Proceedings of the IBM Centre for Advanced Studies Conference (CASCON), pp. 381-390, Toronto,
Canada, 8-11 November, 1999.

A Model Independent Source Code Repository

Anthony Cox', Charles Clarke!, Susan Sim?

TUniversity of Waterloo, 1University of Toronto

Abstract

Software repositories, used to support program
development and maintenance, invariably re-
quire an abstract model of the source code.
This requirement restricts the repository user
to the analyses and queries supported by the
data model of the repository. In this work,
we present a software repository system based
on an existing information retrieval system for
structured text. Source code is treated as text,
augmented with supplementary syntactic and
semantic information. Both the source text and
supplementary information can then be queried
to retrieve elements of the code. No transfor-
mations are necessary to satisfy the require-
ments of a database storage model. As a result,
the system is free of many of the limitations im-
posed by existing systems.

1 Introduction

In order to store computer source code in a
database, the source code must be abstracted
in some manner so that it satisfies the require-
ments of the data model supported by the
chosen database system. Databases applied
to the management of source code are known
as software repositories and to date, the use
of entity-relationship [4], object-oriented [14],
graph-based [8], and relational [16] data mod-
els has been documented. Software engineers
frequently use the term conceptual model to re-
fer to the instance of the data model (the data
schema) that is used in the repository.

CTA [4] stores a conceptual program model
based on the entity-relationship data model.
Entities model constructs such as functions
and variables, while relationships describe ref-
erences between the entities. The main prob-
lem with this approach is the inefficiency of de-
composing the source code into a set of enti-
ties and then, during retrieval, having to recon-
struct 1t using numerous queries. This ineffi-
ciency was clearly demonstrated by the Omega
system [16] where over 100 queries were needed
to reconstruct a 5 line function body. CIA
avoids the problem by using a coarser grained
conceptual model and forfeiting much of the
information extractable from the source code.

Another problem resulting from the repre-
sentation of source code using a data model is
the loss of information that may occur if the
model is incapable of adequately representing
it. Control flow information, easily represented
using a graph-based model, is difficult to effec-
tively represent using a relational model.

As an alternative, we propose the usage of
a database system explicitly designed for the
storage of structured text. Computer source
code 1s written using a text editor and so it
should be natural for programmers and soft-
ware maintainers to query and manage it as
text. To store semantic and context-based syn-
tactic information about source code, analysis
tools can be employed which generate supple-
mentary text that can be associated with the
source code and queried by the database sys-
tem. It will be shown that using supplementary
text permits a significant subset of the infor-

Susan Sim

Susan Sim
Proceedings of the IBM Centre for Advanced Studies Conference (CASCON), pp. 381-390, Toronto, Canada, 8-11 November, 1999.

mation contained in the source file to be stored
producing a repository free of the constraints
imparted by the data model.

The remainder of this article describes
the MultiText Analytical Repository System
(MARS) designed for storing large bodies of
computer source code and the results of anal-
yses on this source. Using the MultiText
database system [6], developed for the man-
agement of structured text, we have developed
a prototype software repository system signif-
icantly different from other implementations.
To place our system in context, other repos-
itory systems are first examined, to identify
their capabilities and limitations. Then, the
MultiText database system and its query lan-
guage, GCL, will be examined to permit their
employment in a source code repository sys-
tem to be understood. After that, the details
of their application in MARS will be presented,
followed by some concrete examples of possible
queries. Finally, we discuss limitations of our
initial prototype system and some possible fu-
ture extensions.

2 Related Work

Several different approaches to creating repos-
itories for computer program source code have
been documented. Most of these approaches
use the database to store a model of the
software. In particular, conceptual source
code models have been implemented with
the entity-relationship, graph-based, relational,
and object-oriented data models.

Perhaps the most widely known of the early
repository systems is Omega [16], which stores
the entire contents of a source file in a relational
database and supports its querying through the
use of the QUEL query language. The pri-
mary downfall of Omega is the poor perfor-
mance that was exhibited by the necessity of
performing many queries to reconstruct source
code entities.

The Rigi system [17] uses GRAS [1], a
database designed to represent graph struc-
tures, as 1ts central repository to store parsed
source code entities, such as function defini-
tions and global variables declarations. As is
the case with Omega, many database queries

are needed to reconstruct a source code frag-
ment when a fine-grained program model is
stored.

CTA [4], considers only the higher level con-
structs of a C language program. While CIA
uses an entity-relationship data model to man-
age global constructs (those that cross function
boundaries), a relational database is employed
to access the power of the QUEL query lan-
guage.

Another repository system designed for high-
level coarse-grained models of software is the
Software Bookshelf [13]. The system uses the
metaphor of a bookshelf, with each source
file or high-level entity being represented by
a book. Relationships between books are de-
scribed with a tuple-attribute language and
stored in a relational database.

REFINE [2] uses an object-oriented database
to store a fine-grained syntactic representation
of source code. Patterns are specified and
matched against the database in order to per-
form program transformations for maintenance
purposes. Thus, REFINE is oriented to per-
forming transformations as opposed to provid-
ing query facilities for source code search and
retrieval.

Paul and Prakash’s Source Code Algebra
(SCA) [18] relies on the existence of an object-
oriented database in order to apply a query
algebra specialized for source code. SCA is
relationally complete, with extensions to sup-
port transitive closure and sequencing opera-
tions. The algebra is highly dependent upon an
object-oriented data model and only considers
syntactic (and not semantic) information found
in source code. The actual implementation uses
the database from the REFINE system as its
repository.

Jarzabek, in his PQL (Program Query Lan-
guage) system [14] advocates a repository sys-
tem independent of its implementation. PQL
relies on extended Object Modeling Tech-
nology (OMT) [20] to describe source files.
These OMT models are then translated into
entity-relationship data models for storage in a
database.

Kamp [15] considers a repository as pro-
viding a tradeoff between the complexity of
the software model and its efficiency and util-
ity. In GUPRO, he advocates a system which

is both easy to use but yet provides power-
ful query facilities by suggesting that models
should store only enough information to answer
common queries. GUPRO requires a “user de-
signed conceptual model” described using the
entity-relationship data model and stored in
objected-oriented database. The query lan-
guage of GUPRO is GReQL, an SQL-like lan-
guage.

In CHIME [11] hyperlinks were inserted into
source code to permit the use of existing WWW
browsing tools. CHIME embeds information
about relationships directly in source code, im-
plicitly using a text model for the code. The
hyperlinks supplement the text by adding the
ability to represent graphs.

Other specialized computer languages, such
as HTML, are representable using a graph-
based data model. In the case of HTML, the
hyperlinks are the arcs, while the WWW pages
and their contents, like paragraphs and list-
items, are the nodes. The ability to represent
HTML with one of the data models used to
represent source code suggests that techniques
applied to HTML may also be applicable to
source code. This is not a new observation, as
the Graphlog system has been presented as a
tool for both hypertext [7] and for source code
[8].

Cross and Hendrix used their GRASP-ML
markup language [10] to annotate source code
with syntactic and control flow data. The
marked up code is then used to generate control
structure diagrams — a cross between pseudo-
code and flow charts. No effort is made to store
the generated markup in a database or provide
generalized query facilities.

3 The MultiText System

MultiText is a database system designed for
structured text — text which has some inherent
structure, but for which the structure may not
necessarily be explicit. For example, the text
of the document you are currently reading has
structure, such as paragraphs, sentences, and
phrases, however there is no explicit identifica-
tion of each phrase. Source code is also struc-
tured with its declarations, statements and ex-
pressions forming the structural elements.

In MultiText, the database is viewed as a se-
quence of lexemes, or tokens, with each token
having a unique index, represented by its offset
from the beginning of the database. The defi-
nition of a token can be tailored to the specific
application of the system, but for the remain-
der of this paper a token can be considered as
roughly equivalent to an identifier in C and will
be defined as any contiguous combination of al-
phabetical or numeric characters including the
underscore character. Figure 1 contains a C
code fragment with each token identified by a
subscript. The value of the subscript is the in-
dex of the token.

To identify structure, or represent informa-
tion extractable from the source code, supple-
mentary text is used. Users can consider sup-
plementary text as occurring between tokens
in the source text and associated with either
the immediately preceding or the immediately
following token. We use a notation that is syn-
tactically similar to that found in HTML by
surrounding supplementary text in angle brack-
ets. For example, in C programs, all statements
could be preceded by the supplementary token
<stmt> and followed by the token </stmt>.
Supplementary text is indexed, and hence can
be queried on, but is not returned as part of
any solution.

A special type of supplementary text called a
named indirection is also supported by the Mul-
tiText system. An indirection is simply an arbi-
trary link, much like a hyperlink, between two
different indexes (locations) in the sequence of
tokens composing the database. These links are
named so as to permit them to be identified.

In repository systems, the most frequently
represented relationship 1s between definitions
and usages of source code elements, such as
variables and functions. In MARS, the named
indirections which store these relationships are
defined, linking a variable or function usage
to its definition, and wused, linking a defini-
tion to one of its use sites. Indirections permit
graph structures to be identified and managed
by MultiText. Indirections are not limited to
occurring only within a file, but can occur be-
tween files, such as 1s the case of the indirec-
tion wncluded, linking a #include directive to

the file included.
In figure 2, the code fragment of figure 1 has

/* constant; function; returnings zeros */
ints zg = O7;
intg zerog () {

returnig (z11);

}

Figure 1: Tokenized C Source Code Fragment

<comment>/* constant; function; returnings zeroy */</comment>

<wvarDef><type>ints< /type> <name>zs</name> = <const>07< /const>;< /varDef>

<funDef><type>intg< /type> <funName>zerog< /funName> <params>()</params><body>{
<stmt><keyW>returnio< /keyW> < expr>(<varRef>
<defined loc=5,7>211 < /varRef>)< /expr>;< /stmt>

}</body>< /funDef>

Figure 2: Annotated C Source Code Fragment

been overlaid with supplementary text for illus-
trative purposes. In the actual database sys-
tem, supplementary text is never stored with
the source text and is managed by a sepa-
rate database component. Supplemental text
should be thought of as a form of invisible
markup used to store information about the
source text. The term “supplementary text”
is used instead of the more common term
“markup” in order to clearly differentiate the
two. Supplemental text is a descriptive de-
vice only used in queries and, unlike markup, is
never an actual physical component of a source
file or a query solution.

On examination of the figure, the ini-
tial comment can be seen as occurring be-
tween the supplemental tokens <comment>
and </comment>. The first of these supple-
mental tokens could be considered as occurring
before the comment, at index %, and the sec-
ond, after the comment, at index 4%. In the
situation where multiple supplementary tokens
occur between two source tokens, all the sup-
plementary tokens share the same index. In the
figure, </comment>, <varDef> and <type>
all occur at index 4%.

The supplemental token <defined loc=5,7>
is an instance of a named indirection which in-
dicates that the <wvarRef> is defined in tokens
5to 7 (int z = 0) of the database. Tt should

be noted that the supplemental text chosen for
this example is completely arbitrary and that
different string such as <keyword> instead of
<keyW> could be used. There is also nothing
which prevents supplemental text from occur-
ring between different source tokens.

Supplemental text is determined using other
tools prior to constructing the database. Once
entered into the database, only the informa-
tional content obtained during analysis is avail-
able, to the extent of causing seemingly obvi-
ous structure, such as document boundaries,
to become lost unless explicitly identified with
supplementary text.

There 1s no requirement to store only those
tokens that occur in the actual documents
entered into the database. It is permissi-
ble to store additional strings of metadata de-
scribing the contents of the database. This
metadata can contain attributes of the doc-
uments, or of entities within the documents.
By way of example, when storing source code,
we store the filename, programming language,
and a descriptor describing the analysis per-
formed in a <fileHeader> area preceding the
contents (<fileBody>) of source files. At-
tributes can be managed in the same manner
as metadata. Attribute values are stored in an
<attributesArea> with indirections used to link
entities to attribute values.

4 GCL: The Query Lan-

guage of MultiText

Interaction with MultiText is accomplished us-
ing GCL, a query language designed for search-
ing structured text. The basic queries in GCL
return either a token, or a contiguous sequence
of tokens (a phrase) in the database. For ex-
ample, the query "long int" returns all occur-
rences of the token long followed by the token
int where any number of non-token characters
or supplementary tokens may occur between
the two source tokens. Given the query "x y"
both “x + y” and “x -= #*y”, should they oc-
cur in the database, are returned as solutions
since the -, +, = and * characters are not used
to form tokens in the current system.

Supplementary text can be queried in a man-
ner identical to source text except that sup-
plementary tokens must be enclosed in an-
gle brackets to differentiate them. A sim-
ple query to retrieve the variable reference to
z from the sample code fragment would be:
"<varRef> z </varRef>".

Basic queries can be combined to form more
complex queries using one of GCL’s binary op-
erators. Figure 3 provides a summary of these
operators. The first four operators describe
containment relations between the two operand
queries. The before operator is a form of con-
catenation for queries and the final two are the
Boolean and and or operators.

Supplementary text can be used in queries
analogously to source text providing that
it is surrounded by delimiting angle brack-
ets to identify 1t. A simple query to re-
trieve all variable references in the database
can be formed using two supplemental to-
kens and the before operator as follows:
"<varRef>" ... "</varRef>".

To permit common queries to be reused GCL
also provides an abstraction facility to name
and parameterize queries. The format for such
a named abstraction, referred to as a macro in

GCL, is:
name[(args)] = query

where any occurrences of args in query are re-
placed by the actual arguments when an instan-
tiation occurs. The square brackets around the

argument list are a notational mechanism to
indicate that the argument list is optional.

To illustrate the use of GCL, figure 4 presents
some simple queries which can be posed, pro-
vided that the necessary supplementary text
has been generated. The use of capital letters
in macro names is to improve readability and
is not enforced in GCL.

GCL also provides an indirection operator
to allow queries to follow named references
(indirections) between independent sequences
within the database. A typical example of a
query using indirection would be:

defined@("<varRef>"..."</varRef>")

This query, which locates the definition of all
variables referenced, returns the substrings as-
sociated with occurrences of the supplementary
token defined in a variable reference. When
applied to the code of figure 2 the text int z
= O is retrieved. Since the name of the indi-
rection must be a supplemental token, it need
not be enclosed in angle brackets.

MultiText applies the shortest substring rule
[5] when solving queries. The rule states that
no member of a solution set can contain any
other member as a proper substring. This
is different to other tools, such as grep and
lex, where the longest match rule 1s employed
to partially prevent nested solution elements.
The shortest substring rule permits efficient
algorithms to be employed for searching the
database to find solutions.

The shortest substring rule has significant
impact on the solution of queries in GCL.
For the binary operators, it is not possible
to simply solve each operand and then com-
bine the two solutions so as to meet the op-
erators definition since this may generate so-
lutions which violate the shortest substring
criteria. Given the database: "a b a d ¢,
the query "a" ... "c¢" does not return:
{"a badc", "ad c"} which is the simple
cross product of the operands since one element
of the solution is properly a substring of the
other element. The actual solution is the set
of shortest substrings which satisfies the query,
namely the singleton solution: {"a 4 c¢"}.

Operator | Name Description

> Contains LHS that contain the RHS

/> Does Not Contain LHS that do not contain the RHS

< Is Contained In LHS that are contained in the RHS

/< Is Not Contained In | LHS that are not contained in the RHS

. Before LHS occurring before RHS in solution

- And Both LHS and RHS occur in any order in solution
Or One of LHS or RHS occurs in solution

Figure 3: GCL Operators

A macro to retrieve all function calls in the database:
CALLS = ("<funCall>" ... "</funCall>")

A parameterized macro to retrieve all calls to fun:
FUNCALL(fun) = (CALLS > fun)

The calls to the zero function:
FUNCALL("zero"

All function definitions and their preceding comments:
("<comment>" ... "</comment>") ... ("<funDef>" ... "</funDef>")

All iteration statements:
("<stmt>" ... "</stmt>") > ("for" | ("do" ~ "while"))

Figure 4: Sample GCL Queries

5 A MultiText Based

Repository System

The information content of source code has
many different aspects. One classification of
this information is to use the hierarchy sug-
gested by Perry’s Interconnection Models [19].
At the top level, only the largest, most general
syntactic constructs can be considered, such
as functions, modules and files (the unit in-
terconnection model). Next comes the syntac-
tic interconnection model which adds the iden-
tification of abstract syntax (statements, ex-
pressions and local declarations) of the source
file. Finally, comes the semantic interconnec-
tion model which extends the syntactic mod-
els with semantic information. However, un-
like the definition provided by Perry where se-
mantics are represented by axiomatic specifica-
tions, other aspects of source code can also be
included in this model. For example type and
scope information can be identified and consid-
ered as part of the semantic content of source
code.

When implementing a software repository, it
is usually necessary to determine which of these
interconnection models one is going to support.
However in MARS, the selection of the model is
only dependent on the effort that is put into an-
alyzing the source code to extract information.
It is possible to store all of this informationin a
MultiText database and retrieve it with equal
efficiency. The only limits on the semantic in-
formation stored is the ability to represent it
using supplementary text. Too much informa-
tion for a single source file is not a problem. If a
query returns too large a solution, it 1s because
the query was not precise enough. Increasing
the database size so that users can pose more
exact queries has virtually no effect on solu-
tion time and is therefore an advantage, not a
weakness. The effect of database size on query
solution time will be discussed in section 7.

A program analyzer for the generation of
supplementary text can be as simple as a lex-
ical scanner, or as complicated as a complete
language interpreter, depending upon the dif-
ficulty of the desired analysis. Currently, we
have built a parser (using YACC) for the C lan-
guage and can extract both syntactic (an AST)
and type information from a syntactically cor-

rect program. Supplementary text generated
by our analyzer is stored in a set of files com-
plementing the original source text. Both sets
of files are then used to construct a repository.
If, a higher level (coarser) program model is
desired, it is possible to delete any unwanted
supplementary text prior to constructing the
repository, resulting in a smaller repository.

Figure 5 contains a short C program which,
somewhat like the Unix unexpand command,
converts whitespace to tabs and figure 6 over-
lays it with the supplemental text that is gen-
erated by our analyzer. Source code entered
into MARS is typically preprocessed first, but
we chose not to do so in this example for the
purpose of simplification. As a result, forward
definitions are not available and thus defined
indirections can not be generated for getchar,
putchar and EOF. Declarations in C have the
potential to be very complex. To create a sup-
plemental text schema that is consistent for all
declarations, only the declaration name and its
declaration specifier are identified. Other com-
ponents such as type specifiers, type modifiers
and storage class specifiers are ignored.

The MultiText data model treats all data
in a uniform manner, viewing it as a series
of tokens separated by supplementary tokens
and non-word characters. It does not mat-
ter if two token sequences came from source
files written in the same language — both are
merely indexable sequences to be stored in the
database. Thus, source files from many dif-
ferent languages can be entered into the same
repository and queried using the same tools.
Documentation such as Unix man pages, tex-
info, Postscript and LaTeX files can also be
stored in the repository. By storing the en-
tire contents of the input files, constructs which
other systems do not explicitly include in the
conceptual model, such as comments, are ac-
cessible to be queried.

There is no requirement to use any specific
schema, or even a single schema for the supple-
mentary text generated for a particular source
file. Multiple analyses, each generating differ-
ent supplementary text, can be performed and
the results merged when the database is con-
structed. The supplementary text generated by
our analyzer and shown in figure 6 is only one
of many possible schemas for the C program-

/* Quasis unixs unexpandz functiong */
#includeg <stdiojg.hi1>

char, spc_to_tabys (charis ci5)

{

returnis ((c17 '= \x2013) ? ¢y :

}

ints; mainss (intsz argess, charss *argvag[])

{

charsy cag;

\t720);

d029 {
c3o = getchars();
c3z = spc_to_tabgs (C34);
putcharss (c36);

} whiles7 (c3s '= EOF39);

returnyg (041);

}

Figure 5: A Short C Program

ming language. The flexibility imparted by the
lack of requirements on the supplementary text
schema allows the system to be used in a va-
riety of ways. The only necessary requirement
is that either the query tools or the repository
user be aware of the actual strings which make
up the supplementary text so that queries can
be constructed. It is not even necessary to be
aware of the entire schema, one only needs to
know enough to formulate a query to solve the
problem at hand.

An initial prototype of MARS has been im-
plemented and tested on the source code for
the Apache web server and the GNU C com-
piler. For testing purposes a simple two window
system to enter queries and view their results
has been provided. Although usable, we do not
consider this to be more than a temporary in-
terface, to be replaced as we explore other ap-
plications. One alternative is to link MARS to
an existing system such as the Portable Book-
shelf (PBS) [22] a variant of the Software Book-
shelf [13]. While providing powerful browsing
facilities for inspecting source code, the PBS
does not have equivalent searching facilities.
Extending the PBS with the ability to perform

GCL queries complements its existing capabil-
ities. The addition of MARS to the PBS is
detailed more fully in [21].

6 Applications of the Sys-
tem

One common, though highly informal, software
reuse technique consists of locating some source
code which does approximately what is desired
and then modifying it so that it is suitable for
the new application. MARS is an ideal tool
for supporting this technique since it permits
users to describe source code in terms of its
content. In one possible scenario, a program-
mer wishes to setup a Unix socket connection
to another machine. Knowing that the socket
system call is required, the programmer con-
sults the appropriate man page and learns that
the gethostbyname and listen system calls
must be used. Unfortunately, these calls have
complicated parameters. What is needed is an
example code fragment which can be copied
and modified for the current program. Code
which locates suitable sample code fragments,

<file>< fileHeader>
<fileName>unexpand;.cs< file Name>
<language>Cs< /language>
<schema>MARS.4< /schema>

< /fileHeader>< fileBody>

<comment>/* Quasis unixg unexpand; functiong * /< /comment>
<include>#tincludegy << fileName>stdio g.h11 < /fileName>>< /include>

<funDef><declr>chariy <funName>spc_to_tabis</funName>
<params>(charis <name>ci5</name>)</params>< /declr>
<body>{
<stmt><keyW>returnis</key W>
<expr>(<cond>< guard>(<varRef><defined loc=14,15>c17</varRef> =
<const>\x201g< /const>) < /quard>
? <then><wvarRef><defined loc=1/,15>c19< /varRef>< /then>
1 <else><const>"\t’q0< fconst>< /else>< /cond>)< fexpr>;< /stmi>
}</body>< /funDef>

<funDef><declr>inty, <funName>mainyy</funName>
<params>(intyz <name>argceqs</name>,
chargs ¥*<name>argvas</name>[])</params></declr>
<body>{
<decl><declr>chars; <name>cqs</name></declr>;< /decl>
<stmt><keyW>doge< /keyW> <block>{
<expr><varRef><defined loc=27,28>c30< /varRef> =
<funCall>getcharsz; ()< /funCall>< /expr>;
<expr><varRef><defined loc=27,28>c32< /varRef> =
<funCall><defined loc=12,20>spc_to_tabss
(<varRef><defined loc=27,28>c34< /varRef>)< /funCall>< /expr>;
<ezpr><funCall>putcharss
(<varRef><defined loc=27,28>c3s</varRef>)< /funCall>< /expr>;
}< /block> <keyW>whilesr< /keyW>
<expr>(<varRef><defined loc=27,28>c33</varRef> =
<macroCall>EOF35< /macroCall>) < /expr>;< /stmt>

<stmt><keyW>returnag</keyW> <expr>(<const>041 < /const>)< fexpr>;< /stmt>
}</body>< /funDef>
< /fileBody> < file>

Figure 6: Supplemental Text Generated for a C Program

which in this case is a set of function defini-
tions, can be found in the query of figure 7.
During maintenance activities, it is fre-
quently necessary to locate a function’s def-
inition when one encounters a function call.
Programmers familiar with grep employ a pro-
gramming style that causes function definitions
to span several lines so that the function name
occurs as the first element of one of the lines.
Thus, for the definition of the function foo
the regular expression “foo applied to all the
source files will locate the desired definition.
In GCL, it is possible to write a simple query
which performs the same task, but which does
not require special formatting and will not re-
turn any false positive results as did grep. The
GCL query to locate foo’s definition would be:

("<funDef>" ... "</funDef>") >
(("<funName>" ... "</funName>") >
”fOO”)

Another technique supported by MARS, and
which can not be performed in other repository
systems, is searching the contents of comments.
Programmers often use comments to indicate
sections of code that are incomplete or in need
of improvement by preceding the code with a
comment containing a string like TODO. Using
grep only the line containing the string can be
retrieved, but with the GCL query:

("<comment>" ... "</comment>") > "TODO"

the entire contents of the comment can be re-
trieved.

The results of one query often lead to the
formation of another. Consider the case where
a variable has an incorrect value. Query, Q1,
is formed and used to identify all possible vari-
able references in assignment or increment ex-
pressions. The maintainer may then wish to
see all the definitions of the references found
by Q1 to eliminate those of variables with the
same name in other scopes. This can be easily
done with the query:

defined@Q1

7 Discussion

Current approaches to source code repositories
have several limitations which we believe that

our system avoids: poor scalability and perfor-
mance, loss of context, language dependence,
and schema imposed limitations. Each of these
issues will now be discussed.

MultiText has been used successfully with
large databases of approximately 100 gigabytes
[9], as part of the annual National Institute of
Standards Text Retrieval Experiments. The
syntactic and type information obtained by
our current analyzer approximately doubles the
database size permitting up to 50 gigabytes of
source code to be stored without exceeding the
tested capacity of the MultiText system upon
which MARS is based. On a smaller database
consisting of one gigabyte of source code, com-
plex queries can be routinely solved in less
than a second using a desktop PC. This smaller
database is still larger than most software sys-
tems, indicating the applicability of MARS as
an efficient code exploration and maintenance
tool. Furthermore, the ability to efficiently deal
with large amounts of data eliminates any need
to limit the amount of information obtained by
analysis. The continuous operation of a Multi-
Text news archive at the University of Water-
loo for a multi-year period has lead to a stable,
robust and well tested system. As a result of
these properties, we believe MARS can be used
for large collections of source code without en-
countering any scalability problems.

Containment is one of the fundamental prop-
erties of an abstract syntax tree (AST) since a
node is frequently constructed such that it con-
tains a set of subtrees. In C, an if node from an
AST always contains a guard expression, a then
statement and, optionally, an else statement.
On examining the text of a C program, the text
of these subtrees is always a substring of the
text which forms the if statement. Thus, the
source code naturally provides the containment
relations which other repository systems must
artificially manage. Furthermore the contain-
ment operators of GCL provide an intuitive and
effective mechanism for describing containment
relationships. It is the distribution of contain-
ment relationships, which occurs when source
code 1s broken down into a set of entities, re-
lations or graph-nodes that is responsible for
the poor performance documented in reposito-
ries such as Omega [16]. MultiText, by using
a fundamentally different approach to manag-

("<funDef>" ... "</funDef>") >
(FUNCALL("socket") ~

(FUNCALL("listen'") ~ FUNCALL('gethostbyname")))

Figure 7: Query to Retrieve a Socket Example

ing source code provides powerful facilities for
managing containment relationships and avoids
performance problems these relationships can
cause.

As discussed in an earlier section, each doc-
ument can have its own data schema, since
supplementary text is added by an auxiliary
tool prior to the entering of the data into the
database. This characteristic provides a sys-
tem which allows multiple formats for the data
and eliminates any system dependency on the
data schema. We have shown how graph struc-
tures, relationships, entities and attributes can
be described using supplementary text thereby
providing equivalent representational capabil-
ity to other data models.

Different definitions for identifiers in differ-
ent languages can be a problem in MARS. In
Scheme, <=7-- 1s a valid identifier that does
not get stored in the repository’s index since,
according the the current definition of a token,
it contains only non-token characters. As it is
not indexed, 1t can not be queried upon. Fur-
thermore, supplementary text can not be used
to indicate that an identifier occurred since
there is no token for the supplementary text
to surround. In Fortran, where whitespace is
ignored, multiple tokens will be identified in
places where only a single source language lex-
eme (such as an identifier) occurs. The gener-
ation of multiple tokens thus prevents a user
from querying using the actual identifier since
it is not an indexed term. The solution to these
problems is to change the definition of a token.
We do not anticipate this to be a problem, but
have not yet investigated the impact of hav-
ing different token definitions for different in-
put files.

The shortest substring model employed by
the MultiText system can cause problems when
dealing with highly nested data. Recursive
grammar constructs in a language parser are
indicative of nested data. Currently, we must

either generate a different supplementary token
for each level of nesting or only generate supple-
mentary text for a predetermined nesting level.
In C programs, statements often contain other
statements, and so the existence of

<stmt> token* </stmit>

patterns nested within each other is frequent.
We have not yet attempted to implement so-
lutions to this limitation since we are unsure
of what the desirable behaviour should be. Do
programmers want solutions composed of the
innermost statements (shortest statements but
many of them), the outermost (longer state-
ments but few of them), or some tradeoff be-
tween solution element size and number of ele-
ments?

In other repository systems, the results of a
query come back in some ordering based upon
how they are physically stored in the database.
While MultiText returns solutions in the order
that they appear in the database, it can also or-
der them according to their expected relevance
using algorithms employed for information re-
trieval. The ability to rank the solutions to
queries is a new area of investigation when ap-
plied to source code and so it is unknown as to
its effectiveness. Does the ordering of query so-
lutions by relevance aid software maintainers?

Chang and Eastman [3] used the SMART in-
formation retrieval system to build a code li-
brary on which queries identified potential pro-
gram units suitable for reuse. Their technique
depended upon the identification of “reuse-
related attributes” and their storage in the sys-
tem. MARS can also perform this role if the
attributes are generated and stored as supple-
mentary text. SMART also has the ability
to rank query results but the different role in
which it was used did not investigate ranking
during maintenance and development activi-
ties.

We are also investigating the use of supple-

mentary text for the representation of control
and dataflow information. One of the possible
tasks which is desirable in a software analy-
sis environment is that of program slicing [23].
Our initial results at the use of supplementary
text, including indirections, for the storage of a
control flow graph have been encouraging, but
to formulate a query which recreates a program
slice, a program dependence graph [12] is neces-
sary. Though we are confident that supplemen-
tary text can be used to “overlay” a program
dependence graph on the source code, the ef-
ficiency and effectiveness of this representation
is an open problem.

Cross and Hendrix [10] have suggested that
markup is suitable for the representation of
program plan [24] information. Should further
research indicate that this is possible, MARS
would provide a flexible system for exploring
the retrieval of specific program plans using the
GCL query language.

8 Conclusion

By supplementing the textual content of source
code with additional structural and semantic
information, it is possible to enter source code
into the MultiText database system, creating
a versatile, easily queried software repository.
We have found the mechanism of supplemen-
tary text to be suitable for annotating con-
structs found in source code in order to iden-
tify its syntax and semantics. This technique
creates a seamless system capable of managing
heterogeneous collections of files, each of which
may have been analyzed differently. Code writ-
ten in a variety of languages can be combined
in the same repository and intermixed with
any desired documentation providing software
maintainers with access to additional resources.
The storage of the complete source file negates
the need to abstract it to satisfy some specific
data model, therefore making its entire content
available for querying and retrieval. By apply-
ing techniques for the management of large col-
lections of structured text to the problem of
creating a software repository, MARS provides
a new perspective on the management of com-
puter source code.

Acknowledgments

Support for this work has been provided by
NSERC, CITO, CSER and IBM CAS.

About the Authors

Anthony Cox is a PhD student in the Depart-
ment of Computer Science at the University of
Waterloo. His research interests include pro-
gramming language implementation, software
tools and development environments. His email
address 1s amcox@plg.uwaterloo.ca.

Charles Clarke is an Assistant Professor in
the Department of Computer Science at the
University of Waterloo. His research inter-
ests include information retrieval, program-
ming language implementation, software tools
and distributed applications. His email address
is claclarke@plg.uwaterloo.ca.

Susan Sim is a PhD student in the De-
partment of Computer Science at the Univer-
sity of Toronto working in software engineer-
ing with a focus on the maintenance of large
legacy systems. Her email address is sim-
suz@cs.toronto.edu.

References

[1] T. Brandes and K. Lewerentz. GRAS:
A non-standard database system within
a software development environment. In
Workshop on Software Engineering En-
vironments for Programming-in-the-large,
pages 113-121. GTE Laboratories Inc.,
June 1985.

[2] Scott Burson, Gordon Kotik, and Law
rence Markosian. A program transforma-
tion approach to automating software re-
engineering. In 7/th Annual International
Computer Software and Applications Con-
ference, pages 314-322. TEEE, October
1990.

[3] Yuk Fung Chang and Caroline FEast-
man. An information retrieval system for
reusable software. Information Processing

and Management, 29(5):601-614, 1993.

[4] Yih-Farn Chen, Michael Nishimoto, and
C. V. Ramamoorthy. The C information

[10]

[11]

[12]

abstraction system. [IFEEFE Transactions
on Software Engineering, 16(3):325-334,
March 1990.

Charles Clarke and Gordon Cormack. On
the use of regular expressions for searching
text. ACM Transactions on Programming
Languages and Systems, 19:414-426, 1997.

Charles Clarke, Gordon Cormack, and
Forbes Burkowski. An algebra for struc-
tured text search and a framework for its
implementation. The Computer Journal,

38(1):43-65, 1995.

Mariano Consens and Alberto Mendelzon.
Expressing structural hypertext queries in
graphlog. In Second ACM Conference on
Hypertext, pages 269-292. ACM, Novem-
ber 1989.

Mariano Consens, Alberto Mendelzon,
and Arthur Ryman. Visualizing and
querying software structures. In Interna-
tional Conference on Software Engineer-
ing, pages 138-156, May 1992.

Gordon Cormack, Christopher Palmer,
Michael Van Biesbrouck, and Charles
Clarke. Deriving very short queries
for high precision and recall. In Sewv-
enth Text REtrieval Conference (TREC-
7), Gaithersburg, Maryland, November
1998.

James H. Cross and T. Dean Hendrix.
Using generalized markup and SGML for
reverse engineering graphical representa-
tions of software. In Second Working Con-
ference on Reverse Engineering, pages 2—

6. IEEE, July 1995.

Premkumar Devanbu, Yih-Farn Chen,
E. Gansner, Hausi Muller, and J. Martin.
CHIME: Customizable hyperlink insertion
and maintenance engine for software en-
gineering environments. In 21st Interna-
tional Conference on Software Engineer-
ing, May 1999.

Jeanne Ferrante, Karl Ottenstein, and Joe
Warren. The program dependence graph
and its use in optimization. ACM Transac-
tions on Programming Languages and Sys-

tems, 9(3):319-349, July 1987.

[13]

[17]

[20]

P. Finnigan, Ric Holt, I. Kalas, S. Kerr,
K. Kontogiannis, Hausi Muller, J. My-
lopoulos, S. Perelgut, M. Stanley, and
K. Wong. The software bookshelf. IBM
Systems Journal, 36(4):564-593, Novem-
ber 1997.

Stan Jarzabek. Design of flexible static
program analyzers with PQL. IEEFE
Transactions on Software FEngineering,

24(3):197-215, March 1998.

Manfred Kamp. Managing a multi-
file, multi-language software repository for
program comprehension tools: A generic
approach. In Sizth International Work-
shop on Program Comprehension, pages

64-71. IEEE, June 1998.

Mark Linton. Implementing relational
views of programs. In SIGSOFT Sympo-
stum on Practical Software Development
Enuvironments, pages 132-140. ACM, April
1984.

Hausi Muller and Karl Klashinsky. Rigi:
A system for programming-in-the-large. In
10th International Conference on Software
Engineering, pages 80-86, April 1988.

Santanu Paul and Atul Prakash. A query
algebra for program databases. [EEE
Transactions on Software FEngineering,

22(3):202-217, March 1996.

Dewayne Perry. Software interconnec-
tion models. In 9th International Confer-
ence on Software Engineering, pages 61—

69, March 1987.

J. Rumbaugh, M. Blaha, W. Premer-
lani, F. Eddy, and W. Lorensen. Object-
Oriented Modeling and Design. Prentice
Hall, 1991.

Susan Sim, Charles Clarke, Ric Holt, and
Anthony Cox. Browsing and searching
software architectures. 1In International
Conference on Software Maintenance, Ox-

ford, England, September 1999.

Vassilios Tzerpos, Ric Holt, and Gary Far-
Web-based presentation of hier-
In 19th In-

maner.
archic software architecture.

[23

[24

]

[ham)

ternational Conference on Software Engi-

neering. ACM, 1997.

Mark Weiser. Program slicing. [EEFE
Transactions on Software FEngineering,

10(4):352-357, July 1984.

Linda Wills. Automated program recog-
nition: A feasibility demonstration. Arti-
ficial Intelligence, 45:113-168, September
1990.

