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ABSTRACT
Software architecture visualization tools tend to support
browsing, that is, exploration by following concepts.  If
architectural diagrams are to be used during daily software
maintenance tasks, these tools also need to support specific
fact-finding through searching.  Searching is essential to
program comprehension and hypothesis testing.
Furthermore, searching allows users to reverse the
abstractions in architectural diagrams and access facts in the
underlying program code.  In this paper, we consider the
problem of searching and browsing software architectures
using perspectives from information retrieval and program
comprehension.  After analyzing our own user studies and
results from the literature, we propose a solution: the
Searchable Bookshelf, an architecture visualization tool that
supports both navigation styles.  We also present a
prototype of our tool which is an extension of an existing
architecture visualization tool.
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1. INTRODUCTION
A software architecture is a high-level view of a software
system [9, 21].  Common ways of representing software
architectures include box-and-line drawings, hierarchical
trees, and nested boxes [10].  They are structural
abstractions of the underlying software; they intentionally
leave out details, so that selected concepts can be depicted
more clearly.  In other words, they are visualizations of a
large, complex information space—the program code.

There are two navigation styles for investigating an
information spaces: searching and browsing [16].
Searching, sometimes called analytical searching, is a
planned activity with a specific goal, such as to find a

particular fact.  It is often associated with who, what, when,
and where questions.  Searches involve formulating queries
or looking in indices.  In contrast, browsing is an
exploratory strategy, with no fixed endpoint, and is
relatively unstructured.  The knowledge seeker relies on
serendipity to uncover relevant information.  Browsing is
associated with why and how questions and exploratory
investigations, and involves actions such as flipping through
the pages in a book, or following links through hypertext.

When browsing a software architecture diagram, such as
one shown in Figure 1, the user explores a software system
via a visualization.  The visualization is generated by
abstracting details from the source code to show a
conceptual representation of the system.  Since browsing is
suitable for exploring new domains, such an interface is
appropriate for users who are unfamiliar with the software
system.  Browsing can be used to investigate the
hierarchical composition of the software system by moving
from subsystem to subsystem.  However, if a software
maintainer wanted to learn about the source code and not
just the architecture, she would need to access the facts that
were used to construct the abstraction.  In software
visualization, this process is called reverse abstraction,
moving from representations of concepts to the underlying
facts [27].  For instance, to find the lines of code that is
represented by a single edge, the software maintainer needs
to reverse abstract the architecture diagram.  It is easier to
reverse abstract using searching. This navigation strategy is
commonly used by programmers through text editors and
utilities, such as grep.  Unfortunately, tools that work with
text do not carry over to diagrams.

In this paper, we examine the problem of browsing and
searching software architecture diagrams and the underlying
program code.  We use results from our own user studies,
and the literature from various fields to guide the
development of a tool to solve this problem.  We propose a
solution, adding search capabilities to an existing software
architecture visualization tool, and construct a prototype,
the Searchable Bookshelf.

The majority of software architecture visualization tools

Proceedings of the International Conference on Software Maintenance, Oxford, England, pp. 381-390,
30 August- 3 September, 1999.



only support browsing.  Tools such as Rigi [17] and
Software Bookshelf [8] display software architectures and
allow users to explore them, but have only primitive query
mechanisms.  Other tools allow the user to query and build
views, such as LSME [18], Dali [13], and ManSART [31].
However, these tools operate only on architectural level
facts, they do not use the architecture as a means for
organizing or accessing the information space underlying
the abstraction.

The Searchable Bookshelf is an extension of the Software
Bookshelf as constructed by Holt et al [13].  Searches are
specified using GCL, a query language from information
retrieval, designed for use with structured and semi-
structured texts such as source code [6, 7].  GCL is
distinguished by its support for queries that reference both
structure and content, and by its uniform handling of
structured data, so that diagrams, source code, and
documentation can be searched using the same interface.

In Sections 2-5, we further discuss the idea of software as
an information space.  We use results from information
retrieval, program comprehension, and software
visualization literature, as well as our own user studies to
motivate the design of the Searchable Bookshelf.  The tool
itself, along with an extended example, is described in
Section 6, and additional details about the development of
the Searchable Bookshelf are given in Section 7.

2. NAVIGATION STYLES
Information spaces can take many forms.  They may be
physical, such as libraries and card catalogues, city streets,
or a region of wilderness.  In such environments, browsing
is analogous to talking a walk or looking at a map, while
searching is analogous to asking a person, consulting a card
catalogue, or looking up a street index. Examples of
electronic information spaces are databases, document
repositories, or the World Wide Web.  Historically, the
only way to navigate electronic information spaces was
through search.  Users had to formulate queries using a
command language or fill-in forms.  With the advent of
hypertext and visual displays, browsing, or surfing, of
electronic information spaces has become feasible.

Consider the example of a physical library.  If a user has a
specific book in mind and knew something about that book
such as its title or author, she can use a search strategy.  She
can look up this information in a catalogue, find the book’s
location on the shelves, and obtain the book directly.  On
the other hand, if the user has just read an interesting book
and wants to know more about the topic, she could use a
browsing strategy.  She can go to where the book was
shelved and examine others nearby volumes.  This example
illustrates two points.  First, both searching and browsing
are necessary to using the library effectively and the
specific strategy chosen depends on the task.  Second,
browsing assumes that the information has been organized
so that related elements can be found together.

These two navigation styles are present in many electronic
spaces, for instance, in the Yahoo index at
http://www.yahoo.com.  Yahoo is an index of web pages
organized hierarchically by categories.  On its main page,
there is a search field and a number of top level categories
which supports browsing.  Users can search for categories
and sites of interest by typing keywords into the search
field.

A software system can also be considered an information
space.  Instead of books or web pages, there are
subsystems, modules, files, functions, variables, and lines of
program code.  The most common method of navigating
program source is searching, using utilities like grep, or
features in a text editor.  However, once an organization is
imposed on the code, such as class hierarchy, call graphs, or
a software architecture, it is possible to browse based on
structure.  A visualization of the organization provides
additional support for browsing.  The diagram can serve as
a map of the categories and the relationships between them.
Also, by depicting the organization visually, additional
information can be conveyed.  For example, the importance
of a concept or attribute can be shown using colour or size.

In the next three sections, these two navigation styles will
be discussed, first separately and then together, within the
context of information seeking within a software system.

3. BROWSING SOFTWARE ARCHITECTURES
There are a number of tools for browsing software
architectures, such as Rigi, Dali, the Software Bookshelf,
and the Portable Bookshelf (PBS).  Although there are
differences between the tools, they are conceptually similar
in that they all display software systems as graphs, and
these graphs can be explored to view the architecture of the
software system.  We will use PBS to illustrate browsing of
architecture diagrams, since we have studied users’
interactions with this tool and the Searchable Bookshelf is
an extension of this tool.  PBS is actually a set of tools for
generating software architectures from program source.  It
uses a Java-capable web browser as user interface, so users
can uniformly access program source, documentation, and
architectural diagrams called Software Landscapes [20].

Figure 1 is a Software Landscape of the FS (File System)
subsystem of the Linux™ operating system.  Although this
diagram is shown grayscale, colours are used to distinguish
between boxes and lines.  Modules or files are represented
as blue rectangles with a corner folded down.  Subsystems
are drawn as gray rectangles with tabs, like a file folder.
Green edges represent variable references and red edges
represent function calls between rectangles.  The graph is
drawn using a nested box formalism, meaning that
subsystems can contain other subsystems or modules.  In
the diagram, the FS subsystem contains four subsystems
and a module.  In order to see the internal organization of
one of these smaller boxes, the user can click on it with a
mouse.  A new landscape is displayed showing the



subsystems and modules contained in the originally selected
box.  If the selected box is a file, the lines of code in the file
are displayed.

Figure 1: Software Landscape Diagram

The landscape also shows the clients and suppliers of the
subsystem.  The clients are the row of boxes shown at the
top of the landscape; They use resources, such as variables
and functions, provided by the central subsystem.
Similarly, the suppliers are the row of boxes at the bottom
of the landscape; They provide resources to the central
subsystem.  Clients and suppliers can be either subsystems
or modules.  In the diagram, the FS subsystem has 5 client
subsystems and 6 supplier subsystems.  By using this
convention, we can show the central subsystem in context.

A Software Landscape is generated  by a series of static
analysis tools.  A parser creates a factbase consisting of
function calls and variable references.  The hierarchical
decomposition of the software is recovered by clustering
files into subsystems using manual and automatic
techniques.  The resulting information is drawn and
adjusted using a Java applet.

Landscapes and PBS are designed to be browsed.  The
basic mode of navigation is point-and-click, just as with
other World Wide Web constructs; there is only a primitive
search facility.  It follows Shneiderman’s mantra for visual
information seeking: “Overview first, zoom and filter, then
details on demand.”  [22, p.523]  The user is first presented
with an overview of the software system and she can zoom
in on subsystems of interest.  Edges and nodes can be
filtered out selectively and additional information is
available through mouse clicks.

3.1 User studies
Portable Bookshelves have been constructed for a number
of large systems at IBM Canada Ltd.  Typically, these
systems have several hundred thousand lines of code and
are maintained by 10-20 people.  The PBS usually contains
the program code, some documentation, and Software

Landscapes.  We have studied PBS users both formally and
informally over the past 3 years [5, 26, 28].  PBS was
observed being used in a number of tasks, but there are four
tasks in which it worked particularly well: familiarizing
newcomers to the maintenance team with the documented
software system, providing experienced team members with
an overview of an unfamiliar subsystem, validating
relations between subsystems, and verifying reengineering
decisions.

Newcomers, or software immigrants, found Software
Landscapes particularly useful during their first two weeks
on the team [24].  The pictures gave them a good overview
of the system and a sense of the relations between the parts.
Both of these advantages are typical of tools with a
browsing interface [16].  Project veterans would also use
the landscapes before modifying an unfamiliar subsystem.
They would use the diagrams to help them relate their
knowledge of other parts of software system to the
subsystem of interest.  However, beyond providing an
initial overview, landscapes were not used during actual
maintenance tasks, such as defect repairs or feature
addition, because there was a mismatch between the
information provided by the landscapes and the information
required by maintainers to perform these tasks.  Landscapes
provide abstract, high-level information, and this
information tends to be conceptually distant from the
concrete, low-level information provided by source code
[24].  This gap is noteworthy because it underlines the fact
that a maintainer’s essential task is to modify the source
code. Therefore, in order for landscapes to help with
maintenance tasks, the users must be able to relate the
concepts that they depict to source code.  In other words,
they need to be able to reverse abstract the diagrams.

Senior developers have been observed using landscapes to
check for anomalous edges.  These edges denote a
relationship between two modules or subsystems, where
there should not be one.  These anomalies, which are found
by browsing, serve as the basis for searches to identify the
offending lines of code [5].  During reengineering, for
example, re-implementing subsystems in a modern object-
oriented programming language, landscapes are consulted
to verify that they do not contradict any decisions made.
For instance, a maintainer uses them to check that there are
no edges to the re-designed subsystem that are not
accounted for [24].

However, there were a number of situations in which
browsing was not sufficient for the task at hand.  Often
when viewing a Software Landscape, a software maintainer
wanted to relate the boxes and arrows to the source code
they represented.  In the case of boxes, this question could
be answered by following branches of the hierarchy to its
leaves, which were files.  In the case of arrows, this
question can only be answered with difficulty using search
tools, such as grep, that are outside of PBS.  In another



situation, a software maintainer isolated a problem to a
specific file and wanted to know what subsystem that file
belonged to.  This question could not be easily answered by
browsing the landscapes.  These examples illustrate
situations requiring an architecture-guided search facility.

4. SEARCHING SOFTWARE ARCHITECTURES
We now turn to the second navigational style, searching.  It
is a style that we commonly use with source code,
databases, and indices.  Searching is a powerful information
seeking strategy.  Its popularity is evident in the number of
search tools and search specification, or query, languages
available.  Many studies have been performed in the field of
information retrieval to characterize strategies used to query
databases and textbases [1, 2, 16].  Searching is flexible and
can be used to gather varying amounts of information from
one or many sources.  The main drawback of searching is
that it is difficult to obtain an overview of the information
space.  Also, this mode of interaction is better suited to
locating specific facts rather than gleaning concepts.

Despite their prevalence, software architecture visualization
tools have limited search facilities.  Since we could not
study software developers and maintainers as they searched
software architectures, we studied how they search source
code.  We conducted a survey using a questionnaire on a
web page to collect information on the tools used to search,
the strengths and weaknesses of these tools, and anecdotes
of searches [25].  The results of the survey most germane to
this discussion are the search targets and the tools used for
searching.

The most common search targets were: function definitions
(or bodies), all uses of a function, all uses of a variable, and
variable definitions.  These search targets were identified
repeatedly by respondents, but most did not use specialized
tools such as tagging utilities or cross reference generators
that would simplify these searches.  The three most
common tools used for searching were the text editor,
grep (a UNIX regular expression matching utility) and
find (also a UNIX utility, alternatively File Find under
Microsoft Windows).  Although respondents were looking
for semantically significant elements in the source code,
they specified their searches using only strings or regular
expressions.

A search facility for a software architecture must be able to
specify searches for meaningful elements in the source code
such as functions and variables.  Such searches are difficult
using only strings or regular expressions to specify the
targets.  A form-based interface, mouse actions, or a more
powerful query language will be necessary to support

semantic searches.

5. COMBINING BROWSING AND SEARCHING
In the previous two subsections, we have discussed how
browsing and searching are both necessary to navigate an
information space.  The navigation style chosen depends on
the task at hand.  Users browse to explore the information
and to understand concepts.  They search to find particular
facts and to answer specific questions.  Furthermore, users
often switch between these strategies to accomplish a single
task.  For example, a user may perform a search to find a
starting point for browsing.  Or during browsing, a user may
find an appropriate keyword to use for a search.

These styles of navigation support different program
comprehension strategies.  Currently, the dominant model
of program comprehension is the integrated model which
states that the programmer use top-down and bottom-up
comprehension strategies as dictated by the available
information and frequently switch between them[14, 30].

A programmer uses a bottom-up strategy by reading the
source code and building abstract concepts by chunking
together low-level information [19, 23].  A software
maintainer using bottom-up program comprehension would
require searching.  Bottom-up comprehension relies finding
facts in the code and building concepts with them.  Both
strategies move from lines of source code to abstractions.

A programmer uses a top-down strategy by employing
domain knowledge to build a set of expectations about the
program.  These expectations are mapped onto features or
beacons in the source code [4, 15].  A software maintainer
using a top-down strategy would require browsing.  Top-
down moves from concepts to specific code elements.  Both
strategies involve the user moving from high-level concepts
to program source.

Just as navigating an information space requires both
browsing and searching, the integrated program
comprehension model states that programmers use both top-
down and bottom-up strategies.  Since software maintainers
use both bottom-up and top-down strategies to comprehend
code, there should be a unified interface for searching and
browsing the software architecture.  Because the
programmer frequently switches between code
comprehension strategies, she should not have to change
tools or views to switch navigation modes.

In the next section, we describe the Searchable Bookshelf
and how it supports both browsing and searching.  In the
following section, we present the technical details of the
design and construction of our tool.



6. THE SEARCHABLE BOOKSHELF
The interface to the Searchable Bookshelf of the Linux
kernel is shown in Figure 2.  The column along the left side
contains the table of contents of the Bookshelf and indicates
what information is available.  The landscape diagram is
found the large window in the right.  The interface to the
search tool is the HTML form found in the small window
on the bottom.  It consists of a text box to enter the query, a
scrolling selection box from which to specify search targets,
and a button to activate the search.

The contents of the list of search targets is generated from
the same information as the currently displayed landscape.
It can contain subsystems, modules, or files.  In Figure 2,
the seven choices in the target list correspond to the seven
subsystems in the Software Landscape.  These choices are
used to restrict the search to specific parts of the software
system.  If no target is specified, the entire system is
searched.  Queries made in the form are passed to the grug
tool using a Perl script via the CGI.  Information returned
by the query is also displayed within the frame.

The grug tool is very similar to grep, but instead of using
regular expressions to specify searches, it uses the GCL
query language.  We implemented grug using the C
programming language, so we could reuse software
components.  Specifically, we used the GNU regex library
to match regular expressions and a module from the Multi-
Text Project [29] was used to parse GCL.  In addition to
regular expression and literal string matching, we can
search for more meaningful information such as declaration,
definition, and use of variables, functions, modules and
subsystems.  By combining grug with Software
Landscapes, we create a software architecture visualization
tool that supports both both navigation styles, browsing and
searching.  Transitions between different styles can occur
with each new mouse click issued by the user.

6.1 Extended Example
In this subsection, we demonstrate how the Searchable
Bookshelf is used in a realistic task to illustrate a selection
of its functionality.  The example shows both the browsing

Figure 2: The Searchable Bookshelf



and searching capabilities of the Searchable Bookshelf and
how they can be used together.

In the course of building a PBS for Linux, we observed that
there was some architectural erosion in the file system
subsystem.  The device drivers use a Facade design pattern,
meaning that all drivers are meant to be accessed through
single interface.  This interface allows higher level file
system functionality, such as logical and virtual file
systems, to be constructed independently of the
implementation details of any particular device.  In other
words, the same file structure can then be used across
different storage devices, such as hard disk drives and
floppy disk drives.  However, the ISO File System (ISOFS)
subsystem of the logical file system that does not follow
this convention.  The ISOFS subsystem implements the ISO
9660 file system for CD-ROM files and accesses resources
from the CD-ROM device driver directly, instead of using
the Facade interface [3].

Lucy the programmer has been given the task of carrying
out this architectural repair.  The purpose of an architectural
repair is to restore the original design of the system.  In this
case, the task is to repair the Facade design pattern, so that
the ISOFS does not access the CD-ROM driver directly.
Lucy has previous experience with a UNIX operating
system, is familiar with Linux, and has used the Searchable
Bookshelf extensively.  Lucy begins by browsing the
landscapes to find the ISOFS subsystem.  In the diagram of
the ISOFS subsystem, she sees that the devices subsystem is
indeed a supplier, as it is located beneath the central
system.  At this point, she can perform a visual query, that
is, a manipulation of a visual elements to see relationships
more clearly.  Lucy clicks on the devices subsystem to
select it, then she clicks on the backtrace button to find out
what modules in the ISOFS subsystem use the CDROM
subsystem.  The result is a single green edge from the
inode.c module to the Driver subsystem.  Lucy now knows
that she needs to find a variable reference between two
files, so she can begin searching.

She needs to find a variable that is declared or defined in
the driver subsystem and is used in the inode.c module, so
she types the following query:

(varnam > ((vardef OR vardcl) >
subsys(“driver”))) AND (varnam > (varref
> module (“inode.c”) > subsys(“isofs”)))

In the preceding query, the majority of terms, varnam,
vardef, vardcl, subsys, varref, and module, are GCL macros
to access indexed information in the factbase.  Two of the
macros, subsys and module, take parameters.  The query
uses three operators, two Boolean, and one from GCL.  The
“>” symbol should be read as “contained in.”  The factbase,
GCL query language, and macros are explained in greater
detail in Section 7.

Lucy wants to search the entire system, so she does not

select any targets before clicking the query button.  This
query does not return any matches, so Lucy thinks for a
moment before realizing that the edge could also represent
use of a variable type or macro.  She proceeds to make
some more queries based on this idea.  First, she searches
for the type usage:

typnam > typdef < subsys (“driver”) AND
(typnam > (vardef OR vardcl) >

module(“inode.c”) > subsys(“isofs”))

This search returns the type name “cdrom_multisession”
which is found in the file cdrom.h.  Although she has found
a match, Lucy will also search for any uses of macros as
well.  This search is similar in to the ones above and yields
the match “CDROM_LBA”, also from the file cdrom.h.

Although the architecture can be repaired in a number of
ways, Lucy accomplish the task by creating a new header
file for the ISOFS subsystem.  Armed with her search
results, Lucy copies these definitions into a new header file
that is part of the in the ISOFS subsystem, and modifies
inode.c to use this new header.  To keep the code
maintainable, she puts a comment into both the old and the
new header files indicating that portions of the code have
been copied, and that changes should be propagated.

7. ADDING SEARCH TO AN ARCHITECTURE
BROWSING TOOL
In this section, we present some of the technical details of
the search mechanism in the Searchable Bookshelf.  We
begin by providing a rationale for selecting GCL as the
query language and an overview of the language itself.
This section also includes a description of the tool to
generate the factbase for the Searchable Bookshelf and the
syntax of GCL.

Currently, the two most common search specifications are
literal string matching and regular expression matching,
either using a separate utility or within an editor.  Both
regular expression and string matching operate by
comparing a specified target to a file or set of files and
returning matching records.  Normally, a record is defined
as a line of text, but it can also be defined as a word, a data
record, or file.  For example, the UNIX utility grep
performs regular expression matching on a line-by-line
basis.

Although these two search specification mechanisms are
commonly used, we found that they had two main
shortcomings when used to search software architectures.
The first drawback is they cannot be used to search for
semantic elements.  These mechanisms are agnostic about
the structure of text being searched.  Consequently, there is
no syntax to restrict searches to a particular structural or
syntactic element.  The second drawback of these two
mechanisms is that the matches they return come in fixed
units or records.  Depending on the task, the size of the
match can vary.  Sometimes it is the name of a function, at



other times, it is statement block, and at still others, it can
be an entire function definition.

We attempted to build on existing regular expression
syntax, but the results had poor semantics and resulted in
wordy searches.  Development of a new query language
was considered, but was rejected because of the existing
plethora of query languages.  We chose the GCL as the
query language because it could overcome the two
drawbacks given above.  Its syntax can be used to search
both structure and text.  Since GCL is programming
language- and schema-independent, it can be used with
different software systems and the various documents
associated with them, such as source code, documentation,
and landscapes.

The GCL query language was designed for use with
structured and semi-structured text, such bibliographies,
HTML documents, and source code.  It has a formal
definition [6, 7], and is used by the Very Large Multi-User
Multi-Server Text Bases project [29].  The query language
requires character-level markup of the text to indicate the
boundaries of structural elements.  For example, HTML
tags can serve as the markup for a web document.
Alternatively, a document can be marked up implicitly by
building an index.  We use this last approach with the
Searchable Bookshelf, since PBS also has an underlying
factbase.

A factbase, or index, is constructed using an extended
version of the GNU C Compiler.  Some of the facts that are
extracted are definitions and uses of macros, variables,
functions  Included with each fact, are the file positions at
which each element occurs.  In section 7.1, the method we
use to generate the factbase is described.  In section 7.2, we
describe the syntax of the GCL query language itself.

7.1 Factbase Generation
We extended the GNU C compiler so that a set of factbase
files (one for each source file) is generated during
compilation if the "-FB" flag is used.  This usage is
analogous to the “-d” flag which is used to generate output
for use with a debugger.  While making this change, we
found that it was necessary to modify the C pre-processor to
emit both a character map and a set of facts describing its
activities, such as macro expansion, file inclusion, locations
of comments.  The character map describes the actual
source of every character in the pre-processed file so that
facts generated in the compiler proper can be mapped back
to their source files.  Facts are generated only for the
compiled portions of the code.

Often, more than one fact is collected for each statement of
interest and in addition to the facts themselves, the factbase
also contains information about their locations.  Consider
the following variable declaration:

0 1 2 3 4 5 6 7 8 9
i n t c o u n t ;

The factbase would contain facts about the variable
definition, type of the variable, and the name of the
variable.  Each of the facts would have a start and end
locations in terms of file positions, and these would be
denoted in the factbase using SGML-style tags.  The start of
the variable definitions would be denoted with the tag
<vardef> and associated with file position 0.
Correspondingly, the end of the variable definition would
be denoted as </vardef> and associated with the file
position 9.  Thus, the complete list of facts for the above
declaration would be:

Fact File Position Fact File Position
<vardef> 0 </vardef> 9
<vartyp> 0 </vartyp> 2
<varnam> 4 </varnam> 8
More facts would be collected about other statements, such
as a function definition, which would includes facts on
function name, return type, arguments, types of the
arguments.  The parser generates over 60 different types of
facts, about macros, macro calls, function declarations,
definitions, and calls, variable definitions, declarations, and
calls, type definitions and uses, and blocks.

Locations are recorded as file positions because GCL
performs matches at the character level.  The file positions
can be used to retrieve the matches from a file quickly and
easily.  These locations are used to enforce a rule for
matches.  This rule will be discussed in the next subsection.

7.2 The GCL Query Language
There are four aspects of the language that need to be
understood: basic queries, the matching rules for solutions,
the operators to form complex queries, and the macros.
These concepts will be explained with the aid of the code
sample shown in Figures 3 and 4.  The program prints
command line arguments to standard output. Figure 3
shows the original program code, while Figure 4 shows the
same program code with the file positions labeled.

A basic GCL query is a literal string or regular expression
to be matched.  The regular expression syntax semantics
follow the POSIX standard [12].  Searches can and be
performed on the source code or on the tags in the factbase.
These searches function in the same way as commonly
found tools, but it should be noted that only the match itself
is returned and rather than the line, or record, containing the
match. In technical terms, the solution to a query is a set of
extents or ranges in the text.  For example, the query
“main” on the code sample has the solution “main” at file
positions 5-8.  Just as queries of literal strings need to
enclosed within double quotation marks, regular
expressions need to be enclosed within back quotation
marks.  The query `arg.*` would return  matches to argc
from file positions 14-17, and 40-43, and matches to argv
from file positions 27-30, 93-96, and 123-126.



Figure 3: Program Source for echo.c

0 1 2 3 4 5 6 7 8 9
0 v o i d \n m a i n (

1 i n t a r g c ,

2 c h a r * a r g

3 v [ ] ) \n { \t i n t

4 i ; \n \n \t f o r (

5 i = 1 ; i <

6 a r g c - 1 ; i

7 + + ) \n \t { \n \t \t p

8 r i n t f ( “ % s

9 ” , a r g v [ i ]

10 ) ; \n \t } \n \n \t p r

11 i n t f ( “ % s \ n

12 ” , a r g v [ i ]

13 ) ; \n } \n ^Z

Figure 4: echo.c with File Positions Labeled

An important rule about solutions is that extents may
overlap, but they cannot nest.  In other words, a solution
cannot itself contain an entire solution.  However, a
solution can begin within the extent of another solution, so
long as it ends outside of that extent.  This rule is the reason
that both start and end positions must be stored in the
factbase.  This distinction becomes important with complex
queries that return multiple solutions.

The next significant feature of GCL are the operators which
are used to combine queries we can obtain solutions other
than simple strings.  These longer solutions must begin and
end with solutions to basic queries, i.e. literal strings and
regular expressions.  The operators fall into three
categories: ordering, combination, and containment.

There is one ordering operating, “...”.  It can be used to
search for an extent that begins and ends with a query.  For
instance, the query `printf(`...`);\n` would return
every call to printf, that is, file positions 79-102 and 108-
124, in the example.  The search “<vardef>” ...
“</vardef>” would match every variable definition in
the factbase.  There are two combination operators, AND
and OR.  Again, solutions must begin and end with a match

to a query.  For example, the query “argv” AND
“argc” match file positions 14-30, and return “argc,
char * argv”.  Finally, there are four containment
operators: containing, contained in, not containing, and not
contained in, represented by >, <, />, and /< respectively.
The query (`printf(`...`);\n`) > “\n” would
return all calls to printf containing “\n”.  In the example,
only the second call to printf would be returned.

Macros in GCL allow users to chunk frequently used, but
complex, searches to simplify their use.  The GCL matching
utility, grug, retrieves the macros to be used from a file.
Different sets of macros could be defined for different
purposes, such as email, bibliographies, and programming
languages.  For example, LINE = `^` ... `$`
defines a macro called LINE that returns each line in the
file.  This macro can be used for grep-like searches, such as
LINE < `arg.*`, which matches every line containing
the specified regular expression.  Macros are also used to
simplify access to information in the factbase.  Recall the
variable definition from the previous subsection.  There
were three different facts that were denoted by pairs of tags.
Using only the tags, a search for the declaration of the
variable “count” would be written as:

“<vardef>...</vardef>” >
(“<varnam>”...“</varnam>” > “count”)

But if we introduce the following macros:
VARDEF = “<vardef>” ... “</vardef>”
VARNAM = “<varnam>” ... “</varnam>”

the query would be simplified to:
VARDEF > (VARNAM > “count”)

As illustrated in the extended example, pre-defined macros
were the primary way to access structural and semantic
information.  For each type of fact in the factbase, a
corresponding macro is defined.  The same macro names
could be used in different programming languages, so
queries for the same facts would remain consistent, thus
making GCL programming language independent.  GCL
can also be used to search documentation in addition to
source code and landscapes.  We plan to use this ability to
extend the information space accessed by future versions of
the Searchable Bookshelf.

8. SUMMARY AND FUTURE WORK
We developed the Searchable Bookshelf by taking a
number of concepts from information retrieval and applying
them to software.  The first notion is the information space.
The written data of a software system, source code,
documentation, Software Landscapes, etc., can be thought
of as an information space.  The second notion is that an
information space can only be fully utilized when both
navigation styles, browsing and searching, are available.
Browsing is used to explore the information space and to
understand high-level concepts.  Searching is used to find
specific facts and to identify low-level details.  Browsing is
most effective when some conceptual organization has been

1  void
2  main(int argc, char * argv[])
3  {
4    int i;
5
6    for(i = 1; i < argc – 1; i++)
7    {
8      printf("%s ", argv[i]);
9    }
10
11   printf("%s\n", argv[i]);
12 }



imposed on the data, which allows the users to follow
relationships between points in the information space.
Software architecture diagrams, such as Software
Landscape, impose such an organization, and browsing is a
commonly available navigation style in software
architecture visualization tools.  In contrast, searching is a
navigation style that has long been available on program
code, but is largely absent in architecture visualization
tools.  The Searchable Bookshelf is an architecture
visualization tool that supports both navigation styles.

The Searchable Bookshelf was constructed by adding a
search tool to PBS, an existing architecture visualization
tool that supported browsing, but had limited search
capabilities.  Searches are specified using the GCL query
language, also taken from information retrieval.  The main
feature of this language is it can be used to search both
structure and text.  There are two key reasons for adding
searching to PBS.  The first reason is that the architecture
diagrams become more germane to daily maintenance tasks,
such as defect repairs and feature additions, because users
can reverse the abstractions in the diagrams.  By reverse
abstracting, software maintainers uncover the facts that
were clustered together to make a concept, and it is these
facts that they require to modify the source code.  In other
words, browsing is needed to understand the concepts, but
searching is needed to uncover the facts underlying the
concepts.  The second reason is the two navigation styles,
browsing and searching, parallel the two primary program
comprehension strategies, top-down and bottom-up,
respectively.  The dominant model of program
comprehension, the integrated model, states that
programmers use the strategy that fits the available
information and switch freely between them.  Hence, the
navigation styles supported by the Searchable Bookshelf
are consistent with program comprehension strategies.

The Searchable Bookshelf and its underlying technology
can be improved in a number of ways.  First and foremost,
the usability of the Searchable Bookshelf has not been
validated.  Although, we relied on our own user studies and
similar studies in the literature to design the Searchable
Bookshelf, we have not tested our tool with professional
software maintainers.  The other usability issue is that there
is no mechanism in our tool to support learning of the GCL
query language.  Currently, there is a steep learning curve
between simple queries for strings and regular expressions
and complex ones, like those in the extended example.

Finally, the GCL query language has difficulty dealing with
recursive patterns.  GCL was designed to find the “shortest
matching sub-string.”  Consequently, it uses the rule that
solutions may overlap, but must not nest. While not a
problem with most text, it becomes a handicap when
dealing with the highly nested patterns encountered in
source code.  For example, a block containing a block can
never be returned as a solution.  One way to deal with this

shortcoming is to specify in the query how deeply a solution
can be nested.  Unfortunately, this is not a good solution in
the general case.  We plan to extend the GCL syntax to
handle recursive patterns, such as transitive closure and
containment hierarchies.

Our work represents a start in this area, and in this section
we discussed some directions for future research.  There are
many opportunities to perform empirical studies of software
maintainers and to improve the technology used in software
architecture tools.  It is our hope that these two intertwined
lines of research will lead to the development of tools that
are an accepted part of maintenance practices.
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