
Are Use Cases Beneficial for Developers Using Agile Requirements?

Rosalva E. Gallardo-Valencia

University of California,
Irvine

rgallard@ics.uci.edu

Vivian Olivera
University of California,

Irvine
volivera@ics.uci.edu

Susan Elliott Sim
University of California,

Irvine
ses@ics.uci.edu

Abstract

Agile teams commonly use User Stories,
conversations with Customers, and Test Cases to
gather requirements. Some agile teams like to add
other artifacts, such as Use Cases to provide more
detail to the agile requirements. This paper presents
the results of a controlled experiment aimed to find
evidence that Use Cases could help agile requirements,
and, indirectly, to find if agile requirements techniques
are sufficient. In the study, subjects were given
requirements for three maintenance tasks as Use
Cases, as agile requirements, or both. We found that
subjects using Use Cases spent less time understanding
requirements in contrast to subjects not using Use
Cases. In addition the presence of the Use Cases
helped subjects to ask better questions to the On-site
Customer. However, we could not determine if subjects
using Use Cases understood the requirements better.
We conclude that the inclusion of Use Cases in agile
requirements could benefit agile teams.

1. Introduction

Extreme Programming (XP) [1] is a popular Agile
Software Development Processes [2]. In this process,
requirements are not written in a formal requirement
specification document. Instead, the requirements are
elicited in User Stories [3], which is a description of a
feature from a customer’s standpoint that is 1-3
sentences long. A common misconception about agile
requirements techniques is that they are not sufficient
for gathering requirements, because they do not record
enough details. This is not correct, because details
about User Stories can be found in conversations with
the On-site Customer [4] and also in the Test Cases.
Although requirements are spread among these three
entities and are not compiled into a formal document,
these techniques seem to work in practice.

User Stories are flexible and can be complemented
by adding Use Cases, Graphical User Interface (GUI)

sketches, or other artifacts required by agile teams. In
contrast, we have the Use Cases [5], which have been
widely used by software engineers. They have many
benefits and a great number of software engineers
know how to use them. Most importantly, they provide
a detailed record of the requirements. We want to
investigate if the use of Use Cases can be beneficial for
agile teams. We want to know if adding Use Cases is
helpful. Furthermore, answering this question will
provide insight into whether User Stories are enough to
gather requirements.

With this goal, we conducted a controlled
experiment involving a small number of subjects with
three conditions. In the experiment, subjects had to
make a modification to an existing software system
with the requirements for the changes specified as Use
Cases, as agile requirements (User Stories and with
access to an On-site Customer) or both.

We recorded each subject’s sessions in video. We
also had the chat transcripts of those subjects who had
access to the On-site Customer. We used this data to
find some evidence that Use Cases could be helpful for
teams using User Stories.

We found that agile subjects using Use Cases spent
less time on understanding requirements and they
asked better questions compared with the agile subjects
not using Use Cases. However, we could not find
conclusive results regarding the effect of the
requirements formats on implementation activities.

Subjects in Group 2 who were using agile
requirements alone spent more time reading the User
Stories than subjects in Group 3 who were using both
types of requirements formats. We observed that this
occurred because subjects who where using both Use
Cases and User Stories preferred to read the Use Cases,
because they provided more detail.

Subjects in Group 2 who were using agile
requirements spent more time asking relevant as well
as irrelevant questions, and also asked a greater
number of relevant and irrelevant questions, than
subjects in Group 3. However, subjects in Group 3

asked a higher proportion of relevant questions. This
group also asked better questions.

With respect to the effect of requirements format on
implementation, we did not have any conclusive
results. We found that subjects in the group using agile
requirements and Use Cases had a poorer overall
performance, but this result was not statistically
significant.

The remainder of the paper is organized as follows.
Section 2 introduces Use Cases, User Stories, and the
On-site Customer and reviews previous work on the
relationship between Use Cases and User Stories.
Section 3 presents the method used in our empirical
study. Our results are described in Section 4. The
discussion of our results is given in Section 5. Section
6 discusses future work, followed by our conclusions
in Section 7.

2. Background

In this section, we review the requirements formats
used in this study. As well, we discuss existing studies
that compare agile requirements with plan-based
requirements techniques.

2.1. Agile Requirements

In recent years, Agile Software Development
Processes have been gaining acceptance in the software
engineering community. These processes are based on
the Agile Manifesto [6]. The principles behind this
manifesto suggest that changing requirements should
be welcomed in every stage of the development, that
working software should be delivered frequently, and
that conveying information via face-to-face
conversation is more efficient than through written
documentation.

Agile Processes are characterized as informal and
unwritten. In addition, these processes put more
emphasis on the verbal and social communication in
the development team. In contrast, traditional
processes that are sequential and phased emphasize
formal and written work and communication.

User Stories are composed of three aspects: a
written description of the feature or to-do item used for
planning; conversations about the story that serve to
flesh out the details; and tests cases that convey the
details [3]. Usually User Stories are written on 3-by-5
index cards.

User Stories are used as a unit of work and agile
teams plan their releases by scheduling a set of User
Stories for completion in each iteration. User Stories
are also a promise of conversations between developers
and customers. It is important to note that User Stories

by themselves do not document requirements; they
represent requirements whose details are found in
conversations with the On-Site Customer and in Test
Cases.

User Stories are used by Agile teams and especially
in Extreme Programming (XP) [1], which is one of the
more practiced agile methodologies. XP is based on 12
practices; the ones that are related with our research are
the Planning Game, the On-site Customer, and the
Test-Driven Development.

During the Planning Game, customers write what
they want the system to accomplish in the form of User
Stories. Then, developers estimate how much time it
will take them to implement these User Stories. With
the estimates and the velocity of the developers, the
customers prioritize the User Stories and choose which
ones will be completed in an upcoming iteration. User
Stories will be assigned to a developer or a pair of
developers to be implemented. During the
implementation, developers are expected to have
questions regarding the User Stories and to answer
them by talking face-to-face with the On-site Customer
[4]. XP suggests having a real customer working side
by side with the development team. This customer will
be responsible for answering questions raised by the
development team.

Implementation in agile processes is done using
Test-Driven Development, which mandates that
automated test cases based on the User Stories be
created before the source code is written. Starting with
a system that fails all the new test cases, developer
implement just enough code necessary to pass the tests.

User stories should be written without using any
technical jargon. They should be understandable by the
business people and their content should fit on an
index card. They could be explained in 30 seconds. It
should be possible to complete them in less than one
week. They should be easy to translate into a test. It is
common to use the pattern “As <role> I can
<function> so that <business value>.”

One example of a User Story is: “As a Buyer, I can
modify the quantity of each item in the cart.” We used
this User Story in our experiment. As we can see in the
example there are no details about validations, error
messages, and exceptional paths. However, subjects
who were given User Stories had access to an On-site
customer via chat, to whom they could ask all the
questions related to the feature.

Table 1. Use case example

USE CASE 5 Modify Quantity
Goal in Context Modify quantity of the items already in the cart
Preconditions Buyer has pressed the "Modify Quantity" button
Success End Condition Buyer has successfully changed the quantity of the items in the cart
Failed End Condition The user could not change the quantity of the items in the cart
Primary, secondary Actors Buyer
Trigger "Modify Quantity" button is clicked
DESCRIPTION Step Action
 1 The system shows a table with the following columns:

Item Number, Description, Quantity, and Cost. The quantity
should be editable

 2 The user enters the new quantity for the items and press the
button "Update Cart"

 3 The system verifies that all quantities are integers greater than
zero

 4 Use "Use Case 8. View Cart"
EXTENSIONS Step Branching Action

SUB-VARIATIONS Branching Action
 3 If the quantity is lower than zero or is not an integer. The

system should show an error message "The quantity should be
an integer greater than zero."

2.2. Use Cases

Uses Cases are used extensively in plan-based

software processes, such as the Rational Unified
Process (RUP) [7]. This format has the goal of
describing the set of interactions and events between
the users or external systems (also known as actors).
These descriptions include the functionality the system
is required to meet. There are different guidelines to
write Use Cases and the effectiveness of a Use Cases
depends on the author’s ability to write them.

An example of a Use Case is showed in Table 1.
We used this Use Case in our experiment and it
corresponds to the User Story presented in the previous
subsection. As can be seen in Table 1, a Use Case
contain the name, goal, preconditions, success end
condition, failed end condition, primary and secondary
actors, trigger, description of each step in the main
scenario, description of each step in the extensions, and
the sub-variations. In this case, the Use Case has
specific information about the steps the user should
follow to use successfully the new feature. There were
also included details such as name of buttons, specific
validations (for example, the new quantity should be
greater than zero), and error messages.

2.3. Comparison

Use Cases are longer than User Stories; they can

vary between two paragraphs and ten pages. They are
good for showing the alternate paths of a specific
feature. This could also be achieved by User Stories by
writing the exceptional paths in different User Stories,
but this approach is an adaptation of the technique,
rather than a planned usage, which contrasts with Use
Cases.

Table 2. Comparison of use cases/scenarios and
user stories

Use Cases/Scenarios User Stories
They are expressed using
a constrained (semi-
formal) syntax

They are expressed using
natural language prose

They are specifications of
object interactions

They are descriptive and
expressive of human
desires

They contain “how” They contain “what” and
“why”

Usually, User Stories will not be sufficient in an
organization where formal documentation is
mandatory. Their main difference with Use Cases or
Scenarios is that User Stories have the goal of
capturing the perspective that the user has about the
system. Some of the differences between Use

Cases/Scenarios and User Stories presented by Beck
and West [8] are shown in Table 2.

Another requirements format that is widely
practiced and mentioned in the literature is Scenarios.
Some times, the terms Use Cases and Scenarios are
used interchangeably. However, we will stick with the
definition given by Salinesi [8] that “A Use Case is
always composed of several scenarios that describe
alternative ways to try and achieve the goal.” In this
view, scenarios are part of Use Cases, in this study we
evaluate the Use Cases, which consist of Scenarios.

As we have seen, each requirement format has some
benefits and drawbacks. It is not clear if Use Cases
complement or are redundant to User Stories in Agile
Development. The goal of our study is to provide some
evidence to guide Agile teams regarding whether or
not there could be any benefit in using Use Cases in
addition to the requirement formats they are currently
using.

2.4. Related Work

A number of studies have been performed

comparing traditional and agile requirements. In
general, they found that the two approaches are
complimentary. Paetsch et al. [9] presented a
comparison of traditional requirements engineering
approaches and agile software development. He
concluded that agile methods and requirements
engineering are pursuing similar goals in key areas and
the main difference between them is the amount of
documentation created in the project.

Eberlein and Sampaio do Prado Leite [10] presented
a position paper that discussed the applicability of
requirements engineering to agile processes. They
argued that four practices (Customer Interaction,
Analysis, Non-Functional Requirements and Managing
Change) should be added to agile requirements in order
to assure quality in the produced software.

Meszaros [11] wrote an experience report to
propose four “storyotypes” (story stereotypes) based
on Use Cases to be used as guidelines to split large
User Stories. Meszaros based the proposed storyotypes
on Use Cases because Uses Cases are the best
understood and most used format of requirements
expressed in prose. He is especially concerned that
teams members who have had previous experience
using Uses Cases will experience some difficulties
creating User Stories. Such developers are used to
working with Use Cases that can have many scenarios
and are more likely to create a big User Story
containing one Use Case.

Imaz and Benyon [12] studied how User Stories and
Use Cases can be used together to better capture

interactions during requirements gathering. They
concluded that User Stories are effective for capturing
interaction, but Use Cases are needed for
implementation purposes where formal documentation
is required.

However, there has not been a controlled
experiment to compare the effectiveness of adding Use
Cases to agile requirements, such as the one described
in this paper.

3. Method

We conducted an initial controlled experiment on a
small sample of software engineers to find evidence
regarding whether or not the Uses Cases could be
beneficial for teams using agile requirements. We had
three conditions in the experiment. In the first
condition subjects were using Use Cases to understand
requirements, in the second condition subjects were
using agile requirements (User Stories with access to
an On-site Customer), and in the third condition
subjects were using agile requirements and Use Cases.

We had a total of nine subjects assigned to the three
conditions. Subjects were assigned to each condition to
counterbalance the level of experience in each group.
We asked our subjects to modify an existing feature
and to add two new features to a web-based shopping
cart application for purchasing boats. Subjects received
the requirements in different formats and were asked to
implement the tasks specified. In addition, subjects
were asked to ‘think aloud’ while they worked to
provide us with additional insight into their behavior.

3.1. Experiment Design

We had three conditions in our experiment. In the
first condition, our subjects were using Use Cases as a
requirements format. We will refer to the set of
subjects in this condition as the UC Group. In the
second condition, subjects were using agile
requirements, more precisely User Stories and had
access to an On-site Customer via chat. This condition
will be referred as the US&OC Group. Finally,
subjects in the third condition were using both of the
above two requirement formats. This last condition is
called UC+US&OC Group from here onwards. This
design would allow us to perform side-by-side
comparisons of Use Cases and agile requirements, as
well as comparisons against usage of both formats
together.

We decided not to include Test Cases with the
material given to the groups using agile requirements
for two reasons. One, Test Cases would have provided
too much information and the comparison between the

three conditions would have been too imbalanced and
unfair. Two, we did not want to require our subjects to
use yet another tool. Including a testing tool would
have increased further the length of each experiment
session, which was already two and a half hours. We
provided access to an On-site Customer via chat
(instant messaging). This part of the design is similar
to the approach used by Shukla and Williams [13].
They presented a study where they integrated the
Extreme Programming practices into their courses at
North Carolina State University. They used the User
Stories practice, but they also completed several Use
Cases and discussed this requirement format as an
alternative to User Stories. They also applied the On-
site Customer practice, having the customer available
through email and not literally ‘On-site.’ Our method
is an improvement, because customer response was
available in real time.

We expected that subjects using the agile
requirements (User Stories and access to an On-site
Customer) and the Use Cases (UC+US&OC Group)
would perform the best among the three groups. We
believed that because those subjects have more
information and more details, this would result in
better understanding of the requirements and thereby
better performance. We also felt that subjects who
spent more time trying to understand the requirements
would perform better than the others. This would
include reading the requirements from the Use Cases
or User Stories or extracting details regarding the
requirements from the On-site Customer.

3.2. Procedure

The experiment consisted of four activities: a

background questionnaire, tutorials and familiarization
tasks, the maintenance tasks and the design, and finally
the debriefing interview. Only the maintenance tasks
and the design were timed and the total duration of
each run of the experiment was around two and a half
hours. Table 3 shows the schedule of the experiment
including expected times per activity.

Table 3. Schedule of experiment

- Background Questionnaire ~10 minutes
- Tutorials
- Familiarization Task

~10 minutes

- Maintenance Tasks (3 tasks)
- Design

~120 minutes

- Debriefing Interview ~10 minutes
Total ~150 minutes

Background Questionnaire We asked our subjects to
fill out a background questionnaire regarding their

education, software development experience, and
familiarity and preferences of different requirement
formats.

Tutorials and Familiarization Task The goal of these
tasks was to familiarize our subjects with the
requirements format that they would be given as well
as the programming environment. Hence, we provided
a Use Case tutorial to the UC Group, a User Story and
an On-site Customer tutorial to the US&OC Group,
and both the above tutorials to the UC+US&OC
Group. The Use Case tutorial included an explanation
of the template used including the purpose and
meaning of each section in the template. The User
Stories and On-site Customer tutorial included an
explanation of what User Stories are, how they work,
and what the format is. The explanation of the role and
responsibilities of an On-site Customer and an example
of a User Story was also provided.

After finishing the tutorials, we asked our subjects
to implement a “List of Courses” JSP page using the
Eclipse IDE. The task required subjects to make a
modification and compile a Java file with the list of
courses, and a JSP page. Step-by-step instructions were
given for completing the familiarization task .

Maintenance Tasks and Design The main task in our
experiment lasted for approximately two hours. The
requirements were for a change to an existing feature
and the addition of two new features to the system. The
details of the tasks are discussed in section 3.4.

When we observed that a subject was struggling
with the task due to lack of knowledge of the
underlying technology, e.g. developing web
applications in Java™ using JSP (Java Server Pages)
and servlets, we re-directed them to produce a design
for modifications. We asked the subjects to draw the
design as screen captures to explain the functionality.
The main goal of the design exercise was to evaluate
how well the subjects understood the requirements
when they were not able to complete the coding of the
implementation.

Debriefing Interview After the allotted two hours for
implementation had elapsed, we proceed with a
debriefing interview where we asked the subjects open-
ended questions regarding their performance and their
experiences using the requirement formats during the
experiment. We also asked them about their opinions
and any feedback regarding the experiment.

3.3. Subjects

A total of nine subjects participated in our
experiment. Seven of our subjects were graduate
students, one was a research assistant, and one was an
undergraduate student. Details about our subjects are
summarized in Table 4.

Table 4. Characteristics of subjects

Average Age 25.55
Gender 3 Females

6 Males
Occupation 7 Graduate students

1 Undergraduate student
1 Research Assistant

Degree Major 8 in Computer Science
and 1 in Aerospace

Years of Experience in
Software Development

Range: 0-15 years.
Average: 4.72 years.

Years of Experience in
Java Web Development

<1 year: 4
1 year: 1
2 years: 4

3.4. Subject System and Implementation

The application used in this study was a web-based

system to purchase boats over the Internet called “An
Online Boat Shop.” The system is an example obtained
from the book “More Servlets and JavaServer Pages”
by Marty Hall [14]. We chose this system because it
was of medium complexity, it used simple Java web
technology, it was complete in itself and it did not
require interaction with any additional external
database. It uses the JSP and Servlets technology and
runs on a Tomcat application server.

The Online Boat Shop consists of 12 Java™ files
and 10 JSP files. In addition, it has an XML (extensible
Mark-up Language) file with the configuration of the
web application. There were 1,340 lines of source
code. The application is well structured and the source
code is well formatted.

We asked our subjects to modify a feature in the
system and add two new features. Our requirements
consisted of three subtasks:

Maintenance Task A This task involved modifying
an existing feature on the website. Subjects were asked
to add a field whereby one could see the quantity of
each item in the shopping cart.
In the existing implementation, new boats were added
as new rows in the shopping cart display, even when
the same kind of boat was already in the cart. Subjects
were asked to add a “Quantity” column to the shopping
cart, to maintain one row per unique item, and to
increment the quantity column whenever an item that
already existed in the cart was added. For the groups

using User Stories, the following User Story was
provided: “As a buyer, I can see the quantity of each
item after adding an item to the cart.”

Maintenance Task B This task required the addition
of a new feature to the website. Subjects were asked to
implement a modification of quantity feature. The Use
Case for this feature was given in Table 1. The subjects
had to include error handling, such as allowing users to
modify quantities to only positive integers. For the
groups using User Stories, the following User Story
was provided: “As a buyer, I can modify the quantity
of each item in the cart.”

Maintenance Task C This task also required the
addition of a new feature to the website. Subjects were
asked to implement a deletion of items feature. The
requirements in the Use Case format asked the subjects
to provide a feature whereby users could delete
existing items from the shopping cart. The subjects
were also told to incorporate a ‘Confirm Deletion’
message to prevent users from accidentally deleting
items and to also provide a feature where an error
message was thrown if the “Delete Items” button was
clicked but no items were selected for deletion. For the
groups using User Stories, the following User Story
was provided: “As a buyer, I can delete items from the
cart.”

3.5. Threats to Validity

We are aware that this controlled experiment has
some limitations. First, the number of subjects in our
study was small, only nine. More subjects would
improve the external validity of the study. However,
this number is sufficient for a preliminary study.

Second, our subjects did not have enough
experience with the technology used in the experiment.
Only one out of our nine subjects was able to finish the
implementation task. The rest of them were unable to
complete the task due to a lack of knowledge of JSP
and servlets. This threat is relatively serious, but we
attempted to mitigate this problem by including a
design task.

Third, a single researcher scored the source code
from the implementation and the design. This may
have introduced a bias into the data, but one benefit is
it gave us a consistent scoring for all the subjects. This
risk has not been mitigated in this study, but in future,
multiple raters could be used and inter-rater reliability
could be measured.

Four, we found that the analytical ability of our
subjects is a key factor on how well they understood
the requirements. However, we did not have a way to

measure or quantify the analytical ability of our
subjects.

Although our study has some limitations, the results
obtained represent the findings of an initial study and
provide us with some useful empirical data to evaluate
the benefit of Use Cases for agile requirements. As
well, we controlled many factors in the study, so it was
a fair comparison.

4. Results

The results of the experiment indicate that Use
Cases complemented agile requirements by helping
subjects to spend their time more efficiently when
understanding requirements. However, our data do not
provide enough evidence to state whether any group
created better implementations than another.

We will present our results in two categories. First,
we will report our data regarding the subject’s
performance on requirements. This result has the
purpose of showing how our subjects spent their time
on requirements. Then, we will report our data related
to the overall task performance. This result has the goal
of evaluating how well subjects understood the
requirements. We tested our data using non-parametric
statistics. This kind of statistical methods is appropriate
for our study because we have a small sample size. In
addition, we converted our ratio data into ordinal data
by rank ordering the times and performance scores for
the subjects.

4.1. Performance on Requirements

We watched the video recordings of the experiment

and measured the time subjects spent interacting with
the requirement formats. We found that agile subjects
using Use Cases (UC_US&OC Group) spent less time
understanding requirements than subjects using only
agile requirements.

We compared the time spent by the three groups
understanding the requirements. In the case of the UC
Group, we considered the total time understanding
requirements as the time spent reading the Use Cases.
For the US&OC Group, we included the time spent
reading the User Stories and the time chatting with the
On-site Customer. For the UC+US&OC Group, we
included all the time reading and chatting with the On-
site Customer.

The average time spent by each group in
understanding requirements is shown in Table 5. To
have a better idea about how subjects spent their time,
Figure 1 shows graphically how much time subjects
spent in each requirement format.

Figure 1. Time subjects spent in each

requirement format
We found that on average subjects in the US&OC

Group spent the most total time (28 minutes and 3
seconds) understanding the requirements, the
US+UC&OC Group was second (18 minutes), and the
UC Group the least (4 minutes and 13 seconds0. This
difference was found to be statistically significant at
p<0.05 using the Kruskal-Wallis one-way analysis of
variance by ranks [15].

Overall, subjects spent little time reading User
Stories. The second entry in Table 5 shows that on
average subjects in the US&OC Group spent more
time (2 minutes and 12 seconds on an average) reading
the User Stories than subjects in the UC+US&OC
Group (37 seconds on an average). This difference was
found to be statistically significant at p<0.05 using the
Kolmogorov-Smirnov test for two independent
samples [15].

Having access to an On-site Customer in the
UC+US&OC condition had the interesting effect of
causing subjects to spend more time reading the Use
Cases. This result can be found in the first row of
Table 5. We observed that subjects on average in the
UC+US&OC Group spent more time (7 minutes and
34 seconds) reading the Use Cases than subjects in the
UC Group (4 minutes and 13 seconds). This difference
was found to be statistically significant at p<0.05 using
the Kolmogorov-Smirnov test.

While the US&OC spent the most time
communicating with the On-Site Customer (p<0.05 by
Kolmogorov-Smirnov) their questions were not as
good as those in the UC+US&OC Group. The third
and fourth entries in Table 5 show the average time
that subjects spent asking relevant and irrelevant
questions respectively. We observed that on average
subjects in the US&OC Group spent more time overall
asking questions.

Table 5. Time spent understanding requirements
Average/Group

UC
(mm:ss)

US&OC
(mm:ss)

UC+US&OC
(mm:ss)

P

Time reading Use Cases 04:13 - 07:34 p<0.05
Time reading User Stories - 02:12 00:37 p<0.05
Time asking relevant questions to the OC - 22:46 09:12 p<0.05
Time asking irrelevant questions to the OC - 03:05 00:37 p<0.05
Total time understanding requirements 04:13 28:03 18:00 p<0.05

Table 6. Number of relevant and irrelevant questions asked to the on-site customer

Average/Group

US&OC UC+US&OC p

Number of relevant questions to the OC 6.00 4.00 p<0.05
Number of irrelevant questions to the OC 1.67 0.33 p<0.05

Table 7. Partial and overall scores on tasks

Average/Group

UC US&OC UC+US&OC p

Functionality score 18.17 19.17 17.67 n.s.
Validations and messages score 5.33 1.33 1.67 n.s.
Overall score 23.50 20.50 19.34 n.s.

During that time, the US&OC Group on average
had to ask more questions and a larger proportion of
these were irrelevant (p<0.05 by Komolgorov-
Smirnov). The average number of relevant and
irrelevant questions asked to the On-site Customer is
shown in Table 6. Subjects in the US&OC Group
asked on average a greater number of relevant (6) and
irrelevant questions (1.67) than subjects in the
UC+US&OC Group (4 and 0.33, respectively).

4.2. Overall Task Performance

We also collected data from the coding and design

by our subjects to provide an objective, performance-
based measure of how well they understood the
requirements. For subjects who completed the
implementation, we scored the program code.
Otherwise, we scored the design drawings and the
explanation that they provided. The maximum possible
score for either was 30 points.

Overall, the differences between the groups were
not statistically significant. Although there are
numerical differences between the average
performance for each of the groups, the variation could
be explained by chance alone.

We broke down the performance score into sub-
parts to determine if one group did better than another
in a particular part of the implementation. While the
UC Group had the highest average score on validations

and messages, none of the differences in the sub-parts
were statistically significant.

5. Discussion

In this section, we will discuss and interpret the results
presented in the previous section. In addition, we will
also discuss other results collected from the Debriefing
Interview.

5.1. Performance on Requirements

The subjects’ performance on the requirements

tasks were mixed and, at times, contrary to expectation.
Subjects using agile requirements spent more time
understanding the requirements than subjects using
Use Cases. This time difference can be attributed to the
need to elicit details through questions instead of
simply reading them from a document. However, many
software engineers have professed a preference for
talking to people instead of reading. As well,
conversations are more flexible and adaptable to
change.

The most surprising result is the group using both
Use Cases and agile requirements spent the most time
reading the Use Cases. One would expect the UC
group to spend more time reading the Use Cases
because they were their sole source of information, but
this was not the case. We believe that this difference in
the time spent reading the Use Cases is because

subjects in the UC+US&OC Group used the
information in the Use Cases to elaborate questions to
the On-site Customer. They needed a deeper
understanding of the Use Cases in order to frame their
questions to the customer. On the other hand, subjects
in the UC Group spent less time reading Use Cases
because they only needed to understand the
requirements and then implement them. They did not
need to ask questions regarding them. This factor of
being able to ask questions about requirements to the
On-site Customer made subjects spend more time
reading the Use Cases.

Probing deeper, we turn to data from the debriefing
interviews. We also asked the subjects for feedback on
the different requirement formats that were given to
them. When asked if the Use Cases had enough
information, all the subjects in the UC Group felt that
they did, while all the subjects in the UC+US&OC
Group felt that they did not. We believe that the
subjects in the UC+US&OC Group disagreed, because
they had the luxury of clarifying their doubts regarding
the Use Cases with the On-site Customer. If they had
only the Use Cases like the subjects in the UC Group,
then perhaps they too would have felt that the Use
Cases had enough information. However, it is
interesting to note that all the subjects in the UC Group
said that having an On-site Customer would have
certainly helped them.

We observed that subjects in the US&OC Group
spent more time reading the User Stories than subjects
in the UC+US&OC Group. We believe that subjects in
the US&OC Group spent more time reading the User
Stories because it was the only written documentation
that they had and they needed to ask questions based
on the information in the User Stories. In contrast,
subjects in the UC+US&OC Group did not spend too
much time reading the User Stories because they
preferred to read the Use Cases, which had more detail.

In the debriefing interview, we asked if the User
Stories by themselves provide enough information. All
the subjects in both the US&OC Group and the
UC+US&OC Group said felt that they did not. They
went on to elaborate that details of the implementation,
such as special conditions and the flow of the
application, were missing. However, they all felt that
the User Stories in conjunction with the On-site
Customer provided them with enough information.

We observed that subjects in the US&OC Group
spent more time asking relevant questions as well as
irrelevant questions than the subjects in the
UC+US&OC Group. We believe that this took place
because subjects in the US&OC Group did not have
enough detail in the User Stories and they needed to
ask the On-site Customer to elaborate about what was
required. In contrast, subjects in the UC+US&OC

Group had more details in the Use Cases and they did
not need to ask so many questions.

Subjects in the US&OC Group asked a greater
number of relevant and irrelevant questions than
subjects in the UC+US&OC Group. We observed that
our results on the number of questions asked to the On-
site Customer are consistent with the time spent by
each group communicating with the On-site Customer.
Subjects in the US&OC Group did not only spend
more time asking relevant and irrelevant questions, but
also they asked a greater number of relevant and
irrelevant questions to the On-site Customer.

When asked if the On-site Customer provided them
with enough information, all the subjects in both the
US&OC Group and the UC+US&OC Group answered
affirmatively. When asked if they would prefer having
the On-site Customer face to face, three out of six
subjects said that they would prefer interacting with the
On-site Customer face to face rather than through chat.
Five out of six subjects said that they were comfortable
with asking questions to the On-site Customer right
from the very beginning. Only one subject said that
initially he was a little uncomfortable asking questions
to the On-site Customer, but as the experiment
progressed the discomfort wore off.

5.2. Overall Task Performance

The results in the implementation/design task were

also surprising. Our expectation was that subjects who
spent more time understanding the requirements would
be able to produce better implementations. We had also
expected that subjects in the UC+US&OC Group
would do better than subjects in the other two groups
because they had more requirement documentation
available and also had access to an On-site Customer.
However, neither expectation was borne out. While
there were statistically significant differences in the
time spent, there was no statistically significant
difference in the performance. In other words, the
requirements format had no effect on how well the
subjects completed the maintenance tasks.

This lack of a difference is very troubling because it
brings into question the premise of software
technology, that improvements in tools and methods
can result in quality improvements for the software
produced. Our subjective judgment, having observed
the subjects as they worked, is that differences in
individual skill, particularly their analytic ability, i.e.
their ability to reason, had the greatest effect on their
understanding of the requirements and overall task
performance. Since we had only a small sample size
and only one subject was able to finish the tasks, we
leave this merely as a question.

Finally, our subjects showed a high level of self-
awareness in terms of overall task performance. During
the Debriefing Interviews, we asked the subjects to rate
themselves on a scale of 1 (low) to 5 (high) on how
well they understood the requirements. We found that
subjects in all three groups were fairly accurate in
estimating their scores. The largest difference between
actual scores and self-rated scores was a 12.19%
difference in the US&OC Group, as shown in Table 8.

Table 8. Actual scores and self-rated scores
 UC

(%)
US&OC

(%)
UC+US&OC

(%)
Actual Score 78.33 68.33 64.44
Self-rated Score 80.00 60.00 66.66

In other words, our subjects had a good sense of how
well they understood the requirements and the task,
even if they couldn’t articulate their errors precisely.

5.3. Use Cases vs. Agile Requirements

In comparing Use Cases and agile requirements, it

appears that the two are complementary. Writing
things down can save time—if people read the
documents. Furthermore, being expected to formulate
questions improves subject’s willingness to read and
attention when doing so.

Table 9. Strengths and weaknesses of the
requirement formats

 Strengths Weaknesses
Use
Cases

• Gives context
• Provides detail
• Provides business
logic

• Too much to
read
• Does not have UI

User
Stories

• Provides a good
overview
• Gives the
developer flexibility
• Changes are easy
to identify and
implement

• Not enough
detail
• User Stories may
overlap
• No details on
exception handling

On-site
Customer
(via chat)

• Can get quick
answers to questions
• Fills imple–
mentation gaps
• Customer can do
other work as well

• Absence of
physical presence
may cause
communication
problems
• Prefer talking to
typing
• Lack of writing
skills may cause
problems

We also asked the subjects as to what they felt were
the strengths and weaknesses of the requirement
formats that they were given. Their answers are
summarized in Table 9. An examination of their
answers also supports the contention that Use Cases
and agile requirements are complementary, but more
work is needed.

6. Future Work

It is often the case that research raises more
questions than answers. If this is a measure of success,
then we believe that we have made a contribution. We
would like to continue this research and are
considering some modifications.

We are planning to run the experiment with more
subjects to improve the external validity of the study.
In addition, we are also considering inclusion of a
psychological test in the experiment, which will help
us measure the analytical skills of the subjects to
determine whether it is a confounding variable. If this
is the case, this characteristic can also be used to
counterbalance the assignment of subjects to
conditions. As well, we plan to perform some
evaluations of rater bias and reliability to improve
internal validity.

Other improvements include the use of different
colored sheets for different documents to help us in the
video analysis, and the recruitment of subjects who are
proficient in the technology used (JSP and servlets in
this case). We also would like to be more consistent in
the time we ask subjects to stop with the
implementation and start with the design, if they are
having problems.

7. Conclusions

Agile software teams occasionally use other
requirements specification formats to complement their
agile requirements techniques. We conducted a
preliminary controlled experiment to determine if
adding other information was helpful. This study
would also indirectly answer the question of whether
agile requirements techniques work effectively alone.
Specifically, we wanted to know how the Use Cases,
agile requirements (User Stories and On-site
Customer), or both could affect the understanding of
requirements for a maintenance task.

We found that Use Cases and agile requirements
were complimentary. Subjects who had access to both
spent less time understanding requirements than
subjects who had access to only agile requirements.
They also spent less time asking questions of the On-
site customer, while asking a higher proportion of

relevant questions. As well, subjects who were
planning to talk to an On-Site Customer spent more
time reading Use Cases.

While we found statistically significant differences
on how subjects used the different requirements
formats, we could not find any statistically significant
performance differences between the groups using
different formats. In other words, the requirements
format had no effect on how well they completed the
maintenance tasks. The main factor affecting the
understanding of the requirements appeared to be the
analytical ability of each subject. We arrived at this
conclusion because we did not find a clear relationship
between the time subjects spent understanding the
requirements and how well they performed
implementing them. We found that subjects in the UC
Group spent the least time understanding requirements,
but they had the highest score in understanding
requirements and implementing them. Similarly,
subjects in the US&OC Group were the ones who
spent the most time of all the groups in understanding
the requirements but they did not have the highest
score. Finally, subjects in the UC+US&OC Group had
the least score even though they were not the ones who
spent the least time understanding the requirements.
We observed that it was the analytic ability of each
individual subject that made the difference to the final
score and the overall performance.

 This study gives an affirmative answer to the
question raised in the title of the paper. Based on the
data from our preliminary study, use cases are
beneficial for developers using agile requirements. But
more research needs to be done to provide a more
definitive answer and to answer the intriguing
questions raised in this study about the effect of
software technology.

8. Acknowledgements

We thank our subjects for their time and patience in
participating in our experiment.

9. References

[1] K. Beck, Extreme Programming Explained: Embrace
Change, Mass: Addison-Wesley, 2000.

[2] A. Cockburn, Agile Software Development, Addison-
Wesley, 2002.

[3] M. Cohn, User Stories Applied: For Agile Software
Development, Addison-Wesley, 2004.

[4] K. Beck, "Embracing Change with Extreme
Programming", Computer, 1999, vol. 32 pp. 70.

[5] A. Cockburn, Writing Effective Use Cases, Addison-
Wesley, 2001.

[6] M. Fowler and J. Highsmith, "The Agile Manifesto",
Software Development, 2001, Vol. 9, pp. 28-32.

[7] P. Kruchten, The Rational Unified Process: An
Introduction, Addison-Wesley, 2003.

[8] I. Alexander and N. Maiden, Scenarios, Stories, Use
Cases: Through the Systems Development Life-Cycle. John
Wiley, 2004.

[9] F. Paetsch, A. Eberlein and F. Maurer, "Requirements
Engineering and Agile Software Development", in
Proceedings of the Twelfth IEEE International Workshops on
Enabling Technologies: Infrastructure for Collaborative
Enterprises (WETICE'03), 2003.

[10] A. Eberlein and Sampaio do Prado Leite, J.C., "Agile
Requirements Definition: A view from requirements
engineering", in Proceedings of the International Workshop
on Time-Constrained Requirements Engineering (TCRE’02),
2002.

[11] G. Meszaros, "Using Storyotypes to Split Bloated XP
Stories”, in Proceedings of the 2004 XP/Agile Universe
Conference, 2004, pp. 73-80.

[12] M. Imaz and D. Beyon, "How Stories Capture
Interactions", in Proceedings of Human-Computer
Interaction - INTERACT'99, 1999, pp. 321-328.

[13] A. Shukla and L. Williams, "Adapting Extreme
Programming for a Core Software Engineering Course", in
Proceedings of the 15th Conference on Software Engineering
Education and Training (CSEET'02), 2002.

[14] M. Hall, More Servlets and JavaServer Page, First
Edition. California: Sun Microsystems Press Publisher, 2001.

[15] D. Sheskin, Handbook of Parametric and Nonparametric
Statistical Procedures, Second Edition. Boca Raton: CRC
Press, 2000.

