowledge through interviews with WA1's
developers. Since WAL is a re-implementation of an
existing system with web application technologyshiares
similar characteristics with its predecessor syst8ome
pioneer people were involved in the development and
maintenance of WA1's predecessor system. Theyldee a
to provide the developers of WAL valuable advice on
requirements, data description, design decision and
solution to some known issues, which were obtafneah
developing the predecessor system.

There is no documentation created during the
development phases, so how do existing developers
transfer their knowledge to newcomers when theydea
the project? This situation arose with WAL, whickdh
some student developers who left before the project
stabilized. The common belief in agile projectsthat
comments in the source code provide enough infoomat
for new programmers to understand the applicatiew
developers in WAL disagree, however. What has abw
other developers to obtain the required knowledge t
continue the task lies in IStar's processes foragary the
departure and arrival of employees.

Typically, a developer who is leaving IStar will
suspend other work and reserve the last few dalysfan
“explaining” and “talking” to other developers wtgos
work is related about various aspects of the taSkwxe
this office community is tightly knit, developerseaaware
of each other’s work. This lay a foundation thadab the
remaining staff to understand the information leftthe
departing staff. This practice is so engrained antbre
people who work at IStar that when people leave the
office on a good note they are still considerelidgart of
the office. They are willing to answer telephonesigs
pertaining to their applications, and if need berevo
come back to solve some of the problems.

IStar has a philosophy that “more familiarity leads
more knowledge.” When a developer first arrivetStar,
he is usually given a task to perform low priority

enhancement to the existing systems. The task sltbes
new employee to assimilate knowledge about the
application and IStar's process. Other programnagrs

are aware of the assigned task “fill in” the newehiith
information that is vital for the task through ‘@mmal
talking” or “walk-through” discussions and meeting$is
type of activity usually lasts a couple of months.

4.2 Well-Connected Communication

Like other agile projects, IStar uses communicatien
the primary medium for transferring and maintaining
knowledge. However, what we find distinctive in the
participating organization are its highly cooperati
environment and the frequency of ad hoc communinati
among the staff. The organization's environment
cultivates informal communication and a willingnetss
provide information and help to others. Technicat a
non-technical staff are on a good terms and hawngt
connection with each other. Due to its flat hiehgrahere
are very few communication obstacles between peiople
different teams or even with the management team
members. Each individual in the organization is
approachable. Ad hoc conversation is welcomed by
individuals and encouraged within the organizatistaff
members are welcome to walk up to others and iaitia
informal communication, even with those in managjeri
positions.

By having frequent informal communication with non-
technical staff members who are clients of the iappbn
and domain experts, developers do not have to aely
having system requirements documented. They agctabl
collect requirements, assimilate domain knowledwe]
obtain quick feedback about the implemented system
through frequent informal communication.

In addition, this connected communication faciétat
knowledge transferring for various purposes, sush a
following up an idea presented in a meeting, disting
tasks, tracking the status of projects, and gettidgice
from fellow developers. It allows one staff memberbe
aware of and to understand the responsibilitiesoafe of
other staff, which results in overlapping knowledges
presented in Section 5.2.

4.3 Reference lmplementations and Prototyping
IStar's developers also utilize exemplar software
systems as sources of information for their
implementations, especially when re-implementing a
system that has predecessor software. The efferttsp
developing the predecessor is therefore not lagtubed
in the current project. For an example, WA1'’s depels,
with the help of pioneers, are able to use WAL's
predecessors as examples for user interfaces,
implementation of data processing, and some cortipata
processes. Seeing running software also helps tioem

have a better understanding of business rules and
descriptions of the data being processed.

Since IStar develops its software in an incremeantall
iterative manner, evolutionary prototypes [17] aleo
used to aid in communication among staff. Typically
programmers start by developing a prototype, piagid
core functionality of the system as a proof of @apts.
Interfaces of the prototype or its screen shots thea
shown to non-technical staff and fellow develop&rs
clarify the requirement and gain design suggestamut
its usability. The prototype itself is used to géedback
and a clear requirement misunderstanding. As ampbea
sometimes non-technical staff members provide faeklb
to programmers by running the program to deterraimg
incorrect behaviors. The management team also grack
project status by observing the current workingesys

5. Success Factors

In the previous section, we described how IStar
maintains and transfers knowledge without
documentation. This section presents factors thabled
this organization to use these practices succéssiite
reasons center around creating a positive work
environment with shared values, ensuring that agesk
have overlapping knowledge areas, which in turmltes
in a low turnover rate.

5.1 Shared Values

At IStar, informal communication among peers is
valued over standard documentation as a medium. All
members share this value. When we asked about
documentation, we were presented with the graph in
Figure 1.

Documentation Value

Amount of Documenatior

Figure 1. Amount vs. Value of Documentation

The graph shows the relationship between the \@flue
documentation to the quantity of documentation ediog
to IStar’s staff. After a certain amount of docureagion,
its value decreases. The reason given was thantre
documentation generated, the more time spent Isfirgi
developers to create it, and the more time needed b
new developer to read it. Another reason, giventhwy
head of technical division, is that “a lot of pespalk of
creating documentation, but not many people do @go
job at it” Their shared value and viewpoint on
documentation cultivates informal communication and
willingness to provide information to other devedop.

5.2 Overlapping Knowledge

Overlapping knowledge is key to filling the voidtle
by the lack of documentation, for example, whertedf s
member leaves. Due to the closeness among the staff
during their time of employment, employees discuss,

explain, argue, and communicate via other informal
means. In addition, various developers are invoinetthe
same project, although at different times. As aultes
overlapping knowledge areas emerge over time.
/7 |

%;//////////////////////ﬂ
V), W

I
%d//////

= i /%// Zid
m 7/ .
/////////////////////////////_////////////////////////////////4

System Requirement Development Data

Figure 2: Overlapping Knowledge

To illustrate the overlapping knowledge areas, fégu
2 displays knowledge overlap among employees with
respect to WAL. The figure shows that if any onehaf
employees has to leave the department permanently,
people who share that employee’s knowledge can
combine their respective knowledge to fulfill that
individual’'s duties. Moreover, because the empleyee
maintain close ties with one another, if any onethef
employees is leaving, the others are usually awhthis,
and the last few days are spent “telling” people tioey
are doing and what they are doing. Their overlagpin
knowledge aids them in assimilating the informati@ing
passed on.

5.3 Turnover Rate

This organization has a trait that any organization
would envy: a low turnover rate. Figure 3 shows thast
of the employees have been working in the offigenfore
than 10 years and some are still working even &ter
years of service to the organization.

Service Age

40
30 4
20 1
-1|:|- —_—

A | |_| |||_|||—|.|—|..—.

Employee

Figure 3: Service Age of Subjects

This low turnover rate aids in creating knowledge
overlap among employees. Developers assimilate ihoma
knowledge by interacting with non-technical staff
members over many years. The pioneer employees can
pass on their knowledge first-hand to the recergshiAs
one of the non-technical staff members points ‘Gahe]

would love to impart her knowledge if someone vy
to pick her brain.”

The low turnover rate also helps to prevent the
organization from losing information the staff mesmb
have. No matter how well aware the staff is towatiters’
responsibilities, some specific information is ajdost
when an existing staff member leaves the projeu, i
will take some time for a newcomer to pick up the
knowledge. As mentioned above, the arrival andiingi
process might take up to two months. Having a low
turnover rate helps prevent the project from losihig
time.

5.4 Well-Understood Requirements

Because developers are co-located with the business
office and the goal of the software is to supp&tal’'s
work, developers are exposed to business logicctwhi
helps them to grasp the domain knowledge. The non-
technical team members and pioneer people who
understand the business process are also therévéo g
feedback and clarify requirements.

In addition, many critical applications have
predecessors. A system is usually re-implementécép
up with the technology; the requirements of thetesyss
behavior and workflow usually stay the same. The ne
system only has to mimic its predecessor behavior a
computation. The system requirements were already
gathered and analyzed when the predecessor systsm w
implemented, so pioneer people who implementedirit c
provide this valuable knowledge of the requiremeots
current developers. If pioneer people forget the
requirements, the working software can be run tiob
the information.

6. Moving Forward

According to a pioneer technical person, IStar has
adopted this process of software development foremo
than 20 vyears. No high-level documents such as
requirement or design documents were created. mabr
documents created are mainly reminders, such a®mmar
notes and online FAQs about the application’s dpars.
It is worth noting that there is one document, é&lat
description note,” that is created and maintairegilarly
and is shared among developers. This note listshdae
fields, including their description for IStar’s djgations.
This is not unexpected, as IStar's applications are
“information processing” systems. Therefore, a
description of the data to be processed is impbead it
is impossible, even for pioneer developers, to reber
all of the data description.

With 20 years of using these processes successfully
one would expect IStar to be settled and secute tvéise
practices. However, this is not the case. As we 3=
knowledge in IStar is maintained in its staff, esphy its

pioneer people. As the prospect of some pioneeplpeo
retiring is near, IStar is concerned about losimgadrtant
information, such as critical application behaviansd
usage, domain knowledge and various kinds of
organization knowledge as these people leave.
Surprisingly, they are trying to deal with this plem
using documentation. Approximately five years athe
organization initiated a documentation project bng

an external consultant to document information fraln
the pioneer people. The focus of that documentomathe
operational aspect of the applications and business
processes. However, it is doubtful that the docunaeéih

be as useful in terms of completeness of informasind
effectiveness in distributing knowledge because
interchanges among the staff, who are so useddamal
communication to gain required information rathleart
reading. In other words, despite management cosgcern
this agile development group is reverting to type b
favoring communication over paper.

7. Conclusion

In this paper, we reported on a field study of alsm
organization that has been using an agile developme
process for over two decades. Two successful agile
software projects were examined in detail in ortier
investigate how information has been transferred an
sustained without using traditional documentatidvie
found that its knowledge is maintained by usingntv
documents, well-connected communication, and wgrkin
software. In other words, scrums, or frequent, rimfal,
and intense communication, is enough to sustain
knowledge within an organization for a long periofl
time. Furthermore, when human memory fails, the
environment provides aids to recall in the form of
ingrained business processes and exemplar opeahtion
software systems.

Finally, using an agile process successfully also
requires deep commitment at an organizational 1éS¢hr
is no exception. We also identified important fastthat
enable staff to use the current practices sucdfssfu
These factors are shared values, overlapping kuoigele
among team members, low turnover rate, and well-
understood requirements. In summary, IStar dematestr
that with the right mechanism and a hospitableucelit is
possible to use agile processes and work succhssful
without documentation for many years.

8. Acknowledgments
We thank IStar staff for their time and patiencehwi
our questions.

9. References

[1] M. Cohn and D. Ford, "Introducing an agile pess to an
organization [software development]," Computer, 3@, pp.
74-78, 2003.

[2] H. Svensson and M. Host, "Introducing an agilecess in a
software maintenance and evolution organizatiop,"256-264,
2005.

[3] J. Highsmith, Agile Software Development Ecdsyss,
USA: Addison-Wesley Publishers, 2002, pp. 448.

[4] B. Boehm and R. Turner, Balancing Agility andsEipline:
A Guide for the Perplexed, USA: Addison-Wesley Rali#rs,
2003, pp. 304.

[5] S. Ambler, Essay: Agile Documenation, 2005.

[6] B. Curtis, H. Krasner and N. Iscoe, "A fieldid of the
software design process for large systems," Comeation of
ACM., vol. 31, pp. 1268-1287, 1988.

[7] D.L. Parnas and P.C. Clements, "A rational gegirocess:
how and why to fake it." IEEE Transactions on Saftsv
Engineering, vol. SE-12, pp. 251-257, 1986.

[8] I. Jacobson, G. Booch and J. Rumbaugh, Thei&thif
Software Development Process, 1999.

[9] W.W. Royce, "Managing the Development of Large
Software Systems," Proc. WESTCON, 1970.

[10] S.C.B.d. Souza, N. Anquetil, K. Oliveira aridat M.de, "A
study of the documentation essential to softwarat@aance,"
in SIGDOC '05: Proceedings of the 23rd annual irggonal
conference on Design of Communication, pp. 68-0952

[11] F.A. Cioch, M. Palazzolo and S. Lohrer, "A Doeentation
Suite for Maintenance Programmers," in ICSM '9&deedings
of the 1996 International Conference on Softwaréniémance,
pp. 286-295, 1996.

[12] T. Sauer, "Using design rationales for agile
documentation," in Enabling Technologies: Infrastase for
Collaborative Enterprises, WET ICE 2003. Proceesling
Twelfth IEEE International Workshops, pp. 326-33Q03.

[13] M. Visconti and C.R. Cook, "An overview of instrial
software documentation practice," in Computer SmeBociety,
SCCC 2002. Proceedings. 22nd International Conéerefithe
Chilean, pp. 179-186, 2002.

[14] T.C. Lethbridge, J. Singer and A. Forward, WHsoftware
engineers use documentation: the state of theipedct
Software, IEEE, vol. 20, pp. 35-39, 2003.

[15] A. Forward and T. C. Lethbridge, "The relevarud
software documentation, tools and technologiesireey," in
Proceedings of the 2002 ACM symposium on Document
engineering, McLean, Virginia, USA: ACM Press, gp-33 ,
2002.

[16] L. Horst, S. Matthias, Z. Heinz and llighoveRyrototyping
in industrial software projects: bridging the gagvieen theory
and practice," pp. 221-229, 1993.

[17] C.Z. Jean and D.T. Peter, "An insider's surve\software
development,” pp. 178-187, 1982.

