
Science of Computer Programming 60 (2006) 149–170
www.elsevier.com/locate/scico

GXL: A graph-based standard exchange format for reengineering

Richard C. Holta,∗, Andy Schürrb, Susan Elliott Simc, Andreas Winterd

aUniversity of Waterloo, School of Computer Science, Waterloo N2L 3G1, Canada
b Darmstadt University of Technology, Real-Time Systems Lab, Merckstraße 25, D-64283 Darmstadt, Germany

c University of California, Irvine, Department of Informatics, 444 Computer Science, Irvine, CA 92697-3425, USA
d University of Koblenz-Landau, Institute for Software Technology, Universitätsstraße 1, D-56070 Koblenz, Germany

Available online 17 November 2005

Abstract

GXL (Graph eXchange Language) is an XML-based standard exchange format for sharing data between tools. Formally,
GXL represents typed, attributed, directed, ordered graphs which are extended to represent hypergraphs and hierarchical graphs.
This flexible data model can be used for object-relational data and a wide variety of graphs. An advantage ofGXL is that it can be
used to exchange instance graphs together with their corresponding schema information in a uniform format, i.e. using a common
document type specification. This paper describesGXL and shows howGXL is used to provide interoperability of graph-based
tools.GXL has been ratified by reengineering and graph transformation research communities and is being considered for adoption
by other communities.
c© 2005 Elsevier B.V. All rights reserved.

Keywords:Graph exchange language; Graph-based tools; Data interoperability; Reengineering; XML

1. Introduction

GXL (Graph eXchange Language) is a standard format for exchanging graph-based data. It is the culmination of a
cooperative effort among an international group of researchers from disparate areas, including software reengineering
and graph transformation. Researchers and tool builders have had a growing interest in comparing and combining
approaches to their respective problems and leveraging each other’s results. These collaborations provide lessons
learned that are critical to advancing the maturity of the discipline. A standard exchange format for data facilitates
tool interoperability and allows users to select the most suitable approach or tool when building a workbench.

Interoperability is the challenge of enabling tools from different suppliers to work together. Wasserman [100] and
ECMA [21] describe taxonomies of tool interoperability focussing on the aspects of data-, control-, presentation-,
process-, and framework or platform interoperability.Data interoperabilityappears as a base for all other types of
interoperability.

∗ Corresponding author.
E-mail addresses:holt@plg.uwaterloo.ca (R.C. Holt), andy.schuerr@es.tu-darmstadt.de (A. Schürr), ses@ics.uci.edu (S.E. Sim),

winter@uni-koblenz.de (A. Winter).

0167-6423/$ - see front matterc© 2005 Elsevier B.V. All rights reserved.
doi:10.1016/j.scico.2005.10.003

http://www.elsevier.com/locate/scico

150 R.C. Holt et al. / Science of Computer Programming 60 (2006) 149–170

Data interoperabilityrequires the data to be compatible both syntactically and semantically. In other words, tools
need to agree on both the format and the meaning of this data. The graph-based data model ofGXL can be used to
represent both instance data and schemas. Thus,GXL provides a standardized notation for exchanging instance data
(graphs) including their structure definition (graph schemas). Both instance and schema graphs are encoded using
the same kind of XML (eXtensible Markup Language) documents [30]. While these schema graphs do not provide
semantics, they serve as a basis for users to agree upon semantics. This feature is important because it helps tools and
researchers communicate about the assumptions inherent in their approaches. This increased mutual understanding is
a critical step in building on each other’s work to increase the impact of research results.

In addition to being a generic format for representing graph structures,GXL is also suitable for object-relational
data. Consequently,GXL can be used to represent data from a wider range of applications, including data repositories
and factbases from reengineering tools.

Organisation of this paper

This paper is organised as follows. The next section provides background on interoperability of reengineering tools
and their requirements for a standard exchange format. This background provides a motivation for the design decisions
for GXL, including the selection of features to be included in the graph model.Section 3describes how these features
are used to represent graph-based instance data from software reengineering. The syntax ofGXL is given by the XML
DTD in Section 3.4. Section 4explains how the same graph features are used to represent graph schemas. Adoption
of GXL is outlined inSection 5along with some examples of howGXL has been used successfully to facilitate data
interoperability between reengineering tools. The paper concludes with a summary and a discussion of howGXL
meets the requirements for data interoperability between reengineering tools.

2. Data interoperability of reengineering tools

GXL was created to fulfil the need to exchange data between reengineering tools. Previously, interoperability
between tools relied on converters between local formats. This approach requires case-by-case negotiation of exchange
syntax, schema, and even semantics. As the research area matured, it became apparent that a standard exchange format
was needed and that this format should provide a mechanism to help articulate these schemas and semantics.

These experiences with interoperability and local file formats form the context for the development ofGXL.
Moreover, they circumscribe the requirements and criteria for success for a standard exchange format. In this section,
we will describe this background and how it informed the emergence ofGXL .

2.1. Interoperability of graph-based tools

A variety of reengineering tools employ graphs as an internal data representation. With improved data
interoperability, reengineering workbenches can be composed by choosing the best component for a particular task.
A typical reengineering workbench consists of three types of tools: Extractors, Abstractors, and Visualizers [94].

Extractors
These tools extract information from software artefacts, such as source code. Examples of such extractors for the

C/C++ source language are ACACIA [11], CPPX [18], and Columbus/CAN [32]. ASIS (ADA Semantic Interface
Specification) [60] offers similar functionality. Data extracted by these tools are usually exported as abstract syntax
trees or graphs.

Abstractors
These components of reengineering workbenches analyze the extracted data, generating further information, and

sometimes changing the form of the data. Tools of particular interest here treat the data as graphs. These tools include
the PROGRES graph transformation system [85] and GUPRO [24]. General graph-based query mechanisms such
as Grok and GReQL are used for analyzing graph-structured data [108]. RPA uses a relational approach to analyze
software systems [81]. A generic approach for generating analyzers operating on abstract syntax trees is given e.g. in
GENOA [19]. ASTLOG uses a Prolog-based environment for analyzing programs [15]. Further specialized abstractors
have been developed for architectural analysis and recovery [40,31], for control flow, data flow, and dependency
analysis [101,12], and for software metrics [73].

R.C. Holt et al. / Science of Computer Programming 60 (2006) 149–170 151

Visualizers
These tools display the information derived in the previous steps. This information can be visualized textually

or graphically. Source code browsers are typical textual visualizers [69,13]. Graphical visualizers have been used to
display class diagrams [28], sequence diagrams [80], statecharts [8] and software architectures [103]. General graph
drawing tools — for instance daVinci [36], Graphlet [54], and GraphViz [46] — have been used to visualize small-
and medium-sized graphs. Large complex graphs are better handled by visualization tools designed for reengineering,
such as Rigi [103] and SHriMP [91].

2.2. Collaborating tool sets

The approaches and tools shown above provide good support for various aspects of reengineering. Individual
tools from different workbenches have been combined to tackle a range of reengineering challenges. Here are some
illustrative examples of the data exchange. More of them can be found at [59].

• Acacia and PBS. Acacia is a tool kit by AT&T Labs [10] for analyzing and visualizing programs written in
C++. There is a command line interface that allows extraction of facts about a parsed C++ program into Acacia’s
database. The analysis is at the external declaration level. Acacia was used to extract facts from the Mozilla source
code [42] that were subsequently converted into a corresponding TA stream (Tuple Attribute Language) [55] and
analyzed using PBS (Portable Bookshelf) [56] tools.

• Dali and SNiFF+. The Dali reverse engineering tool kit was created by the Software Engineering Institute
[64,65]. This tool kit combines features from a number of tools. To analyze the Linux kernel, SNiFF+’s API [3]
was used as a fact extractor. These facts were stored in TA [55], analyzed using a relational database, and viewed
using Rigi [104].

• CPPAnal and GUPRO. The CPPAnal tools by Harry Sneed [90] extract source code information on an architectural
level from large software systems and store them in SQL tables. By using GraX [26] these tables are transferred
into TGraphs [27] for further analysis with GUPRO tools from the University of Koblenz [25]. These TGraphs are
used in GUPRO to browse large graphs [68].

All of these collaborations were made possible through converters that take files from one local format and
transform the data into another local format. While this approach has been used successfully, it does not scale well. In
other words, a converter would need to be written for eachpair of local data formats and this effort quickly becomes
unmanageable. A standard exchange format serves as an intermediary for these file formats; tool developers would
only need to convert to and from the local format and the exchange format.

There are a number of data formats that are used internally in a reengineering workbench, such as RSF [104]
and GraX [26]. These formats, while efficient, are not suitable as anexchange formatbecause they have different
underlying graph models, are optimized for particular analyses, and frequently contain artefacts that reflect the tool
internals. For instance, RSF can represent hierarchical graphs that are not supported by GraX. By the same token,
GraX provides extensive support to represent and exchange the structure of graphs by schema graphs. A standard
exchange format was needed that is flexible and general enough to represent the most common representations of
data from software systems. Such a format was required for interoperability of different reengineering tools to support
exchange of data without loss of detail.

GXL provides such acommon and generally applicable formatfor interchanging data on software systems between
Extractors, Abstractors, and Visualizers, as well as other tools used to support software evolution.

2.3. Requirements for a standard exchange format

Examination of the collaborations in the previous subsection and further analysis of data interoperability [59,78,67,
4] provide insights into the problem of standard exchange formats. These in turn lead us to the following requirements
for such an exchange format in reengineering: universality, typing, flexibility, ease of use, scalability, modularity, and
extensibility.

Universality: A standard exchange language shall support data exchange for multiple purposes. In a reengineering
exchange format, this includes exchanging data about different programming languages and at different levels

152 R.C. Holt et al. / Science of Computer Programming 60 (2006) 149–170

of abstraction, ranging from fine-grained representations such as abstract syntax trees and more coarse-grained
representations such as architectural descriptions. A standard exchange format needs to be flexible enough to be an
intermediary in these and other situations.

Typing: A standard exchange language shall be typed. Knowing the types of objects being exchanged makes it
easier to interpret the exchanged data. Typed exchange languages also permit validation of exchanged data and
allow adaptation to problem-specific data exchange. Defining types for data and their interdependencies helps in
standardizing domain-specific exchange models.

Flexibility: A standard exchange language shall be flexible. It should be easily adaptable to exchanging domain
specific data (cf. typed language) to provide far reaching use. Furthermore, it must allow annotations on all kinds
of data objects, e.g. layout information, source code references, and metrics.

Ease of use: A standard exchange language shall be designed to provide easy tool implementation. These tools
include import and export filters, translators from and to other formats, and helpers to validate and ensure the
integrity of exchanged data.

Scalability: A standard exchange language shall cope with data software systems independently from their level
of granularity. It has to scale for data of arbitrary magnitude. Software systems in reengineering can be quite
large, sometimes consisting of millions of lines of source code, leading to abstract syntax trees. Thus, the standard
exchange language and the supporting tool sets have to deal with a large amount of data, efficiently.

Modularity: A standard exchange language shall support modular and incremental data exchange, so that data can
be separated, hidden, or shared as needed. In other words, it should be possible to exchange data sets in parts, as
subsystems, or in multiple documents.

Extensibility: A standard exchange format shall provide support for extending the modeling concepts used by
specialized versions of the exchange language. Extensibility allows the exchange format to be used in additional
domains, through the addition of new elements or through the use of the format as a sublanguage.

These requirements for a standard exchange format for reengineering provided the starting point for our design
decisions in creating GXL. In the next section, the requirements are mapped to specific features in the format.

2.4. Graph exchange formats in reengineering

The examples of collaborating tool sets inSection 2.2demonstrate the need for a general and applicable exchange
format for reengineering data. These tools typically use object-relational or graph-based file formats. The underlying
data model in the standard exchange format needs to be robust and flexible enough to act as a bridge between
myriad existing formats. Thus, a widely applicablelingua francain reengineering needs to be anadaptable, graph-
based format. The high-level requirements on exchange formats presented inSection 2.3motivate decisions on more
technical requirements for the suggested reengineering exchange format. In this section, we relate those requirements
to specific design decisions regarding features inGXL .

We decided to create a new format rather than use an existing one because

• we needed a format that is simultaneously compatible with as many of these as possible,
• it has only and all the necessary graph features,
• it is flexible enough to work with disparate data and different levels of abstraction, and
• it is simple.

To ensure on ease on use, specifically ease of implementation, we decided to use XML. This standard for semi-
structured data allows us to define our own format, while at the same time taking advantage of XML infrastructure for
constructing tools. One repercussion of this decision is the size of the files being exchanged (cf. scalability). These
files will be larger due to XML syntax and the length of tag and attribute names. However, this is a problem faced by
all XML users and standard compression techniques are effective remedies due to the amount of repetition in the files.

In addition to gathering requirements for a standard exchange format, we analyzed a number of existing
formats. This investigation identified both the kinds of features we should support and different approaches to
satisfying our requirements. The formats that we studied included the internal representations of tools in software
engineering and reengineering (e.g. ATerms [98], DiaGen [77], GraX [26], RPA [81], RSF [104], TA [55]), in graph
databases (e.g. PROGRES [85]), and in graph drawing (e.g. daVinci [36], dot [46], GML/Graphlet [41], GRL [79],
XGMML [29], GraphXML [53]). From this review, we identified nine features that we included inGXL . These
features are described below:

R.C. Holt et al. / Science of Computer Programming 60 (2006) 149–170 153

Format Feature

G
ra

ph
el

em
en

ts

H
yp

er
-

ed
ge

s

F
irs

tc
la

ss
el

em
en

ts

A
ttr

ib
ut

es

O
rd

er
in

g

H
ie

ra
rc

hy

G
ra

ph
sc

he
m

as

E
xt

en
si

on
po

in
ts

S
im

pl
ic

ity

Software Engineering and Reengineering

Aterms [98] •1 • •
DiaGen [77] • • • •
GraX [26] • • • • • •
RPA [81] •2 •3 • •

RSF [104] • • • • • •
TA [55] • •3 • • •

Graph Transformation

PROGRES [85] • •3 •4 •

Graph Drawing

daVinci [36] •1 • • •5

dot [46] • • • • •
GML [41] • • • • •

GraphML [5] • • • • • •
GraphXML [53] • • • • •

GRL [79] • • • •5

XGMML [29] • • • • •

1 Aterms and daVinci are
based on terms.

2 RPA is based on sets and
relations.

3 Only nodes are viewed
as first class elements.

4 Only nodes can be at-
tributed.

5 Nodes and edges may have
types, but an explicitly de-
fined schema is not sup-
ported.

Fig. 1. Supported features in graph formats.

Graph elements: Basic graph elements like nodes, directed and undirected edges and attributes must be supported.
For maximal flexibility, we permit both directed and undirected edges in the same graph.

Hyperedges: N-ary relationships(hyperedges) must be supported natively. Tools or formats that use hyperedges
need to be able to use the exchange format as well. Mappingn-ary relationships onto special nodes and binary
edges is an unsatisfactory work-around that does not provide equivalent structural characteristics.

First class elements: Nodes, edges, and hyperedges must be identifiablefirst-class elements, or objects, such that
they can have unique identifiers. Viewing edges as first class elements treats them as equal to nodes and enables
multiple edges between nodes.

Attributes: All graph elements may have attributes added to them. This also includes the attributes themselves, e.g. to
express layout features of attributes.

Ordering: Ordering of incidences, i.e. the order of edges incident on a node, must be available such that ordered lists
of parameters or declarations can be conveniently expressed.

Hierarchy: Hierarchical graphs must be supported to provide simple sub-structuring of graphs. Subgraphs may be
exchanged as separate documents.

Graph schemas: The format must be able to define graph classes, or schemas. These are needed to constrain the form
of graphs used in different domains of application. These graph schemas permit the specification and use of types.

Extension points: The exchange language syntax has to be extensible, so that the format can be easily adapted to
other areas. Furthermore, extension points must be available to permit enhancement of the language.

Simplicity: The exchange format has to be simple, so it can be read and understood by humans. This feature is
achieved through a document type definition with a modest number of elements and corresponding exchange doc-
uments that are also small.

Fig. 1 lists graph-based representations that we studied and their support for nine features. It shows that a graph
exchange format which supports all required features in one common language does not exist.GXL integrates these

154 R.C. Holt et al. / Science of Computer Programming 60 (2006) 149–170

GXL Requirements for Exchange Formats

Features Universality Typing Flexibility Ease of Use Scalability Modularity Extensibility

Graph
elements

•

Hyperedges •
First class
Elements

•

Attributes • •
Ordering •
Hierarchy • • •
Graph
schemas

• •

Extension
points

• •

Simplicity • •

Fig. 2. Requirements for graph-based exchange languages.

features in a general graph model (cf.Section 3.4). Additionally, GXL is adaptable because it supports metamodel-
based definition of graph classes (cf.Section 4) and extensions to the language (cf.Section 3.4).

Fig. 2 illustrates how the features selected forGXL fulfil the requirements identifiedSection 2.3. Every feature
satisfies at least one requirement and every requirement is met by a feature. The universality requirement was achieved
by including graph elements, hyperedges, attributes, and ordering. This collection of features in theGXL graph model
ensured compatibility with a large number of graph formats. These features were also considered primitive because
they could not be achieved through the combination of other features. The typing requirement was implemented
through graph schemas. While graph schemas appeared in only a few formats, their expressive power and flexibility
made them an attractive mechanism for supporting typing. Flexibility was further achieved inGXL with user-defined
attributes and extension points. The Ease of Use requirement was satisfied through simplicity and the decision to use
XML. Scalability was enabled using the Hierarchy and Simplicity features. Modularity was implemented through the
Hierarchy feature and some XML features. Finally, Extensibility was realized using Extension Points.

In addition toGXL, there are other XML-based formats for exchanging graphs or software artefacts in software
engineering and reengineering. GraphML [5] is a graph exchange format oriented towards graph layout which
succeeds GraphXML. GraphML offers a core graph model similar toGXL . Whereas adaptability ofGXL is based
on metamodeling technology for defining convenient graph schemas (cf.Section 4), adaptability of GraphML is given
by extending the GraphML document definition. Thus, GraphML documents use different, domain-specific document
definitions with a common core. In contrast,GXL uses one common, application-independent document definition.

Another relatively minor difference is that GraphML has the concept of ports. Ports are properties of nodes and
are convenient for controlling the incidence of edges. Since ports can be mapped onto existing concepts inGXL, we
elected to not add another feature to support them. For example, one possible way to represent ports inGXL is by
usingedge attributesto indicate the port’s name ororderingto indicate numbered ports.

The graph drawing community has compared the two approaches and found that they are compatible [6]. As part
of this exercise, a set of filters for converting between GraphML andGXL were developed.

Exchange of graph-based data can (also) be accomplished using MOF (Meta-Object Facility) [76] as modeling
language and XMI (XML Metadata Interchange) [110] as exchange language. While MOF does not have native
concepts for modeling graphs, e.g.n-ary relationships, graph properties, and link attributes, it may be used to define
a graph modeling and exchange language. Once this graph model has been defined, XMI can be used to generate an
XML document specification. MOF/XMI andGXL are similar in that both are generic exchange languages based on
metamodeling technology. However, there are three important differences.

One, the document type specifications created by MOF/XMI are complex and contain a large number of XML
elements that are not directly relevant to encoding the data, e.g. elements for CORBA compatibility. TheGXL
document specification was implemented by creating a UML class diagram that defines the underlying graph model
and then manually deriving the elements and attributes. Consequently, the design ofGXL is much cleaner and requires
only a small number of elements (cf. seeSection 3.4for more details).

R.C. Holt et al. / Science of Computer Programming 60 (2006) 149–170 155

Fig. 3. Genealogy ofGXL .

Two, each distinct MOF metamodel generates a new document type specification. The advantage is the XML
format that is created is specially tailored for specialized exchange scenarios. The disadvantage is that tools then must
also be tailored for each XML format generated. Here,GXL provides one common XML notation for exchanging
variants of graph-based data.

Finally, in MOF/XMI two different syntaxes are used for representing instance data and for exchanging the
metamodels of that data. The metamodels are stored as document type specifications, that is, DTDs or XML Schemas.
Instance data are represented as XML documents in a variety of notations. In contrast,GXL uses a single common
document type specification (cf.Section 4) independent from its use for exchanging graph instances or graph schemas,
which simplifies the task of developing tools to work with the format.

Other XML-based approaches (cf. [71,116]) to storing, analyzing, and exchanging program data make use of the
tree structure inherent in XML documents, that is, DOM trees. XML tags are added to source code so that the structure
of the XML document mirrors the abstract syntax tree. Consequently, when the XML document is parsed, the parse
tree for the program is re-created. These approaches differ fromGXL because they require different document type
specifications for different languages and they are restricted to tree like structures. Despite these differences, both the
XMI and the DOM approaches are both based on XML, so data can be interchanged withGXL by using appropriate
XSLT scripts.

In summary,GXL seeks to be ageneral, compact and simple graph-based exchange format.

2.5. Genealogy ofGXL

The genealogy ofGXL presented in this section shows howGXL matured and how other graph formats in
reengineering and graph technology influenced the development ofGXL . The genealogy ofGXL is depicted inFig. 3.

Development ofGXL began with a merger ofGRAph eXchange format (GraX)[26], Tuple Attribute Language
(TA) [55], and the file format from thePROGRESgraph rewriting system [85] introducing the general graph features.
This collection was presented inGXL 0.4.2 for comment by the general community. Criticisms and suggestions
directed us to consider including features from a broader collection of formats.

The development ofGXL was advanced during various conferences and workshops since 1998. Initial discussions
on defining a general exchange format for reengineering tools were held at WCRE1998 [105] and at CASCON

156 R.C. Holt et al. / Science of Computer Programming 60 (2006) 149–170

Fig. 4. Typed, attributed, directed, ordered graph.

1998 [17]. Approaches for graph-based exchange formats were discussed during meetings at WCRE1999 [106],
and GROOM 2000 [107]. These interactions and investigations resulted in an initial prototype ofGXL that
was presented at the ICSE 2000 Workshop on Standard Exchange Formats (WoSEF) [88]. This proposal was
subsequently discussed, compared, and critiqued at meetings on exchange formats at APPLIGRAPH [35] and
Graph Drawing [84]. Refinements of the prototype were presented at conferences and workshops throughout 2000,
including CASCON 2000 [58,87] and WCRE2000 [66]. GXL was ratified as a standard exchange format in software
reengineering at the Dagstuhl Seminar “Interoperability of Reengineering Tools” in January 2001 [23].

Soon afterwards,GXL was presented at meetings in other research areas. The graph transformation community
is usingGXL as a starting point for theGraph Transformation Exchange Language(GTXL) [45,93]. In this context
GXL is being used to represent graphs and work is under way to add features for representing transformation rules.
This decision was made after the APPLIGRAPH meetings for exchange formats [35] and the GraBaTs Workshop
on Graph-Based Tools [74]. Discussions have been held with the graph drawing community to makeGXL a standard
exchange format for graph layouts as well. Presentations were made at GD2000 [84] and a panel held at GD2001 [43].

SinceGXL specifies only graphs, it remains to standardize schemas to further describe what these graphs represent.
In other words, standard schemas, or reference schemas, are needed for being fully interoperable to data interchange.
While this approach can be said to merely shift the debate from syntax to semantics, it is a desirable change because
it raises negotiations about interoperability to a more conceptual level. This level of abstraction is one that is properly
in the realm of discourse for research as it is more likely to lead to breakthroughs in understanding.

The current version ofGXL, news about ongoing development efforts, and up-to-date information including
tutorials and documentation are available athttp://www.gupro.de/GXL.

3. Exchanging graphs with GXL

In the previous section, we argued that a graph-based standard exchange format is appropriate for reengineering. In
this section, we discuss the specific graph features included inGXL and how these can be used to represent software.

GXL supports graphs which can have directed or undirected edges, typed nodes and edges, attributes attached
to nodes and edges, and ordered edges [27]. Section 3.1illustrates the use of theseGXL features. To this set of
features,GXL addsn-ary edges (hyperedges) as well as hierarchical graphs (subgraphs within graphs).Sections 3.2
and3.3 illustrate the use of these features. Finally, theGXL language definition is given inSection 3.4using an XML
document type definition (DTD).

3.1. Exchanging typed, attributed, directed, ordered graphs

Fig. 4 shows a fragment of source code along with its abstract syntax graph, which we depict using UML object
diagram notation [83]. The diagram is at the level of an abstract syntax graph. In the program, functionmain calls
functionmaxin line 8 and functionmin in line 12.

http://www.gupro.de/GXL
http://www.gupro.de/GXL
http://www.gupro.de/GXL
http://www.gupro.de/GXL
http://www.gupro.de/GXL

R.C. Holt et al. / Science of Computer Programming 60 (2006) 149–170 157

<?xml version = "1.0" ?>

<!DOCTYPE gxl
SYSTEM "gxl-1.0.dtd">

<gxl xmlns:xlink="www.w3.org/1999/xlink">
<graph id = "simpleGraph"

edgeids = "true">
<type xlink:href =
"schema.gxl#Schema"/>
<node id = "v1" >

<type xlink:href =
"schema.gxl#Function"/>
<attr name = "name" >

<string>main</string>

</attr>
</node>

<node id = "v2" >

<type xlink:href =
"schema.gxl#FunctionCall"/>

</node>

<node id = "v3" >

<type xlink:href =
"schema.gxl#FunctionCall"/>

</node>

<node id = "v4" >

<type xlink:href =
"schema.gxl#Function"/>
<attr name = "name" >

<string>max</string>

</attr>
</node>

<node id = "v5" >

<type xlink:href =
"schema.gxl#Function"/>
<attr name = "name" >

<string>min</string>

</attr>
</node>

<node id = "v6" >

<type xlink:href =
"schema.gxl#Variable"/>
<attr name = "name" >

<string>a</string>

</attr>
</node>
<node id = "v7" >

<type xlink:href =
"schema.gxl#Variable"/>
<attr name = "name" >

<string>b</string>

</attr>
</node>
<edge id = "e1"

from = "v1" to = "v2">
<type xlink:href =
"schema.gxl#isCaller"/>
<attr name = "line" >

<int>8</int>
</attr>

</edge>

<edge id = "e2"
from = "v1" to = "v3">
<type xlink:href =
"schema.gxl#isCaller"/>
<attr name = "line" >

<int>12</int>
</attr>

</edge>

<edge id = "e3"
from = "v4" to = "v2">
<type xlink:href =
"schema.gxl#isCallee"/>

</edge>

<edge id = "e4"
from = "v5" to = "v3"
<type xlink:href =
"schema.gxl#isCallee">

</edge>

<edge id = "e5"
from = "v6" to = "v2"
toorder = "1">
<type xlink:href =
"schema.gxl#isInput"/>

</edge>

<edge id = "e6"
from = "v7" to = "v2"
toorder = "2">
<type xlink:href =
"schema.gxl#isInput"/>

</edge>

<edge id = "e7"
from = "v6" to = "v3"
toorder = "2">
<type xlink:href =
"schema .gxl#isInput"/>

</edge>
<edge id = "e8"

from = "v7" to = "v3"
toorder = "1">
<type xlink:href =
"schema.gxl#isInput"/>

</edge>

<edge id = "e9"
from = "v6" to = "v2"
<type xlink:href =
"schema.gxl#isOutput">

</edge>
<edge id = "e10"

from = "v7" to = "v3"
<type xlink:href =
"schema.gxl#isOutput">

</edge>

</graph>

</gxl>

Fig. 5.GXL representation of graph fromFig. 4.

In the diagram, functionsmain, max, andmin are represented by nodes of typeFunction, while variablesa andb
are represented by nodes of typeVariable. These nodes are attributed with the names of the functions and variables.

The calls to functionsmaxandmin are represented byFunctionCallnodes. These nodes are associated with the
caller byisCaller edges and with the callee byisCalleeedges. TheisCaller edges are attributed with aline attribute
giving the line number that contains the call. Parameters (represented byVariablenodes) are associated with function
calls by isInputedges. The ordering of parameter lists is given by the ordering incidences ofisInputedges pointing
to FunctionCallnodes.1 The first edge of typeisInput incident to function callv2, for the callmax(a,b), comes from
nodev6 representing variablea. The second edge of typeisInputcomes from the second parameterb (nodev7). The
ordering of the parameters of the other call (v3) are represented analogously.

GXL provides constructs for exchanging graphs such as the one inFig. 4. These constructs represent nodes, edges,
and edge ordering, as well as type information and attribute values.

Fig. 5depicts the graph fromFig. 4as an XML document following theGXL structure. The second and third lines
of Fig. 5give the DTD version forGXL asgxl-1.0.dtd. The body of theGXL document is enclosed in<gxl> tags. The
fifth line gives the name of the graph assimpleGraph and specifies that edges are to have identifiers, such ase5. Next,
the graph refers to its associated graph schema namedSchema (cf. Section 4) stored in fileschema.gxl.

Nodes and edges are represented by<node> and<edge> elements. These can be located by theirid attribute.
Incidence information of edges including edge orientation is stored infrom and to attributes within<edge> tags.

1 In contrast to UML, which orders adjacencies,GXL uses ordering of incidences.

158 R.C. Holt et al. / Science of Computer Programming 60 (2006) 149–170

Ordering of incidences is also represented here. Attributesfromorder andtoorder represent the order of an edge in the
incidence list of its start and target node. Node and edge types are represented by links pointing to the appropriate
schema information. These links are enclosed in<type> elements.

The <node> and <edge> elements may contain further attribute information. The<attr> elements describe
attribute names and values. For compatibility with tools using typed attributes,GXL also offers typing of attributes.
Usually, this information is defined within the schema of a given graph class (cf.Section 4). But, sinceGXL is not
constrained to use graph schemas, attribute types are specified within the instance documents by appropriate tags.
Using schemas, additional constraints ensure that these attribute tags match the schema specification. Like OCL [99],
GXL provides<bool>, <int>, <float>, and<string> attributes. Furthermore, enumeration values (<enum>) and
URI references (<locator>) to externally stored objects are supported.GXL offers composite attributes including
sequences (<seq>), sets (<set>), multi sets (<bag>), and tuples (<tup>). <Attr> elements only contain one data
element, e.g.<int> or <set>. But, they may contain other<attr> elements to exchange attributes of attributes.

3.2. Exchanging hypergraphs

GXL supportshypergraphs[2] (graphs withn-ary edges) as well as graphs with binary edges. Thesen-ary edges
can be typed, attributed, directed or undirected and ordered.

Fig. 6 shows a hypergraph in UML notation, modeling the function calla = max(a, b) by a 5-ary hyperedge of
typeFunctionCall2. The diamond, representing the hyperedge, is connected by lines (tentacles) to its relatedFunction
andVariablenodes. These tentacles are marked with roles, identifyingcaller, callee, input, andoutput. Numbers on
the tentacles give the ordering of parameters. The hyperedge has aline attribute giving its line number as8.

The GXL representation of this hyperedge is given inFig. 7. Hyperedges are represented by<rel> (relation)
elements. Like<node> and<edge> elements,<rel> elements can contain type (<type>) and attribute (<attr>)
information. Tentacles, which point to the related graph objects (target), are represented by<relend> (relation end)

Fig. 6. Hypergraph.

. . .
<rel id = "r1" >

<type xlink:href = "schema2.gxl#FunctionCall2"/>
<attr name = "line" >

<int>8</int>
</attr>
<relend target = "v1" role = "callee" />
<relend target = "v4" role = "caller" />
<relend target = "v6" role = "output" />
<relend target = "v6" role = "input"

startorder = "1"/>
<relend target = "v7" role = "input"

startorder = "2"/>
</rel>
. . .

Fig. 7.GXL representation.

R.C. Holt et al. / Science of Computer Programming 60 (2006) 149–170 159

subelements. Roles of tentacles are stored inrole attributes. The ordering of tentacles at the hyperedge is given by
startorder attributes. The ordering of tentacles at target objects is given byendorder attributes. Directed or undirected
hyperedges and tentacles are distinguished by attributesisdirected anddirection.

Edges, which are inherently binary, can be represented as 2-ary hyperedges. This means thatGXL does not need to
support edges explicitly. However, since binary edges are so common,GXL provides a special notation<edge> for
them.

3.3. Exchanging hierarchical graphs

Although graphs are intuitive and convenient, when large, they become complex to manage and to visualize.
This complexity can be reduced by introducing subgraphs, in which parts of graphs representing related objects
are grouped into subgraphs. The resultinghierarchical graphs[7] support structuring of graphs by grouping and
encapsulation.

Fig. 8gives an example of a hierarchical graph. Nodev4, which represents themaxfunction fromFig. 4, contains a
subgraph representingmax’s function body. TheGXL representation inFig. 9 shows this subgraph as a<graph>

element inside nodev4. Subgraphs inside edges or hyperedges are written analogously (cf. theGXL DTD in
Section 3.4).

Fig. 8. Hierarchical graph.

. . .
<node id = "v4" >

<type xlink:href = "schema.gxl#Function" />
<attr name = "name" >

<string>max</string>

</attr>
<graph id = "g4" >

<type xlink:href = "asg.gxl" >

<node id = "v4.1" >
<type xlink:href = "asg.gxl#Interface" >

</node>

. . .
<edge id = "e4.12"

from = "v4.7" to = "v4.5"/>
<type xlink:href =

"asg.gxl#isReturnValue"/>
</edge>

</graph>

</node>

. . .

Fig. 9.GXL representation.

160 R.C. Holt et al. / Science of Computer Programming 60 (2006) 149–170

Fig. 10.GXL graph model.

TheGXL form of hierarchical graphs is convenient when there is a strong sense of ownership that can be modeled
by the nesting of graphs. ButGXL also permits edges and hyperedges crossing the boundaries of graph hierarchies
up, down, diagonally, and sideways. Consequently, edges can be used to connect subgraphs and graph elements from
any level in the hierarchy. No restrictions have been placed in these hierarchical edges and hyperedges to permit the
greatest flexibility when using hierarchical graphs.

GXL provides one explicit form for graph hierarchies. There are alternate approaches to modeling them. For exam-
ple, references to subgraphs and their elements may be represented using<locator> attributes pointing to their appro-
priateGXL representations. This approach does not support connectivity between sub- and supergraphs. Since locator
attributes usually refer to external documents, the subgraph is only visible from the supergraph, and not vice versa.

3.4. GXL DTD

This section introduces the structure ofGXL as XML notation. It begins this by giving a UML class diagram that
defines the kind of graphs provided byGXL. This serves as a starting point for specifyingGXL ’s DTD [30] and XML
Schema definition [111].

The class diagram inFig. 10 specifies all graph features supported byGXL (cf. Fig. 2). The diagram omits
the classes for the portion ofGXL for representing attributes and associated data types. As the figure shows,
a Graph containsGraphElements, which areNodes, Relations, and Edges. To support hierarchical graphs, each
GraphElementmay contain otherGraphs. Edgesrecord binary connections andRelationsrecordn-ary connections
betweenGraphElements. Note thatGXL allows edges and hyperedges to make connections between other edges and

R.C. Holt et al. / Science of Computer Programming 60 (2006) 149–170 161

<!– extensions –>

<!ENTITY % gxl-extension "" >

<!ENTITY % graph-extension "" >

<!ENTITY % node-extension "" >

<!ENTITY % edge-extension "" >

<!ENTITY % rel-extension "" >

<!ENTITY % value-extension "" >

<!ENTITY % relend-extension "" >

<!ENTITY % gxl-attr-extension "" >

<!ENTITY % graph-attr-extension "" >

<!ENTITY % node-attr-extension "" >

<!ENTITY % edge-attr-extension "" >

<!ENTITY % rel-attr-extension "" >

<!ENTITY % relend-attr-extension "" >

<!– attribute values –>

<!ENTITY % val " locator | bool | int | float | string |
enum | seq | set | bag | tup
% value-extension;" >

<!– gxl –>

<!ELEMENT gxl (graph* %gxl-extension;) >

<!ATTLIST gxl
xmlns:xlink CDATA #FIXED

"www.w3.org/1999/xlink"
%gxl-attr-extension; >

<!– type –>

<!ELEMENT type EMPTY>

<!ATTLIST type
xlink:type (simple) #FIXED "simple"
xlink:href CDATA #REQUIRED >

<!– graph –>

<!ELEMENT graph (type? , attr* ,
(node | edge | rel)*
%graph-extension;) >

<!ATTLIST graph
id ID #REQUIRED
role NMTOKEN #IMPLIED
edgeids (true | false) "false"
hypergraph (true | false) "false"
edgemode (directed | undirected |

defaultdirected | defaultundirected)
"directed"

%graph-attr-extension; >

<!– node –>

<!ELEMENT node (type? , attr*, graph*
%node-extension;) >

<!ATTLIST node
id ID #REQUIRED
%node-attr-extension; >

<!– edge –>

<!ELEMENT edge (type?, attr*, graph*
%edge-extension;) >

<!ATTLIST edge
id ID #IMPLIED
from IDREF #REQUIRED
to IDREF #REQUIRED
fromorder CDATA #IMPLIED
toorder CDATA #IMPLIED
isdirected (true | false) #IMPLIED
%edge-attr-extension; >

<!– rel –>

<!ELEMENT rel (type? , attr*, graph*, relend*
%rel-extension;) >

<!ATTLIST rel
id ID #IMPLIED
isdirected (true | false) #IMPLIED
%rel-attr-extension; >

<!– relend –>

<!ELEMENT relend (attr* %relend-extension;) >

<!ATTLIST relend
target IDREF #REQUIRED
role NMTOKEN #IMPLIED
direction (in | out | none) #IMPLIED
startorder CDATA #IMPLIED
endorder CDATA #IMPLIED
%relend-attr-extension; >

<!– attr –>

<!ELEMENT attr (attr*, (%val;)) >

<!ATTLIST attr
id IDREF #IMPLIED
name NMTOKEN #REQUIRED
kind NMTOKEN #IMPLIED >

<!– locator –>

<!ELEMENT locator EMPTY >

<!ATTLIST locator
xlink:type (simple) #FIXED "simple"
xlink:href CDATA #IMPLIED >

<!– attribute values –>

<!ELEMENT bool (#PCDATA) >

<!ELEMENT int (#PCDATA) >

<!ELEMENT float (#PCDATA) >

<!ELEMENT string (#PCDATA) >

<!ELEMENT enum (#PCDATA) >

<!ELEMENT seq (%val;)* >

<!ELEMENT set (%val;)* >

<!ELEMENT bag (%val;)* >

<!ELEMENT tup (%val;)* >

Fig. 11. GXL document type definition (DTD).

hyperedges as well as between nodes. Ordering of incidences is stored inorder attributes ofrelatesToassociations.
Graphsandgraph elementscan be typed and attributed. Graph types are defined by graph schemas represented asGXL
documents (cf.Section 4). This set of entities with their interrelationships means thatGXL definestyped, attributed,
directed, ordered, hierarchical graphs and hypergraphs.

The user writesGXL graphs as XML documents. Therefore, it is convenient to specify the syntax ofGXL as an XML
document type definition or as an XML schema definition. To keep this definition simple and understandable, it was
created manually, basically by translatingFig. 10into DTD and XML schema notation.Fig. 11shows the resulting
document type definition in its entirety. A commented version of this DTD and a corresponding XML schema are
available athttp://www.gupro.de/GXL. The handcraftedGXL DTD has only 18 XML elements. In contrast, a DTD
for GXL generated using IBM’s XMI (XML Metadata Interchange) Toolkit [113] requires 66 elements for theGXL
core and an additional 63 elements for XMI and CORBA compatibility.

TheGXL DTD (seeFig. 11) begins by specifying predefined points (cf. [52]) for extendingGXL . These lines can
be used to add sub-elements or attributes to their corresponding graph elements. The rest of the DTD gives the syntax
for graph components (<graph>, <node>, <edge>, <rel>, <relend>), attributes (<attr>), and references
(<type>) to schema information.

http://www.gupro.de/GXL
http://www.gupro.de/GXL
http://www.gupro.de/GXL
http://www.gupro.de/GXL
http://www.gupro.de/GXL

162 R.C. Holt et al. / Science of Computer Programming 60 (2006) 149–170

To keep the language design ofGXL simple,GXL did not use the XML schema mechanism for data types [112]
provided for attributes. InsteadGXL used special tags for simple types (<bool>, <int>, <float>, <string>,
<enum>) and nesting of tags for composite types (<seq>, <set>, <bag>, <tup>). The composite types of
sequences, sets and multisets (bags) are expected to be homogeneous. However, tuples can hold data of different
types.

XML DTDs impose syntactic constraints on documents, but the semantic constraints that it can impose are limited.
Some semantic constraints inGXL, such as “<edges> and <rel> elements only connect elements of the given
graph”, can be enforced within XML, using the referencing mechanism for identifiers (i.e.ID, IDREF). The more
restrictiveGXL constraint, that these references are only allowed to refer to graph elements (and not attributes), cannot
be expressed or enforced using only XML. Additional constraints such as the ones listed below must be defined
outside the DTD:

• Edges and hyperedges only connect graph elements. EachIDREF pointing to incident graph elements refer only to
<node>, <edge>, and<rel> elements.

• Edges and hypergraphs only connect graph elements within the same graph. EachIDREF pointing to incident
graph elements has to refer to a graph element, which is defined within the same<graph> element (including
subgraphs) or within a<graph> element representing the convenient supergraph.

• Attribute identifiers have to be unique for each graph element. Each<node>, <edge>, and<rel> element does
not contain multiple<attr> elements with the same name.

• Ordered incidences have to be linear. Allfromorder/toorder attributes of <edge> elements and all
startorder/endorder attributes of<relend> elements, respectively have to define a proper ordering according to
their incident graph elements. No fixed lower bound or initial index is prescribed.

A detailed list of constraints has been published separately and aGXL validator suite has been made available for
checking that documents conform to these constraints [62].

4. Exchanging graph schemas

Graphs are used for describing objects (nodes) and their interrelationships (edges, hyperedges). In a particular ap-
plication domain, it is commonly appropriate to constrain the form of the graph, for example by limiting the types of
the nodes. A schema provides a means for describing and constraining the graph. In particular, a schema determines:

• which node, edge, and hyperedge classes (types) can be used;
• which relations can exist between nodes, edges, and hyperedges of given classes;
• which attributes can be associated with nodes, edges, and hyperedges;
• which graph hierarchies are supported; and
• which additional constraints (such as ordering of incidences, degree restrictions) have to be imposed.

These constraints specialize the graph structure to represent the domain of interest.

4.1. GXL schemas as UML class diagrams

This section explains howGXL schemas are written and used. We start by giving three example schemas, i) the
schema inFig. 12 for use with the simple graph inFig. 4, ii) the schema inFig. 13 for use with the hypergraph in
Fig. 6, and iii) the schema inFig. 14for use with the hierarchical graph inFig. 8. We also show howGXL schemas are
exchanged using a particular form of a graph. The next section after this one shows how this format is itself described
by another schema (by a metaschema).

Fig. 12. Simple schema graph.

R.C. Holt et al. / Science of Computer Programming 60 (2006) 149–170 163

Fig. 13. Hypergraph schema.

Fig. 14. Hierarchical graph schema.

As illustrated inFigs. 12–14, we can representGXL schemas as UML class diagrams [83]. Each node, edge, or
hyperedge of a particular type in the instance graph has a corresponding class or association in the schema diagram.
The schema inFig. 12has classes representing node classes (FunctionCall, Function, andVariable) used inFig. 4, and
it has associations (isCaller, isCallee, isInput, andisOutput) representing edge classes. The edge classisCaller has an
integer attribute namedline, which reflects the fact that inFig. 4, isCaller edges are attributed with line numbers. The
orientation of edges is depicted by a filled triangle [83, p. 155]. Multiplicities denote degree restrictions. Ordering of
incidencesis indicated by the keyword{ordered}.

The schema for the hypergraph inFig. 6is given byFig. 13. The hyperedge’s class is shown inFig. 13as a diamond
with attached tentacles. These tentacles can be annotated by multiplicity information to specify cardinalities, and by
names indicating the roles of participating classes. The keyword{ordered} can be used to require ordering of incident
tentacles in instance graphs. Attributes of hyperedge classes are defined within an associated class attached to the
diamond representing the hyperedge class.

The schema for the hierarchical graph inFig. 8 is given by Fig. 14. This schema uses a UML stereotype
<<GraphClass>> to distinguish classes containing types of subgraphs from (ordinary) node classes. Composition
(depicted by nesting or filled diamonds) is used, to define ownership of graph classes and containment of graph
objects within a graph class. By convention, nesting is used to describe graph class definition and filled diamonds
express ownership. The specification of graph classasgis nested within the<<GraphClass>> node. Nodes of class
Function own graphs of graph classasg(abstract syntax graph). The definition of graph classasgalso shows the use
of higher modeling constructs like generalization and aggregation.

164 R.C. Holt et al. / Science of Computer Programming 60 (2006) 149–170

Fig. 15. Graph for schema inFig. 12.

4.2. GXL schemas represented as graphs

GXL provides a great deal of flexibility in the handling of various kinds of data, by allowing the user to transmit
a graph’s schema along with the graph itself. This is done by translating the schema so it becomes an ordinary graph
and encoding this graph inGXL the same manner as any other graph.

Fig. 15shows the result of translating the schema inFig. 12into a graph. Each node class is translated to a corre-
spondingNodeClass-node, for example, theFunctionnode is translated to aNodeClassnamedFunction. Each edge
class is translated to a correspondingEdgeClass-node, for example, theisCaller edge is translated to the nodeisCaller
of typeEdgeClass. The connections ofisCaller node and edge classes are translated into edges of typefrom andto.

Similarly, attributes or attribute types are translated toAttributeClass-nodes and appropriate attribute type nodes
like Int or Set. Attribute information are connected to node and edge class representations byhasAttributeandhasDo-
mainedges. Multiplicities of associations are stored inlimits attributes (infinity is represented by−1). The boolean at-
tributeisOrdered indicates ordered incidences. Attribute types and extended concepts such as graph hierarchy, classes
of hyperedges, aggregation and composition, generalization and default attribute values are modeled analogously.

Each schema has a node of typeGraphClasswhich is attached bycontainsedges to all nodes which represent
elements of the schema (seeFig. 15). This node is referred to by data graphs which use this schema. Elements in
a data graph refer to corresponding nodes in their schema graph. TheGXL Validator [62] checks that data graphs
conform to their schemas.

4.3. GXL metaschema

EveryGXL schema is translated into a graph with the same form. In other words, there is a singleGXL metaschema
that gives the format of allGXL schemas. The class diagram inFig. 16shows thisGXL metaschema (except for the
part defining attributes).

Attributes are added toGraphElementClasses by deriving them fromAttributedElementClass. The definition
of attribute structures supports the structured attributes used inGXL including the definition of default values.

R.C. Holt et al. / Science of Computer Programming 60 (2006) 149–170 165

Fig. 16.GXL metaschema.

Generalization is provided for allGraphElementClasses by isA edges.GraphElementClasses containing subgraphs
are associated with the representation of the lower levelGraphClass by contains edges. TheGraphClass contains
those node, edge, and hyperedge classes representing its structure. Aggregation (AggregationClass) and composition
(CompositionClass) are modeled by specializations ofEdgeClasses. Incidences ofEdgeClasses andRelationClasses
are modeled byfrom, to, relatesTo-edges. These incidences refer to allGraphElementClasses.

As with instance graphs,GXL schema graphs have to comply to some constraints that cannot be expressed with
class diagrams [62]. In addition to the constraints discussed inSection 3.4, the following conditions are imposed:

• Schema graphs define graph classes. A schema graph contains at least oneGraphClass node.
• Generalization hierarchies are acyclic. A schema graph does not contain a cycle ofisA edges.
• Generalization is only permitted between classes of the same kind. In each schema graphisA edges only connect

NodeClass nodes with otherNodeClass nodes,EdgeClass nodes with others of its kind, and so on.

TheGXL metaschema is itself a schema. Like allGXL schemas it is an instance of theGXL metaschema. It follows
that theGXL metaschema is its own schema.

5. Using GXL

In the years since ratification ofGXL, groups in reengineering, graph transformation, graph visualization, and
other areas of software engineering have added support forGXL in their tools. Various tools have been created to

166 R.C. Holt et al. / Science of Computer Programming 60 (2006) 149–170

support working withGXL. A framework forGXL converters [38] and a XMI2GXL translator [109] was developed at
University BW München. In addition, a validator for checkingGXL documents on instance, schema, and metaschema
level has been developed [62]. A list of tools known to useGXL can be found on our web site [51].

There are many filters for convertingGXL documents into local file formats and vice versa. These formats include
Bauhaus Resource Graphs [1], DOT (GraphViz) [47], GraLab graphs [16], PROGRES graphs [44], RSF [104], and
TA [55]. GXL is also supported by various fact extractors, such as Columbus/CAN [32], CPPX [18], TkSee/SN [95],
and XOgastan [114]. Some reengineering workbenches that useGXL are Bauhaus [1], GUPRO [49], Rigi [82],
SoftAnal [90], and SwagKit [92]. There are both general purpose graph drawing tools that supportGXL, as well
as visualizers for reengineering. These are GraphViz [46], Graph Visualization Framework [50], Shrimp [86],
JGraph [61], touchgraph [96], and yFiles [115]. FurthermoreGXL is supported by the GRAS [48] graph database,
graph transformation systems (DiaGen [20], Fujaba [37], GenSet [39], and PROGRES/UPGRADE [44,97]), and
metacase tools (DiaGen [20], MetaEdit [75]).

These tools and converters have been used as the basis of data interchange on a number of occasions.

SoftAnal and GUPRO: SoftAnal [90] stores information about a stock trading system within relational databases.
Using aGXL filter, this data was transferred to GUPRO [25] for further analysis, which in turn enabled comparison
of the capabilities of both systems.

GReQL and grok: GReQL [63] and grok [57] offer powerful, query based analysis for graph based data. A survey,
comparing the analysis capability of GReQL and grok, was done using a commonGXL factbase [108].

Bauhaus and GUPRO: During the Dagstuhl seminar on “Software Architecture: Recovery and Modeling”, there
was an exercise in collaborative architecture reconstruction and modeling [14]. Groups had to work together to
analyze the Apache web server. During this exercise,GXL was used to transfer facts about Apache from Bauhaus [1]
to GUPRO for further analysis.

Columbus/CAN and GUPRO: Columbus [33] is an extractor for C++ that emits ASTs inGXL . For refactoring
purposes, this extractor was used within GUPRO for analysis of C++ sources.

In addition, there have been interesting applications ofGXL in software engineering pedagogy, business process
modeling, and biochemistry. At the University of Toronto,GXL was used in an undergraduate software engineering
course. Students were required to create graph editor/layouter components that communicated usingGXL [22]. GXL
was also applied to exchange business process models.GXL schemas for exchanging business processes depicted
as Workflow Nets or Event-Driven Process Chains are given in [102]. The same authors also usedGXL’s extension
points to integrate with MathML [72] to exchange elaborated Workflow Nets containing expressions on the relational
calculus [89]. Outside computer science,GXL has been used to represent regulatory networks of biological processes
and biochemical behaviour [9].

6. Conclusion

In this paper, we gave an introduction toGXL 1.0 and its applications. We conclude with a summary of the key
features ofGXL and an assessment of its merits as a standard exchange format.

GXL is an XML language for representing graphs. The main features of the model inGXL are as follows.

• Nodes, edges, and hyperedges are first class entities inGXL . Consequently, each of these have unique identifiers,
can be typed and attributed, and can be included in a generalization hierarchy.

• Graphs, nodes, edges, hyperedges, and attributes have attributes.This feature is used to add further information.
For example, user annotations and coordinates for graph layout, are attached to the graph and passed asGXL
attributes.

• Graphs, nodes, edges, hyperedges and attributes are typed.These element types are associated with a
corresponding class in the schema. These relationships provide further information and constraints on the data.

• Hierarchical graphs are supported.This feature is implemented by permitting nodes, edges, and hyperedges to
contain graphs. Edges and hyperedges are allowed to join nodes from different levels of the hierarchy.

• Edges can be directed or undirected.This flexibility supports in a general format for graphs. Both directed and
undirected edges are permitted in the same graph.

• Edges and hyperedges are ordered.Incidence to and from the nodes at the endpoints of edges and hyperedges can
be stored.

R.C. Holt et al. / Science of Computer Programming 60 (2006) 149–170 167

In GXL, both the data representing the graph and the data representing the schema are passed using the same graph
model as an XML stream. The format and metaschema are sufficiently simple that it is possible to build schemas by
hand. However, most users will likely create a schema by first modeling it as a UML class diagram and then using
a tool to convert it toGXL (cf. [109]). This uniform application of syntax across the different levels of abstraction
ensures that tools that implementGXL are capable of working with a variety of data.

The graph model ofGXL ensuresuniversality, because it includes the structural features needed to achieve
compatibility with a wide variety of graph models.GXL is typedto facilitate interpretation and validation of exchanged
data by making use of graph schemas.Flexibility, that is, the ability to adapt to domain specific data, is achieved
throughGXL -schemas, user-definable attributes, and extension points. They are used to specify domain-specific graph
structures.GXL is easy to use. Furthermore,GXL is readable by humans, which facilitates learning, understanding,
and debugging. Instance graphs and schemas are exchanged using the same document type, thus only one language
has to be learned.Scalabilityhas been achieved, asGXL can be used with graphs of varying sizes and representations
of software at different levels of abstraction. However, it does face the same issues as other XML formats regarding
the increased size of data due to the addition of tags. Fortunately, standard compression techniques and other XML
technologies can help solve the problem.Modularity is provided by supporting hierarchical graphs and by providing
links to external documents. Incremental data exchange can be realized byGXL -based applications, as graphs can be
exchanged in parts. Finally,GXL supportsextensibilityby offering predefined extension-points for enhancement.

Developing and deployingGXL has been an exciting and challenging experience. Through many intense
discussions, we were able to build bridges between research groups and even between research areas and cultures.
Arriving at a standard required us to understand the differences in data formats, research approaches, and problem
domains. The result has been fruitful collaborations between researchers and improved data interoperability between
tools.

GXL is currently being applied and evaluated by the research community. There is work still to be done in
developing standard schemas and broadening the acceptance ofGXL . Current projects include the implementation
of tools to filter and validateGXL, and for drawing graph schemas. In addition,GXL reference schemas have
been proposed. Some proposed reference schemas for reengineering include abstract syntax trees for specific source
languages [34], an external declaration or “middle model” [70], a high-level architectural schema, and one for data
reverse engineering. These schemas span different levels of abstraction for reengineering tools and they involve a wide
range of participants from the community. We look forward to maturingGXL along with the research discipline and
tools for reengineering.

Acknowledgments

We thank our collaborators for many fruitful discussions on the development ofGXL. In particular, we thank Jürgen
Ebert, Bernt Kullbach, and Volker Riediger for insights into TGraphs andGXL . We also like to thank our students,
who did much important work on presentingGXL in the Web and implementingGXL tools and filters. We owe a
great debt to Kostas Kontogiannis and Rainer Koschke who were nurturing an interest in a standard exchange format
for reverse engineering, long before we started our work. Thanks also to Tim Lethbridge, Hausi Müller, and other
members of CSER. Thanks to Ulrik Brandes, Scott Marshall, Mark Minas, and Gabriele Taentzer who helped us build
bridges to other research communities. These relationships helped to improve GXL and to increase its use. Thanks to
all users ofGXL, who are currently applying and testingGXL 1.0 in their tools. Their experience and change requests
are important contributions for improvingGXL .

References

[1] Bauhaus: Software Architecture, Software Reengineering, and Program Understanding.http://www.informatik.uni-stuttgart.de/ifi/ps/
bauhaus/.

[2] C. Berge, Graphs and Hypergraphs, 2nd edition, North-Holland, Amsterdam, 1976.
[3] W.R. Bischofberger, Sniff: A pragmatic approach to a C++ programming environment, in: USENIX C++ Conference, Portland, Oregon,

August 1992, pp. 67–82.
[4] I. Bowman, M. Godfrey, R. Holt, Connecting architecture reconstruction frameworks, in: First International Symposium on Constructing

Software Engineering Tools, CoSET1999, 1999.

http://www.informatik.uni-stuttgart.de/ifi/ps/bauhaus/
http://www.informatik.uni-stuttgart.de/ifi/ps/bauhaus/
http://www.informatik.uni-stuttgart.de/ifi/ps/bauhaus/
http://www.informatik.uni-stuttgart.de/ifi/ps/bauhaus/
http://www.informatik.uni-stuttgart.de/ifi/ps/bauhaus/
http://www.informatik.uni-stuttgart.de/ifi/ps/bauhaus/
http://www.informatik.uni-stuttgart.de/ifi/ps/bauhaus/
http://www.informatik.uni-stuttgart.de/ifi/ps/bauhaus/

168 R.C. Holt et al. / Science of Computer Programming 60 (2006) 149–170

[5] U. Brandes, M. Eiglsperger, I. Herman, M. Himsolt, M.S. Marschall, GraphML progress report, structural layer proposal, in: P. Mutzel,
M. Jünger, S. Leipert (Eds.), Graph Drawing, 9th International Symposium, GD 2001, Vienna, in: LNCS, vol. 2265, Springer, Berlin, 2001,
pp. 501–512.

[6] U. Brandes, J. Lerner, C. Pich, GXL to GraphML and vice versa with XSLT, in: ENTCS, vol. 127, issue 1, Proceedings of the International
Workshop on Graph-Based Tools (GraBaTs 2004), March 2005, pp. 113–125.

[7] G. Busatto, An Abstract Model of Hierarchical Graphs and Hierarchical Graph Transformation.http://www.informatik.uni-bremen.de/
∼giorgio/papers/phd-thesis.ps.gz, 2001.

[8] R. Castello, R. Milli, I.G. Tollis, A framework for the static and interactive visualization for statecharts, Journal of Graph Algorithms and
Applications 6 (3) (2002) 313–351.

[9] C. Chaouiya, A.G. Gonzalez, D. Thieffry, GINML: Towards a GXL based format for logical regulatory networks and dynamic graphs.http://
www.esil.univ-mrs.fr/∼chaouiya/Recherche/GINML, 2003.

[10] Y.-F. Chen, E.R. Gansner, E. Koutsofios, A C++ data model supporting reachability analysis and dead code detection, IEEE Transactions on
Software Engineering 24 (9) (1998) 682–694.

[11] Y.-F. Chen, M.Y. Nishimoto, C.V. Ramamoorthy, The C information abstraction system, IEEE Transactions on Software Engineering 16 (3)
(1990) 325–334.

[12] K. Chen, V. Rajlich, RIPPLES: Tool for change in legacy software, in: 5th European Conference on Software Maintenance and
Reengineering, IEEE Computer Society, Los Alamitos, 2001, pp. 230–239.

[13] Y.-F. Chen, G.S. Fowler, E. Koutsofios, R.S. Wallach, Ciao: A graphical navigator for software and document repositories, in: International
Conference on Software Maintenance, IEEE Computer Society Press, 1995, pp. 66–75.

[14] Collaborative architecture reconstruction and modeling task, in: Workshop at the Dagstuhl-Seminar 03061 Software Architecture: Recovery
and Modelling.http://www.bauhaus-stuttgart.de/dagstuhl/#tools.

[15] R.F. Crew, ASTLOG: A language for examining abstract syntax trees, in: Conference on Domain-specific Languages, Santa Barbara, October
15–17, 1997, USENIX Association, Berkley, 1997.

[16] P. Dahm, F. Widmann, Das Graphenlabor, Version 4.2, Fachbericht Informatik 11/98, Universität Koblenz-Landau, Institut für Informatik,
Koblenz, 1998.

[17] Data Exchange Group, in: Conclusions from Meeting at CASCON 1998,http://plg.uwaterloo.ca/∼holt/sw.eng/exch.format/minutes98_11_
30.html, Monday, 30 Nov 1998.

[18] T. Dean, A. Malton, R. Holt, Union schemas as a basis for a C++ extractor, in: 8th Working Conference on Reverse Engineering, IEEE
Computer Society, Los Alamitos, 2001, pp. 59–67.

[19] P.T. Devanbu, GENOA — A customizable, language and front-end independent code analyzer, in: 14th International Conference on Software
Engineering, Melbourne, 1992, pp. 307–317.

[20] DiaGen:The Diagram Editor Generator, Universität Erlangen-Nürnberg.http://www2.informatik.uni-erlangen.de/DiaGen/, 2002.
[21] ECMA European Computer Manufactures Association, Reference Model for Frameworks of Software Engineering Environments, Technical

Report, TR/55,http://www.ecma-international.org/publications/files/ECMA-TR/TR-055.pdf, 1993.
[22] S. Easterbrook, CSC444F: Software Engineering I (Fall term 2001), University of Toronto.http://www.cs.toronto.edu/∼sme/CSC444F/,

2001.
[23] J. Ebert, K. Kontogiannis, J. Mylopoulos, Interoperability of Reverse Engineering Tools.http://www.dagstuhl.de/DATA/Reports/01041/,

2001.
[24] J. Ebert, B. Kullbach, A. Panse, The Extract-Transform-Rewrite Cycle — A Step towards MetaCARE, in: P. Nesi, F. Lehner (Eds.), 2nd

Euromicro Conference on Software Maintenance & Reengineering, IEEE Computer Society, Los Alamitos, 1998, pp. 165–170.
[25] J. Ebert, B. Kullbach, V. Riediger, A. Winter, GUPRO — Generic understanding of programs, an overview, ENTCS 72 (2).http://www.

elsevier.nl/locate/entcs/volume72.html.
[26] J. Ebert, B. Kullbach, A. Winter, GraX – An interchange format for reengineering tools, in: [106], 1999, pp. 89–98.
[27] J. Ebert, A. Winter, P. Dahm, A. Franzke, R. Süttenbach, Graph based modeling and implementation with EER/GRAL, in: B. Thalheim

(Ed.), Conceptual Modeling — ER’96, in: LNCS, vol. 1157, Springer, Berlin, 1996, pp. 163–178.
[28] H. Eichelberger, J. von Gudenberg, On the visualization of java programs, in: S. Diehl (Ed.), Software Visualization, International Seminar,

Dagstuhl Castle, Germany, May 20–25, 2001, in: LNCS, vol. 2269, Springer, Berlin, 2002, pp. 295–306.
[29] Extensible Graph Markup and Modeling Language.http://www.cs.rpi.edu/∼puninj/XGMML/, 2001.
[30] Extensible Markup Language (XML) 1.0, 3rd edition, W3C Recommendation, W3C XML Working Group.

http://www.w3.org/TR/2004/REC-xml-20040204, February 2004.
[31] H.M. Fahmy, R.C. Holt, Software architecture transformations, in: International Conference on Software Maintenance, IEEE Computer

Society Press, Los Alamitos, 2000, pp. 88–96.
[32] R. Ferenc, A. Beszédes, Data exchange with the Columbus schema for C++, in: 6th European Conference on Software Maintenance and

Reengineering, IEEE Computer Society, Los Alamitos, 2002, pp. 59–66.
[33] R. Ferenc, F. Magyar, A. Beszédes, A. Kiss, M. Tarkiainen, Columbus — tool for reverse engineering large object oriented software systems,

in: SPLST 2001, Szeged, Hungary, 2001, pp. 16–27.http://www.inf.u-szeged.hu/∼ferenc/research/ferencr_columbus.pdf.
[34] R. Ferenc, S.E. Sim, R.C. Holt, R. Koschke, T. Gyimòthy, Towards a standard schema for C/C++, in: 8th Working Conference on Reverse

Engineering, IEEE Computer Society, Los Alamitos, 2001, pp. 49–58.
[35] First EU Working Group on “Application of Graph Transformation” meeting on GXL (graph exchange language) and GTXL (graph

transformation exchange language) in Paderborn, September 5–6, 2000.http://tfs.cs.tu-berlin.de/projekte/gxl-gtxl/paderborn.html.
[36] M. Fröhlich, M. Werner, daVinci V2.0.x Online Documentation.http://www.tzi.de/∼davinci/docs/, June 1996.
[37] Fujaba: From UML to Java and back again.http://www.uni-paderborn.de/cs/fujaba/.

http://www.informatik.uni-bremen.de/~giorgio/papers/phd-thesis.ps.gz
http://www.informatik.uni-bremen.de/~giorgio/papers/phd-thesis.ps.gz
http://www.informatik.uni-bremen.de/~giorgio/papers/phd-thesis.ps.gz
http://www.informatik.uni-bremen.de/~giorgio/papers/phd-thesis.ps.gz
http://www.informatik.uni-bremen.de/~giorgio/papers/phd-thesis.ps.gz
http://www.informatik.uni-bremen.de/~giorgio/papers/phd-thesis.ps.gz
http://www.informatik.uni-bremen.de/~giorgio/papers/phd-thesis.ps.gz
http://www.informatik.uni-bremen.de/~giorgio/papers/phd-thesis.ps.gz
http://www.informatik.uni-bremen.de/~giorgio/papers/phd-thesis.ps.gz
http://www.informatik.uni-bremen.de/~giorgio/papers/phd-thesis.ps.gz
http://www.esil.univ-mrs.fr/~chaouiya/Recherche/GINML
http://www.esil.univ-mrs.fr/~chaouiya/Recherche/GINML
http://www.esil.univ-mrs.fr/~chaouiya/Recherche/GINML
http://www.esil.univ-mrs.fr/~chaouiya/Recherche/GINML
http://www.esil.univ-mrs.fr/~chaouiya/Recherche/GINML
http://www.esil.univ-mrs.fr/~chaouiya/Recherche/GINML
http://www.esil.univ-mrs.fr/~chaouiya/Recherche/GINML
http://www.esil.univ-mrs.fr/~chaouiya/Recherche/GINML
http://www.bauhaus-stuttgart.de/dagstuhl/#tools
http://www.bauhaus-stuttgart.de/dagstuhl/#tools
http://www.bauhaus-stuttgart.de/dagstuhl/#tools
http://www.bauhaus-stuttgart.de/dagstuhl/#tools
http://www.bauhaus-stuttgart.de/dagstuhl/#tools
http://www.bauhaus-stuttgart.de/dagstuhl/#tools
http://plg.uwaterloo.ca/~holt/sw.eng/exch.format/minutes98_11_30.html
http://plg.uwaterloo.ca/~holt/sw.eng/exch.format/minutes98_11_30.html
http://plg.uwaterloo.ca/~holt/sw.eng/exch.format/minutes98_11_30.html
http://plg.uwaterloo.ca/~holt/sw.eng/exch.format/minutes98_11_30.html
http://plg.uwaterloo.ca/~holt/sw.eng/exch.format/minutes98_11_30.html
http://plg.uwaterloo.ca/~holt/sw.eng/exch.format/minutes98_11_30.html
http://plg.uwaterloo.ca/~holt/sw.eng/exch.format/minutes98_11_30.html
http://plg.uwaterloo.ca/~holt/sw.eng/exch.format/minutes98_11_30.html
http://plg.uwaterloo.ca/~holt/sw.eng/exch.format/minutes98_11_30.html
http://plg.uwaterloo.ca/~holt/sw.eng/exch.format/minutes98_11_30.html
http://plg.uwaterloo.ca/~holt/sw.eng/exch.format/minutes98_11_30.html
http://plg.uwaterloo.ca/~holt/sw.eng/exch.format/minutes98_11_30.html
http://plg.uwaterloo.ca/~holt/sw.eng/exch.format/minutes98_11_30.html
http://www2.informatik.uni-erlangen.de/DiaGen/
http://www2.informatik.uni-erlangen.de/DiaGen/
http://www2.informatik.uni-erlangen.de/DiaGen/
http://www2.informatik.uni-erlangen.de/DiaGen/
http://www2.informatik.uni-erlangen.de/DiaGen/
http://www2.informatik.uni-erlangen.de/DiaGen/
http://www.ecma-international.org/publications/files/ECMA-TR/TR-055.pdf
http://www.ecma-international.org/publications/files/ECMA-TR/TR-055.pdf
http://www.ecma-international.org/publications/files/ECMA-TR/TR-055.pdf
http://www.ecma-international.org/publications/files/ECMA-TR/TR-055.pdf
http://www.ecma-international.org/publications/files/ECMA-TR/TR-055.pdf
http://www.ecma-international.org/publications/files/ECMA-TR/TR-055.pdf
http://www.ecma-international.org/publications/files/ECMA-TR/TR-055.pdf
http://www.ecma-international.org/publications/files/ECMA-TR/TR-055.pdf
http://www.ecma-international.org/publications/files/ECMA-TR/TR-055.pdf
http://www.cs.toronto.edu/~sme/CSC444F/
http://www.cs.toronto.edu/~sme/CSC444F/
http://www.cs.toronto.edu/~sme/CSC444F/
http://www.cs.toronto.edu/~sme/CSC444F/
http://www.cs.toronto.edu/~sme/CSC444F/
http://www.cs.toronto.edu/~sme/CSC444F/
http://www.cs.toronto.edu/~sme/CSC444F/
http://www.dagstuhl.de/DATA/Reports/01041/
http://www.dagstuhl.de/DATA/Reports/01041/
http://www.dagstuhl.de/DATA/Reports/01041/
http://www.dagstuhl.de/DATA/Reports/01041/
http://www.dagstuhl.de/DATA/Reports/01041/
http://www.dagstuhl.de/DATA/Reports/01041/
http://www.dagstuhl.de/DATA/Reports/01041/
http://www.elsevier.nl/locate/entcs/volume72.html
http://www.elsevier.nl/locate/entcs/volume72.html
http://www.elsevier.nl/locate/entcs/volume72.html
http://www.elsevier.nl/locate/entcs/volume72.html
http://www.elsevier.nl/locate/entcs/volume72.html
http://www.elsevier.nl/locate/entcs/volume72.html
http://www.elsevier.nl/locate/entcs/volume72.html
http://www.elsevier.nl/locate/entcs/volume72.html
http://www.cs.rpi.edu/~puninj/XGMML/
http://www.cs.rpi.edu/~puninj/XGMML/
http://www.cs.rpi.edu/~puninj/XGMML/
http://www.cs.rpi.edu/~puninj/XGMML/
http://www.cs.rpi.edu/~puninj/XGMML/
http://www.cs.rpi.edu/~puninj/XGMML/
http://www.cs.rpi.edu/~puninj/XGMML/
http://www.w3.org/TR/2004/REC-xml-20040204
http://www.w3.org/TR/2004/REC-xml-20040204
http://www.w3.org/TR/2004/REC-xml-20040204
http://www.w3.org/TR/2004/REC-xml-20040204
http://www.w3.org/TR/2004/REC-xml-20040204
http://www.w3.org/TR/2004/REC-xml-20040204
http://www.w3.org/TR/2004/REC-xml-20040204
http://www.inf.u-szeged.hu/~ferenc/research/ferencr_columbus.pdf
http://www.inf.u-szeged.hu/~ferenc/research/ferencr_columbus.pdf
http://www.inf.u-szeged.hu/~ferenc/research/ferencr_columbus.pdf
http://www.inf.u-szeged.hu/~ferenc/research/ferencr_columbus.pdf
http://www.inf.u-szeged.hu/~ferenc/research/ferencr_columbus.pdf
http://www.inf.u-szeged.hu/~ferenc/research/ferencr_columbus.pdf
http://www.inf.u-szeged.hu/~ferenc/research/ferencr_columbus.pdf
http://www.inf.u-szeged.hu/~ferenc/research/ferencr_columbus.pdf
http://www.inf.u-szeged.hu/~ferenc/research/ferencr_columbus.pdf
http://www.inf.u-szeged.hu/~ferenc/research/ferencr_columbus.pdf
http://tfs.cs.tu-berlin.de/projekte/gxl-gtxl/paderborn.html
http://tfs.cs.tu-berlin.de/projekte/gxl-gtxl/paderborn.html
http://tfs.cs.tu-berlin.de/projekte/gxl-gtxl/paderborn.html
http://tfs.cs.tu-berlin.de/projekte/gxl-gtxl/paderborn.html
http://tfs.cs.tu-berlin.de/projekte/gxl-gtxl/paderborn.html
http://tfs.cs.tu-berlin.de/projekte/gxl-gtxl/paderborn.html
http://tfs.cs.tu-berlin.de/projekte/gxl-gtxl/paderborn.html
http://tfs.cs.tu-berlin.de/projekte/gxl-gtxl/paderborn.html
http://tfs.cs.tu-berlin.de/projekte/gxl-gtxl/paderborn.html
http://www.tzi.de/~davinci/docs/
http://www.tzi.de/~davinci/docs/
http://www.tzi.de/~davinci/docs/
http://www.tzi.de/~davinci/docs/
http://www.tzi.de/~davinci/docs/
http://www.tzi.de/~davinci/docs/
http://www.uni-paderborn.de/cs/fujaba/
http://www.uni-paderborn.de/cs/fujaba/
http://www.uni-paderborn.de/cs/fujaba/
http://www.uni-paderborn.de/cs/fujaba/
http://www.uni-paderborn.de/cs/fujaba/
http://www.uni-paderborn.de/cs/fujaba/

R.C. Holt et al. / Science of Computer Programming 60 (2006) 149–170 169

[38] GCF — a GXL Converter Framework.http://www2.informatik.unibw-muenchen.de/GXL/triebsees/index.htm.
[39] GenSet: Design Information Fusion.http://www.cs.uoregon.edu/research/perpetual/dasada/Software/GenSet.
[40] J.-F. Girard, R. Koschke, Finding components in a hierarchy of modules — a step towards architectural understanding, in: International

Conference on Software Maintenance, IEEE Computer Society Press, 1997.
[41] The GML File Format.http://www.infosun.fmi.uni-passau.de/Graphlet/GML/index.html.
[42] M.W. Godfrey, E.H.S. Lee, Secrets from the Monster: Extracting mozilla’s software architecture, in: 2nd International Symposium on

Constructing Software Engineering Tools, Limerick, Ireland, 2000.
[43] Graph Drawing, GD 2001, Vienna.http://www.ads.tuwien.ac.at/gd2001/, 2001.
[44] A Graph Grammar Programming Environment — PROGRES.http://www-i3.informatik.rwth-aachen.de/research/projects/progres/main.

html.
[45] Graph Transformation System Exchange Language.http://tfs.cs.tu-berlin.de/projekte/gxl-gtxl.html, 2001.
[46] GraphViz — open source graph drawing software.http://www.research.att.com/sw/tools/graphviz/, 2002.
[47] GraphViz — open source graph drawing software, GXL2DOT, DOT2GXL.http://custom.lab.unb.br/pub/graph/graphviz/tools/src/, 2002.
[48] GRAS — A graph oriented database system for (software) engineering environments.http://www-i3.informatik.rwth-aachen.de/research/

projects/gras/index.html, 1999.
[49] GUPRO: Generic Understanding of Programs.http://www.gupro.de/.
[50] GVF — The Graph Visualization Framework.http://sourceforge.net/projects/gvf/, 2003.
[51] GXL: Graph Exchange Language.http://www.gupro.de/GXL/tools/tools.html.
[52] I. Herman, M.S. Marshall, Graph XML — An XML based graph interchange format, Report INS-0009, Centrum voor Wiskunde en

Informatica, Amsterdam, April 2000.
[53] I. Herman, S. Marshall, GraphXML — An XML-based graph description format, in: J. Marks (Ed.), Graph Drawing, 8th International

Symposium, GD 2000 Colonial Williamsburg, in: LNCS, vol. 1984, Springer, Berlin, 2000, pp. 52–61.
[54] M. Himsolt, GML: Graph Modeling Language.http://www.infosun.fmi.uni-passau.de/Graphlet/, December 1996.
[55] R.C. Holt, An introduction to TA: The tuple-attribute language.http://plg.uwaterloo.ca/∼holt/papers/ta.html, 1997.
[56] R.C. Holt, PBS: Portable Bookshelf Tools.http://www.turing.toronto.edu/pbs, 1997.
[57] R.C. Holt, Introduction to the Grok Programming Language.http://plg.uwaterloo.ca/∼holt/papers/grok-intro.doc, 2002.
[58] R.C. Holt, A. Winter, Software Data Interchange with GXL: Introduction and Tutorial, CASCON 2000, Mississauga, Ontario.http://www.

cas.ibm.com/archives/2000/workshops/descriptions.shtml#16, 2000.
[59] R.C. Holt, A. Winter, A. Schürr, GXL: Toward a standard exchange format, in: 7th Working Conference on Reverse Engineering, IEEE

Computer Society, Los Alamitos, 2000, pp. 162–171.
[60] Information technology – Programming languages – Ada Semantic Interface Specification (ASIS).http://www.acm.org/sigs/sigada/wg/

asiswg/, 1999.
[61] JGraph: The Home Page of JGraph.http://jgraph.sourceforge.net/index.html, 2003.
[62] A. Kaczmarek, GXL Validator, Validierung von GXL-Dokumenten auf Instanz-, Schema, und Metaschema-Ebene, Studienarbeit, Universität

Koblenz-Landau, Fachbereich Informatik, Koblenz, 2003.
[63] M. Kamp, B. Kullbach, GReQL — Eine Anfragesprache für das GUPRO–Repository, Sprachbeschreibung, Projektbericht 8/2001,

Universität Koblenz-Landau, Institut für Softwaretechnik, Koblenz, 2001.
[64] R. Kazman, J. Carrière, View extraction and view fusion in architectural understanding, in: International Conference on Software Reuse,

IEEE Computer Society Press, Los Alamitos, 1998, pp. 290–299.
[65] R. Kazman, J. Carrière, Playing detective: Reconstructing software architecture from available evidence, Automated Software Engineering

6 (2) (1999) 107–138.
[66] K. Kontogiannis, Exchange Formats Workshop, in: 7th Working Conference on Reverse Engineering, IEEE Computer Society, Los Alamitos,

2000, pp. 277–301.
[67] R. Koschke, J.-F. Girard, M. Würthner, An intermediate representation for integrating reverse engineering analyses, in: [105], 1998,

pp. 241–250.
[68] C. Lange, H. Sneed, A. Winter, Comparing graph-based program comprehension tools to relational database-based tools, in: 9th International

Workshop on Program Comprehension, IEEE, Los Alamitos, 2001, pp. 209–218.
[69] T. Lethbridge, N. Anquetil, Architecture of a source code exploration tool: A software engineering case study, Computer Science Technical

Report,http://www.site.uottawa.ca/∼tcl/papers/Cascon/TR-97-07.pdf, University of Ottawa, 1997.
[70] T.C. Lethbridge, S. Tichelaar, E. Ploedereder, The dagstuhl middle metamodel, a schema for reverse engineering, in: J.-M. Favre,

M. Godfrey, A. Winter (Eds.), International Workshop on Meta-Models and Schemas for Reverse Engineering, ateM 2003, in: Electronic
Notes in Theoretical Computer Science, vol. 94, 2004, pp. 7–18.http://www.sciencedirect.com/science/journal/15710661.

[71] E. Mamas, K. Kontogiannis, Towards portable source code representation using XML, in: 7th Working Conference on Reverse Engineering,
IEEE Computer Society, Los Alamitos, 2000, pp. 172–182.

[72] Mathematical Markup Language, MathML Version 2.0, 2nd edition.http://www.w3.org/TR/2003/REC-MathML2-20031021/.
[73] T. Mens, M. Lanza, A graph-based metamodel for object-oriented software metrics, ENTCS 72 (2) (2002).http://www.elsevier.nl/locate/

entcs/volume72.html.
[74] T. Mens, A. Schürr, G. Taentzer (Eds.), Graph-Based Tools, in: ENTCS 72/2.http://www.elsevier.com/locate/entcs/volume72.html, 2002.
[75] MetaEdit+ metaCASE tool.http://www.metacase.com/.
[76] Meta Object Facility (MOF) Specification.http://www.omg.org/technology/documents/formal/mof.htm, March 2000.
[77] M. Minas, Visual specification of visual editors with DiaGen, in: International Workshop on Applications of Graph Transformations with

Industrial Relevance, AGTIVE’03, Charlottesville, 2003.

http://www2.informatik.unibw-muenchen.de/GXL/triebsees/index.htm
http://www2.informatik.unibw-muenchen.de/GXL/triebsees/index.htm
http://www2.informatik.unibw-muenchen.de/GXL/triebsees/index.htm
http://www2.informatik.unibw-muenchen.de/GXL/triebsees/index.htm
http://www2.informatik.unibw-muenchen.de/GXL/triebsees/index.htm
http://www2.informatik.unibw-muenchen.de/GXL/triebsees/index.htm
http://www2.informatik.unibw-muenchen.de/GXL/triebsees/index.htm
http://www2.informatik.unibw-muenchen.de/GXL/triebsees/index.htm
http://www2.informatik.unibw-muenchen.de/GXL/triebsees/index.htm
http://www.cs.uoregon.edu/research/perpetual/dasada/Software/GenSet
http://www.cs.uoregon.edu/research/perpetual/dasada/Software/GenSet
http://www.cs.uoregon.edu/research/perpetual/dasada/Software/GenSet
http://www.cs.uoregon.edu/research/perpetual/dasada/Software/GenSet
http://www.cs.uoregon.edu/research/perpetual/dasada/Software/GenSet
http://www.cs.uoregon.edu/research/perpetual/dasada/Software/GenSet
http://www.cs.uoregon.edu/research/perpetual/dasada/Software/GenSet
http://www.cs.uoregon.edu/research/perpetual/dasada/Software/GenSet
http://www.cs.uoregon.edu/research/perpetual/dasada/Software/GenSet
http://www.cs.uoregon.edu/research/perpetual/dasada/Software/GenSet
http://www.infosun.fmi.uni-passau.de/Graphlet/GML/index.html
http://www.infosun.fmi.uni-passau.de/Graphlet/GML/index.html
http://www.infosun.fmi.uni-passau.de/Graphlet/GML/index.html
http://www.infosun.fmi.uni-passau.de/Graphlet/GML/index.html
http://www.infosun.fmi.uni-passau.de/Graphlet/GML/index.html
http://www.infosun.fmi.uni-passau.de/Graphlet/GML/index.html
http://www.infosun.fmi.uni-passau.de/Graphlet/GML/index.html
http://www.infosun.fmi.uni-passau.de/Graphlet/GML/index.html
http://www.infosun.fmi.uni-passau.de/Graphlet/GML/index.html
http://www.infosun.fmi.uni-passau.de/Graphlet/GML/index.html
http://www.ads.tuwien.ac.at/gd2001/
http://www.ads.tuwien.ac.at/gd2001/
http://www.ads.tuwien.ac.at/gd2001/
http://www.ads.tuwien.ac.at/gd2001/
http://www.ads.tuwien.ac.at/gd2001/
http://www.ads.tuwien.ac.at/gd2001/
http://www.ads.tuwien.ac.at/gd2001/
http://www-i3.informatik.rwth-aachen.de/research/projects/progres/main.html
http://www-i3.informatik.rwth-aachen.de/research/projects/progres/main.html
http://www-i3.informatik.rwth-aachen.de/research/projects/progres/main.html
http://www-i3.informatik.rwth-aachen.de/research/projects/progres/main.html
http://www-i3.informatik.rwth-aachen.de/research/projects/progres/main.html
http://www-i3.informatik.rwth-aachen.de/research/projects/progres/main.html
http://www-i3.informatik.rwth-aachen.de/research/projects/progres/main.html
http://www-i3.informatik.rwth-aachen.de/research/projects/progres/main.html
http://www-i3.informatik.rwth-aachen.de/research/projects/progres/main.html
http://www-i3.informatik.rwth-aachen.de/research/projects/progres/main.html
http://tfs.cs.tu-berlin.de/projekte/gxl-gtxl.html
http://tfs.cs.tu-berlin.de/projekte/gxl-gtxl.html
http://tfs.cs.tu-berlin.de/projekte/gxl-gtxl.html
http://tfs.cs.tu-berlin.de/projekte/gxl-gtxl.html
http://tfs.cs.tu-berlin.de/projekte/gxl-gtxl.html
http://tfs.cs.tu-berlin.de/projekte/gxl-gtxl.html
http://tfs.cs.tu-berlin.de/projekte/gxl-gtxl.html
http://tfs.cs.tu-berlin.de/projekte/gxl-gtxl.html
http://www.research.att.com/sw/tools/graphviz/
http://www.research.att.com/sw/tools/graphviz/
http://www.research.att.com/sw/tools/graphviz/
http://www.research.att.com/sw/tools/graphviz/
http://www.research.att.com/sw/tools/graphviz/
http://www.research.att.com/sw/tools/graphviz/
http://www.research.att.com/sw/tools/graphviz/
http://www.research.att.com/sw/tools/graphviz/
http://custom.lab.unb.br/pub/graph/graphviz/tools/src/
http://custom.lab.unb.br/pub/graph/graphviz/tools/src/
http://custom.lab.unb.br/pub/graph/graphviz/tools/src/
http://custom.lab.unb.br/pub/graph/graphviz/tools/src/
http://custom.lab.unb.br/pub/graph/graphviz/tools/src/
http://custom.lab.unb.br/pub/graph/graphviz/tools/src/
http://custom.lab.unb.br/pub/graph/graphviz/tools/src/
http://custom.lab.unb.br/pub/graph/graphviz/tools/src/
http://custom.lab.unb.br/pub/graph/graphviz/tools/src/
http://custom.lab.unb.br/pub/graph/graphviz/tools/src/
http://www-i3.informatik.rwth-aachen.de/research/projects/gras/index.html
http://www-i3.informatik.rwth-aachen.de/research/projects/gras/index.html
http://www-i3.informatik.rwth-aachen.de/research/projects/gras/index.html
http://www-i3.informatik.rwth-aachen.de/research/projects/gras/index.html
http://www-i3.informatik.rwth-aachen.de/research/projects/gras/index.html
http://www-i3.informatik.rwth-aachen.de/research/projects/gras/index.html
http://www-i3.informatik.rwth-aachen.de/research/projects/gras/index.html
http://www-i3.informatik.rwth-aachen.de/research/projects/gras/index.html
http://www-i3.informatik.rwth-aachen.de/research/projects/gras/index.html
http://www-i3.informatik.rwth-aachen.de/research/projects/gras/index.html
http://www.gupro.de/
http://www.gupro.de/
http://www.gupro.de/
http://www.gupro.de/
http://sourceforge.net/projects/gvf/
http://sourceforge.net/projects/gvf/
http://sourceforge.net/projects/gvf/
http://sourceforge.net/projects/gvf/
http://sourceforge.net/projects/gvf/
http://www.gupro.de/GXL/tools/tools.html
http://www.gupro.de/GXL/tools/tools.html
http://www.gupro.de/GXL/tools/tools.html
http://www.gupro.de/GXL/tools/tools.html
http://www.gupro.de/GXL/tools/tools.html
http://www.gupro.de/GXL/tools/tools.html
http://www.gupro.de/GXL/tools/tools.html
http://www.gupro.de/GXL/tools/tools.html
http://www.infosun.fmi.uni-passau.de/Graphlet/
http://www.infosun.fmi.uni-passau.de/Graphlet/
http://www.infosun.fmi.uni-passau.de/Graphlet/
http://www.infosun.fmi.uni-passau.de/Graphlet/
http://www.infosun.fmi.uni-passau.de/Graphlet/
http://www.infosun.fmi.uni-passau.de/Graphlet/
http://www.infosun.fmi.uni-passau.de/Graphlet/
http://plg.uwaterloo.ca/~holt/papers/ta.html
http://plg.uwaterloo.ca/~holt/papers/ta.html
http://plg.uwaterloo.ca/~holt/papers/ta.html
http://plg.uwaterloo.ca/~holt/papers/ta.html
http://plg.uwaterloo.ca/~holt/papers/ta.html
http://plg.uwaterloo.ca/~holt/papers/ta.html
http://plg.uwaterloo.ca/~holt/papers/ta.html
http://plg.uwaterloo.ca/~holt/papers/ta.html
http://www.turing.toronto.edu/pbs
http://www.turing.toronto.edu/pbs
http://www.turing.toronto.edu/pbs
http://www.turing.toronto.edu/pbs
http://www.turing.toronto.edu/pbs
http://www.turing.toronto.edu/pbs
http://plg.uwaterloo.ca/~holt/papers/grok-intro.doc
http://plg.uwaterloo.ca/~holt/papers/grok-intro.doc
http://plg.uwaterloo.ca/~holt/papers/grok-intro.doc
http://plg.uwaterloo.ca/~holt/papers/grok-intro.doc
http://plg.uwaterloo.ca/~holt/papers/grok-intro.doc
http://plg.uwaterloo.ca/~holt/papers/grok-intro.doc
http://plg.uwaterloo.ca/~holt/papers/grok-intro.doc
http://plg.uwaterloo.ca/~holt/papers/grok-intro.doc
http://www.cas.ibm.com/archives/2000/workshops/descriptions.shtml#16
http://www.cas.ibm.com/archives/2000/workshops/descriptions.shtml#16
http://www.cas.ibm.com/archives/2000/workshops/descriptions.shtml#16
http://www.cas.ibm.com/archives/2000/workshops/descriptions.shtml#16
http://www.cas.ibm.com/archives/2000/workshops/descriptions.shtml#16
http://www.cas.ibm.com/archives/2000/workshops/descriptions.shtml#16
http://www.cas.ibm.com/archives/2000/workshops/descriptions.shtml#16
http://www.cas.ibm.com/archives/2000/workshops/descriptions.shtml#16
http://www.cas.ibm.com/archives/2000/workshops/descriptions.shtml#16
http://www.cas.ibm.com/archives/2000/workshops/descriptions.shtml#16
http://www.cas.ibm.com/archives/2000/workshops/descriptions.shtml#16
http://www.acm.org/sigs/sigada/wg/asiswg/
http://www.acm.org/sigs/sigada/wg/asiswg/
http://www.acm.org/sigs/sigada/wg/asiswg/
http://www.acm.org/sigs/sigada/wg/asiswg/
http://www.acm.org/sigs/sigada/wg/asiswg/
http://www.acm.org/sigs/sigada/wg/asiswg/
http://www.acm.org/sigs/sigada/wg/asiswg/
http://www.acm.org/sigs/sigada/wg/asiswg/
http://jgraph.sourceforge.net/index.html
http://jgraph.sourceforge.net/index.html
http://jgraph.sourceforge.net/index.html
http://jgraph.sourceforge.net/index.html
http://jgraph.sourceforge.net/index.html
http://jgraph.sourceforge.net/index.html
http://www.site.uottawa.ca/~tcl/papers/Cascon/TR-97-07.pdf
http://www.site.uottawa.ca/~tcl/papers/Cascon/TR-97-07.pdf
http://www.site.uottawa.ca/~tcl/papers/Cascon/TR-97-07.pdf
http://www.site.uottawa.ca/~tcl/papers/Cascon/TR-97-07.pdf
http://www.site.uottawa.ca/~tcl/papers/Cascon/TR-97-07.pdf
http://www.site.uottawa.ca/~tcl/papers/Cascon/TR-97-07.pdf
http://www.site.uottawa.ca/~tcl/papers/Cascon/TR-97-07.pdf
http://www.site.uottawa.ca/~tcl/papers/Cascon/TR-97-07.pdf
http://www.site.uottawa.ca/~tcl/papers/Cascon/TR-97-07.pdf
http://www.site.uottawa.ca/~tcl/papers/Cascon/TR-97-07.pdf
http://www.sciencedirect.com/science/journal/15710661
http://www.sciencedirect.com/science/journal/15710661
http://www.sciencedirect.com/science/journal/15710661
http://www.sciencedirect.com/science/journal/15710661
http://www.sciencedirect.com/science/journal/15710661
http://www.sciencedirect.com/science/journal/15710661
http://www.sciencedirect.com/science/journal/15710661
http://www.w3.org/TR/2003/REC-MathML2-20031021/
http://www.w3.org/TR/2003/REC-MathML2-20031021/
http://www.w3.org/TR/2003/REC-MathML2-20031021/
http://www.w3.org/TR/2003/REC-MathML2-20031021/
http://www.w3.org/TR/2003/REC-MathML2-20031021/
http://www.w3.org/TR/2003/REC-MathML2-20031021/
http://www.w3.org/TR/2003/REC-MathML2-20031021/
http://www.elsevier.nl/locate/entcs/volume72.html
http://www.elsevier.nl/locate/entcs/volume72.html
http://www.elsevier.nl/locate/entcs/volume72.html
http://www.elsevier.nl/locate/entcs/volume72.html
http://www.elsevier.nl/locate/entcs/volume72.html
http://www.elsevier.nl/locate/entcs/volume72.html
http://www.elsevier.nl/locate/entcs/volume72.html
http://www.elsevier.nl/locate/entcs/volume72.html
http://www.elsevier.com/locate/entcs/volume72.html
http://www.elsevier.com/locate/entcs/volume72.html
http://www.elsevier.com/locate/entcs/volume72.html
http://www.elsevier.com/locate/entcs/volume72.html
http://www.elsevier.com/locate/entcs/volume72.html
http://www.elsevier.com/locate/entcs/volume72.html
http://www.elsevier.com/locate/entcs/volume72.html
http://www.elsevier.com/locate/entcs/volume72.html
http://www.metacase.com/
http://www.metacase.com/
http://www.metacase.com/
http://www.metacase.com/
http://www.omg.org/technology/documents/formal/mof.htm
http://www.omg.org/technology/documents/formal/mof.htm
http://www.omg.org/technology/documents/formal/mof.htm
http://www.omg.org/technology/documents/formal/mof.htm
http://www.omg.org/technology/documents/formal/mof.htm
http://www.omg.org/technology/documents/formal/mof.htm
http://www.omg.org/technology/documents/formal/mof.htm
http://www.omg.org/technology/documents/formal/mof.htm
http://www.omg.org/technology/documents/formal/mof.htm

170 R.C. Holt et al. / Science of Computer Programming 60 (2006) 149–170

[78] H. Müller, Criteria for Success in Exchange Formats for Information Extracted from Computer Programs.http://plg2.math.uwaterloo.ca/
∼holt/sw.eng/exch.format/, 1998.

[79] F. Newbery Paulish, The Design of an Extendible Graph Editor, in: LNCS, vol. 704, Springer, Berlin, 1991.
[80] K. Oechsle, T. Schmitt, JAVAVIS: Automatic program visualization with object and sequence diagrams using the Java debug interface,

in: S. Diehl (Ed.), Software Visualization, International Seminar, Dagstuhl Castle, Germany, May 20–25, 2001, in: LNCS, vol. 2269,
Springer, Berlin, 2002, pp. 176–190.

[81] R. Ommering, L. van Feijs, R. Krikhaar, A relational approach to support software architecture analysis, Software Practice and Experience
28 (4) (1998) 371–400.

[82] RIGI: a visual tool for understanding legacy systems.http://www.rigi.csc.uvic.ca/.
[83] J. Rumbaugh, I. Jacobson, G. Booch, The Unified Modeling Language Reference Manual, Addison Wesley, Reading, 1999.
[84] Satellite Workshop on Data Exchange Formats, in: 8th Int. Symposium on Graph Drawing, GD 2000.http://www.cs.virginia.edu/∼gd2000/

gd-satellite.html, 2001.
[85] A. Schürr, A.J. Winter, A. Zündorf, PROGRES: Language and environment, in: H. Ehrig, G. Engels, H.-J. Kreowski, G. Rozenberg (Eds.),

in: Handbook on Graph Grammars: Applications, Languages, and Tools, vol. 2, World Scientific, Singapore, 1999, pp. 487–550.
[86] ShriMP Views: Simple Hierarchical Multi-Perspective.http://www.shrimpviews.com/.
[87] S.E. Sim, Software Data Interchange with GXL: Implementation Issues, CASCON 2000, Mississauga, Ontario.http://www.cas.ibm.com/

archives/2000/workshops/descriptions.shtml#17, November 2000.
[88] S.E. Sim, R.C. Holt, R. Koschke, ICSE 2000 Workshop on Standard Exchange Format, WoSEF, Limerick, 2000.
[89] C. Simon, A. Winter, Exchanging process specifications for identifying cooperative information systems, in: 11th Workshop on Algorithms

and Tools for Petri Nets, September 30–October 1, 2004, Paderborn Germany, 2004, pp. 31–36.
[90] H.M. Sneed, T. Dombovari, Comprehending a complex, distributed, object-oriented software system, a report from the field, in: 7th

international Workshop on Program Comprehension, IEEE, Los Alamitos, 1999, pp. 218–225.
[91] M.-A. Storey, C. Best, J. Michand, SHriMP views: An interactive environment for exploring Java programs, in: 9th International Workshop

on Program Comprehension, IEEE, Los Alamitos, 2001, pp. 111–112.
[92] SWAG Software Toolkit.http://www.swag.uwaterloo.ca/∼swagkit/.
[93] G. Taentzer, Towards common exchange formats for graphs and graph transformation systems, in: UNIGRA Satellite Workshop of

ETAPS’01, 2001.
[94] S.R. Tilley, Domain-retargetable reverse engineering, Ph.D. Thesis, Department of Computer Science, University of Victoria, January 1995.
[95] TkSee.http://www.site.uottawa.ca/∼tcl/kbre/options/.
[96] TouchGraph.http://www.touchgraph.com/index.html.
[97] UPGADE: A framework for graph-based applications, RWTH Aachen.http://www-i3.informatik.rwth-aachen.de/research/projects/

upgrade/.
[98] M. van den Brand, H.A. de Jong, P. Klint, P.A. Olivier, Efficient annotated terms, Software: Practice and Experience 30 (3) (2000) 259–291.
[99] J.B. Warmer, A.G. Kleppe, The Object Constraint Language : Precise Modeling With UML, Addison-Wesley, 1998.

[100] A.I. Wasserman, Tool integration in software engineering environments, in: International Workshop on Software Engineering Environments,
SEE, Chinon, France, 1989, pp. 137–149.

[101] M. Weiser, Program slicing, IEEE Transactions on Software Engineering SE-10 (4) (1984) 352–357.
[102] A. Winter, C. Simon, Using GXL for exchanging business process models, Information Systems and E-Business Management, onlue since

1 November 2005,http://dx.doi.org/10.1007/s10257-005-0027-0.
[103] K. Wong, RIGI User’s Manual, Version 5.4.3.http://www.rigi.csc.uvic.ca/rigi/rigiframe1.shtml?Download, 1996.
[104] K. Wong, RIGI User’s Manual, Version 5.4.4.http://www.rigi.csc.uvic.ca/rigi/rigiframe1.shtml?Download, 1998.
[105] 5th Working Conference on Reverse Engineering, IEEE Computer Society, Los Alamitos, 1998.
[106] 6th Working Conference on Reverse Engineering, IEEE Computer Society, Los Alamitos, 1999.
[107] 7-ter Workshop des GI-Arbeitskreises GROOM, UML — Erweiterungen (Profile) und Konzepte der Metamodellierung, 4.-5. April,

Universität Koblenz-Landau, 2000.http://www2.informatik.unibw-muenchen.de/GROOM/META/index.htm.
[108] J. Wu, R.C. Holt, A. Winter, Towards a common query language for reverse engineering, Fachberichte Informatik,http://www.uni-koblenz.

de/fb4/publikationen/gelbereihe/RR-8-2002.pdf8/2002, Universität Koblenz-Landau, Institut für Informatik, Koblenz, 2002.
[109] XIG — An XSLT-based XMI2GXL-Translator.http://ist.unibw-muenchen.de/GXL/volk/index.htm.
[110] XML Meta Data Interchange (XMI) Specification.http://www.omg.org/technology/documents/formal/xmi.htm, November 2000.
[111] XML Schema Part 0: Primer, W3C Recommendation, 2 May 2001.http://www.w3.org/TR/2001/REC-xmlschema-0-20010502/, 2001.
[112] XML Schema Part 2: Datatypes.http://www.w3.org/TR/xmlschema-2/, 02 May 2001.
[113] XMI Toolkit 1.15, Updated on: 25.04.2000.http://alphaworks.ibm.com/tech/xmitoolkit, 2000.
[114] XOgastan: Xml-Oriented Gnu AST Analyzer, University of Sannio, Benevento.http://web.ing.unisannio.it/villano/students/masone/, 2002.
[115] yFiles —- Interactive Visualization of Graph Structures.http://www-pr.informatik.uni-tuebingen.de/yfiles/.
[116] Y. Zou, K. Kontogiannis, Towards a portable XML-based source code representation, in: Workshop of XML Technologies and Software

Engineering (XSE), ICSE 2001, Toronto.

http://plg2.math.uwaterloo.ca/~holt/sw.eng/exch.format/
http://plg2.math.uwaterloo.ca/~holt/sw.eng/exch.format/
http://plg2.math.uwaterloo.ca/~holt/sw.eng/exch.format/
http://plg2.math.uwaterloo.ca/~holt/sw.eng/exch.format/
http://plg2.math.uwaterloo.ca/~holt/sw.eng/exch.format/
http://plg2.math.uwaterloo.ca/~holt/sw.eng/exch.format/
http://plg2.math.uwaterloo.ca/~holt/sw.eng/exch.format/
http://plg2.math.uwaterloo.ca/~holt/sw.eng/exch.format/
http://plg2.math.uwaterloo.ca/~holt/sw.eng/exch.format/
http://plg2.math.uwaterloo.ca/~holt/sw.eng/exch.format/
http://www.rigi.csc.uvic.ca/
http://www.rigi.csc.uvic.ca/
http://www.rigi.csc.uvic.ca/
http://www.rigi.csc.uvic.ca/
http://www.rigi.csc.uvic.ca/
http://www.rigi.csc.uvic.ca/
http://www.cs.virginia.edu/~gd2000/gd-satellite.html
http://www.cs.virginia.edu/~gd2000/gd-satellite.html
http://www.cs.virginia.edu/~gd2000/gd-satellite.html
http://www.cs.virginia.edu/~gd2000/gd-satellite.html
http://www.cs.virginia.edu/~gd2000/gd-satellite.html
http://www.cs.virginia.edu/~gd2000/gd-satellite.html
http://www.cs.virginia.edu/~gd2000/gd-satellite.html
http://www.cs.virginia.edu/~gd2000/gd-satellite.html
http://www.shrimpviews.com/
http://www.shrimpviews.com/
http://www.shrimpviews.com/
http://www.shrimpviews.com/
http://www.cas.ibm.com/archives/2000/workshops/descriptions.shtml#17
http://www.cas.ibm.com/archives/2000/workshops/descriptions.shtml#17
http://www.cas.ibm.com/archives/2000/workshops/descriptions.shtml#17
http://www.cas.ibm.com/archives/2000/workshops/descriptions.shtml#17
http://www.cas.ibm.com/archives/2000/workshops/descriptions.shtml#17
http://www.cas.ibm.com/archives/2000/workshops/descriptions.shtml#17
http://www.cas.ibm.com/archives/2000/workshops/descriptions.shtml#17
http://www.cas.ibm.com/archives/2000/workshops/descriptions.shtml#17
http://www.cas.ibm.com/archives/2000/workshops/descriptions.shtml#17
http://www.cas.ibm.com/archives/2000/workshops/descriptions.shtml#17
http://www.cas.ibm.com/archives/2000/workshops/descriptions.shtml#17
http://www.swag.uwaterloo.ca/~swagkit/
http://www.swag.uwaterloo.ca/~swagkit/
http://www.swag.uwaterloo.ca/~swagkit/
http://www.swag.uwaterloo.ca/~swagkit/
http://www.swag.uwaterloo.ca/~swagkit/
http://www.swag.uwaterloo.ca/~swagkit/
http://www.site.uottawa.ca/~tcl/kbre/options/
http://www.site.uottawa.ca/~tcl/kbre/options/
http://www.site.uottawa.ca/~tcl/kbre/options/
http://www.site.uottawa.ca/~tcl/kbre/options/
http://www.site.uottawa.ca/~tcl/kbre/options/
http://www.site.uottawa.ca/~tcl/kbre/options/
http://www.site.uottawa.ca/~tcl/kbre/options/
http://www.site.uottawa.ca/~tcl/kbre/options/
http://www.touchgraph.com/index.html
http://www.touchgraph.com/index.html
http://www.touchgraph.com/index.html
http://www.touchgraph.com/index.html
http://www.touchgraph.com/index.html
http://www.touchgraph.com/index.html
http://www-i3.informatik.rwth-aachen.de/research/projects/upgrade/
http://www-i3.informatik.rwth-aachen.de/research/projects/upgrade/
http://www-i3.informatik.rwth-aachen.de/research/projects/upgrade/
http://www-i3.informatik.rwth-aachen.de/research/projects/upgrade/
http://www-i3.informatik.rwth-aachen.de/research/projects/upgrade/
http://www-i3.informatik.rwth-aachen.de/research/projects/upgrade/
http://www-i3.informatik.rwth-aachen.de/research/projects/upgrade/
http://www-i3.informatik.rwth-aachen.de/research/projects/upgrade/
http://dx.doi.org/10.1007/s10257-005-0027-0
http://dx.doi.org/10.1007/s10257-005-0027-0
http://dx.doi.org/10.1007/s10257-005-0027-0
http://dx.doi.org/10.1007/s10257-005-0027-0
http://dx.doi.org/10.1007/s10257-005-0027-0
http://dx.doi.org/10.1007/s10257-005-0027-0
http://dx.doi.org/10.1007/s10257-005-0027-0
http://www.rigi.csc.uvic.ca/rigi/rigiframe1.shtml?Download
http://www.rigi.csc.uvic.ca/rigi/rigiframe1.shtml?Download
http://www.rigi.csc.uvic.ca/rigi/rigiframe1.shtml?Download
http://www.rigi.csc.uvic.ca/rigi/rigiframe1.shtml?Download
http://www.rigi.csc.uvic.ca/rigi/rigiframe1.shtml?Download
http://www.rigi.csc.uvic.ca/rigi/rigiframe1.shtml?Download
http://www.rigi.csc.uvic.ca/rigi/rigiframe1.shtml?Download
http://www.rigi.csc.uvic.ca/rigi/rigiframe1.shtml?Download
http://www.rigi.csc.uvic.ca/rigi/rigiframe1.shtml?Download
http://www.rigi.csc.uvic.ca/rigi/rigiframe1.shtml?Download
http://www.rigi.csc.uvic.ca/rigi/rigiframe1.shtml?Download
http://www.rigi.csc.uvic.ca/rigi/rigiframe1.shtml?Download
http://www.rigi.csc.uvic.ca/rigi/rigiframe1.shtml?Download
http://www.rigi.csc.uvic.ca/rigi/rigiframe1.shtml?Download
http://www.rigi.csc.uvic.ca/rigi/rigiframe1.shtml?Download
http://www.rigi.csc.uvic.ca/rigi/rigiframe1.shtml?Download
http://www.rigi.csc.uvic.ca/rigi/rigiframe1.shtml?Download
http://www.rigi.csc.uvic.ca/rigi/rigiframe1.shtml?Download
http://www.rigi.csc.uvic.ca/rigi/rigiframe1.shtml?Download
http://www.rigi.csc.uvic.ca/rigi/rigiframe1.shtml?Download
http://www2.informatik.unibw-muenchen.de/GROOM/META/index.htm
http://www2.informatik.unibw-muenchen.de/GROOM/META/index.htm
http://www2.informatik.unibw-muenchen.de/GROOM/META/index.htm
http://www2.informatik.unibw-muenchen.de/GROOM/META/index.htm
http://www2.informatik.unibw-muenchen.de/GROOM/META/index.htm
http://www2.informatik.unibw-muenchen.de/GROOM/META/index.htm
http://www2.informatik.unibw-muenchen.de/GROOM/META/index.htm
http://www2.informatik.unibw-muenchen.de/GROOM/META/index.htm
http://www2.informatik.unibw-muenchen.de/GROOM/META/index.htm
http://www.uni-koblenz.de/fb4/publikationen/gelbereihe/RR-8-2002.pdf
http://www.uni-koblenz.de/fb4/publikationen/gelbereihe/RR-8-2002.pdf
http://www.uni-koblenz.de/fb4/publikationen/gelbereihe/RR-8-2002.pdf
http://www.uni-koblenz.de/fb4/publikationen/gelbereihe/RR-8-2002.pdf
http://www.uni-koblenz.de/fb4/publikationen/gelbereihe/RR-8-2002.pdf
http://www.uni-koblenz.de/fb4/publikationen/gelbereihe/RR-8-2002.pdf
http://www.uni-koblenz.de/fb4/publikationen/gelbereihe/RR-8-2002.pdf
http://www.uni-koblenz.de/fb4/publikationen/gelbereihe/RR-8-2002.pdf
http://www.uni-koblenz.de/fb4/publikationen/gelbereihe/RR-8-2002.pdf
http://ist.unibw-muenchen.de/GXL/volk/index.htm
http://ist.unibw-muenchen.de/GXL/volk/index.htm
http://ist.unibw-muenchen.de/GXL/volk/index.htm
http://ist.unibw-muenchen.de/GXL/volk/index.htm
http://ist.unibw-muenchen.de/GXL/volk/index.htm
http://ist.unibw-muenchen.de/GXL/volk/index.htm
http://ist.unibw-muenchen.de/GXL/volk/index.htm
http://ist.unibw-muenchen.de/GXL/volk/index.htm
http://www.omg.org/technology/documents/formal/xmi.htm
http://www.omg.org/technology/documents/formal/xmi.htm
http://www.omg.org/technology/documents/formal/xmi.htm
http://www.omg.org/technology/documents/formal/xmi.htm
http://www.omg.org/technology/documents/formal/xmi.htm
http://www.omg.org/technology/documents/formal/xmi.htm
http://www.omg.org/technology/documents/formal/xmi.htm
http://www.omg.org/technology/documents/formal/xmi.htm
http://www.omg.org/technology/documents/formal/xmi.htm
http://www.w3.org/TR/2001/REC-xmlschema-0-20010502/
http://www.w3.org/TR/2001/REC-xmlschema-0-20010502/
http://www.w3.org/TR/2001/REC-xmlschema-0-20010502/
http://www.w3.org/TR/2001/REC-xmlschema-0-20010502/
http://www.w3.org/TR/2001/REC-xmlschema-0-20010502/
http://www.w3.org/TR/2001/REC-xmlschema-0-20010502/
http://www.w3.org/TR/2001/REC-xmlschema-0-20010502/
http://www.w3.org/TR/xmlschema-2/
http://www.w3.org/TR/xmlschema-2/
http://www.w3.org/TR/xmlschema-2/
http://www.w3.org/TR/xmlschema-2/
http://www.w3.org/TR/xmlschema-2/
http://www.w3.org/TR/xmlschema-2/
http://alphaworks.ibm.com/tech/xmitoolkit
http://alphaworks.ibm.com/tech/xmitoolkit
http://alphaworks.ibm.com/tech/xmitoolkit
http://alphaworks.ibm.com/tech/xmitoolkit
http://alphaworks.ibm.com/tech/xmitoolkit
http://alphaworks.ibm.com/tech/xmitoolkit
http://web.ing.unisannio.it/villano/students/masone/
http://web.ing.unisannio.it/villano/students/masone/
http://web.ing.unisannio.it/villano/students/masone/
http://web.ing.unisannio.it/villano/students/masone/
http://web.ing.unisannio.it/villano/students/masone/
http://web.ing.unisannio.it/villano/students/masone/
http://web.ing.unisannio.it/villano/students/masone/
http://web.ing.unisannio.it/villano/students/masone/
http://www-pr.informatik.uni-tuebingen.de/yfiles/
http://www-pr.informatik.uni-tuebingen.de/yfiles/
http://www-pr.informatik.uni-tuebingen.de/yfiles/
http://www-pr.informatik.uni-tuebingen.de/yfiles/
http://www-pr.informatik.uni-tuebingen.de/yfiles/
http://www-pr.informatik.uni-tuebingen.de/yfiles/

	GXL: A graph-based standard exchange format for reengineering
	Introduction
	Data interoperability of reengineering tools
	Interoperability of graph-based tools
	Collaborating tool sets
	Requirements for a standard exchange format
	Graph exchange formats in reengineering
	Genealogy of GXL

	Exchanging graphs with GXL
	Exchanging typed, attributed, directed, ordered graphs
	Exchanging hypergraphs
	Exchanging hierarchical graphs
	GXL DTD

	Exchanging graph schemas
	GXL schemas as UML class diagrams
	GXL schemas represented as graphs
	GXL metaschema

	Using GXL
	Conclusion
	Acknowledgments
	References

