Available online at www.sciencedirect.com

Science of
SCIENCE DIRECT®
@ Computer
K - «‘ Programming
ELSEVIER Science of Computer Programming 60 (2006) 149-170

www.elsevier.com/locate/scico

GXL: A graph-based standard exchange format for reengineering

Richard C. Hol®*, Andy SchiirP, Susan Elliott Siri, Andreas Winte?¥

@University of Waterloo, School of Computer Science, Waterloo N2L 3G1, Canada
b Darmstadt University of Technology, Real-Time Systems Lab, Merckstrae 25, D-64283 Darmstadt, Germany
CUniversity of California, Irvine, Department of Informatics, 444 Computer Science, Irvine, CA 92697-3425, USA
d University of Koblenz-Landau, Institute for Software Technology, Universitatsstrae 1, D-56070 Koblenz, Germany

Available online 17 November 2005

Abstract

GXL (Graph eXchange Language) is an XML-based standard exchange format for sharing data between tools. Formally,
GXL represents typed, attributed, directed, ordered graphs which are extended to represent hypergraphs and hierarchical grapt
This flexible data model can be used for object-relational data and a wide variety of graphs. An adva@a@esathat it can be
used to exchange instance graphs together with their corresponding schema information in a uniform format, i.e. using a commot
document type specification. This paper descriGed. and shows howGXL is used to provide interoperability of graph-based
tools. GXL has been ratified by reengineering and graph transformation research communities and is being considered for adoptiot
by other communities.
© 2005 Elsevier B.V. All rights reserved.

Keywords:Graph exchange language; Graph-based tools; Data interoperability; Reengineering; XML

1. Introduction

GXL (Graph eXchange Language) is a standard format for exchanging graph-based data. It is the culmination of
cooperative effort among an international group of researchers from disparate areas, including software reengineerin
and graph transformation. Researchers and tool builders have had a growing interest in comparing and combinin
approaches to their respective problems and leveraging each other’s results. These collaborations provide lessol
learned that are critical to advancing the maturity of the discipline. A standard exchange format for data facilitates
tool interoperability and allows users to select the most suitable approach or tool when building a workbench.

Interoperability is the challenge of enabling tools from different suppliers to work together. Wassé®tand
ECMA [2]] describe taxonomies of tool interoperability focussing on the aspects of data-, control-, presentation-,
process-, and framework or platform interoperabilibata interoperabilityappears as a base for all other types of
interoperability.

* Corresponding author.
E-mail addressesholt@plg.uwaterloo.ca (R.C. Holt), andy.schuerr@es.tu-darmstadt.de (A. Schiirr), ses@ics.uci.edu (S.E. Sim),
winter@uni-koblenz.de (A. Winter).

0167-6423/$ - see front matt@ 2005 Elsevier B.V. All rights reserved.
doi:10.1016/j.scico.2005.10.003

http://www.elsevier.com/locate/scico

150 R.C. Holt et al. / Science of Computer Programming 60 (2006) 149-170

Data interoperabilityrequires the data to be compatible both syntactically and semantically. In other words, tools
need to agree on both the format and the meaning of this data. The graph-based data rGadetatf be used to
represent both instance data and schemas. Txisprovides a standardized notation for exchanging instance data
(graphs) including their structure definition (graph schemas). Both instance and schema graphs are encoded usi
the same kind of XML (eXtensible Markup Language) documeB [While these schema graphs do not provide
semantics, they serve as a basis for users to agree upon semantics. This feature is important because it helps tools
researchers communicate about the assumptions inherent in their approaches. This increased mutual understandin
a critical step in building on each other’s work to increase the impact of research results.

In addition to being a generic format for representing graph struct@es;s also suitable for object-relational
data. ConsequentlgXL can be used to represent data from a wider range of applications, including data repositories
and factbases from reengineering tools.

Organisation of this paper

This paper is organised as follows. The next section provides background on interoperability of reengineering tool:
and their requirements for a standard exchange format. This background provides a motivation for the design decisiol
for GXL, including the selection of features to be included in the graph m8eetion 3describes how these features
are used to represent graph-based instance data from software reengineering. The g§xitas given by the XML
DTD in Section 3.4 Section 4explains how the same graph features are used to represent graph schemas. Adoptiol
of GXL is outlined inSection 5along with some examples of ho@XL has been used successfully to facilitate data
interoperability between reengineering tools. The paper concludes with a summary and a discussiorGai how
meets the requirements for data interoperability between reengineering tools.

2. Datainteroperability of reengineering tools

GXL was created to fulfil the need to exchange data between reengineering tools. Previously, interoperability
between tools relied on converters between local formats. This approach requires case-by-case negotiation of exchat
syntax, schema, and even semantics. As the research area matured, it became apparent that a standard exchange ft
was needed and that this format should provide a mechanism to help articulate these schemas and semantics.

These experiences with interoperability and local file formats form the context for the development of
Moreover, they circumscribe the requirements and criteria for success for a standard exchange format. In this sectio
we will describe this background and how it informed the emergencxaf

2.1. Interoperability of graph-based tools

A variety of reengineering tools employ graphs as an internal data representation. With improved data
interoperability, reengineering workbenches can be composed by choosing the best component for a particular tas
A typical reengineering workbench consists of three types of tools: Extractors, Abstractors, and Visuadjzers [

Extractors

These tools extract information from software artefacts, such as source code. Examples of such extractors for tt
C/C++ source language are ACACIA]], CPPX [1g], and Columbus/CAN32]. ASIS (ADA Semantic Interface
Specification) 0] offers similar functionality. Data extracted by these tools are usually exported as abstract syntax
trees or graphs.

Abstractors

These components of reengineering workbenches analyze the extracted data, generating further information, a
sometimes changing the form of the data. Tools of particular interest here treat the data as graphs. These tools inclu
the PROGRES graph transformation systeé and GUPRO 24]. General graph-based query mechanisms such
as Grok and GReQL are used for analyzing graph-structured tag RPA uses a relational approach to analyze
software systems8fl]. A generic approach for generating analyzers operating on abstract syntax trees is given e.g. ir
GENOA [19). ASTLOG uses a Prolog-based environment for analyzing prograBhsHurther specialized abstractors
have been developed for architectural analysis and reco¥&$]], for control flow, data flow, and dependency
analysis 101,12], and for software metrics7g].

R.C. Holt et al. / Science of Computer Programming 60 (2006) 149-170 151

Visualizers

These tools display the information derived in the previous steps. This information can be visualized textually
or graphically. Source code browsers are typical textual visualie&$3]. Graphical visualizers have been used to
display class diagram&§], sequence diagram8(], statechartsd] and software architecture$(3. General graph
drawing tools — for instance daVincBf], Graphlet p4], and GraphViz 46] — have been used to visualize small-
and medium-sized graphs. Large complex graphs are better handled by visualization tools designed for reengineerin
such as Rigi103 and SHriMP P1].

2.2. Collaborating tool sets

The approaches and tools shown above provide good support for various aspects of reengineering. Individua
tools from different workbenches have been combined to tackle a range of reengineering challenges. Here are sorr
illustrative examples of the data exchange. More of them can be foub@]at [

e Acacia and PBS. Acacia is a tool kit by AT&T Lab4(] for analyzing and visualizing programs written in
C++. There is a command line interface that allows extraction of facts about a parsed C++ program into Acacia’s
database. The analysis is at the external declaration level. Acacia was used to extract facts from the Mozilla sourci
code B2] that were subsequently converted into a corresponding TA stream (Tuple Attribute Landhfge)d
analyzed using PBS (Portable Booksheli[tools.

e Dali and SNiFF+. The Dali reverse engineering tool kit was created by the Software Engineering Institute
[64,65]. This tool kit combines features from a number of tools. To analyze the Linux kernel, SNiFF+'s3API [
was used as a fact extractor. These facts were stored iBAgdnalyzed using a relational database, and viewed
using Rigi [L04].

e CPPAnal and GUPRO. The CPPAnal tools by Harry Sn&étgxtract source code information on an architectural
level from large software systems and store them in SQL tables. By using G6h¥hgse tables are transferred
into TGraphs 27] for further analysis with GUPRO tools from the University of Koble@%][These TGraphs are
used in GUPRO to browse large grapB8§][

All of these collaborations were made possible through converters that take files from one local format and
transform the data into another local format. While this approach has been used successfully, it does not scale well. Ii
other words, a converter would need to be written for gzaih of local data formats and this effort quickly becomes
unmanageable. A standard exchange format serves as an intermediary for these file formats; tool developers woul
only need to convert to and from the local format and the exchange format.

There are a number of data formats that are used internally in a reengineering workbench, such B84RSF [
and GraX R6]. These formats, while efficient, are not suitable aseachange formabecause they have different
underlying graph models, are optimized for particular analyses, and frequently contain artefacts that reflect the tool
internals. For instance, RSF can represent hierarchical graphs that are not supported by GraX. By the same tokel
GraX provides extensive support to represent and exchange the structure of graphs by schema graphs. A standa
exchange format was needed that is flexible and general enough to represent the most common representations
data from software systems. Such a format was required for interoperability of different reengineering tools to support
exchange of data without loss of detail.

GXL provides such aommon and generally applicable fornfat interchanging data on software systems between
Extractors, Abstractors, and Visualizers, as well as other tools used to support software evolution.

2.3. Requirements for a standard exchange format

Examination of the collaborations in the previous subsection and further analysis of data interopes&BgT,
4] provide insights into the problem of standard exchange formats. These in turn lead us to the following requirements
for such an exchange format in reengineering: universality, typing, flexibility, ease of use, scalability, modularity, and
extensibility.

Universality: A standard exchange language shall support data exchange for multiple purposes. In a reengineering
exchange format, this includes exchanging data about different programming languages and at different levels

152 R.C. Holt et al. / Science of Computer Programming 60 (2006) 149-170

of abstraction, ranging from fine-grained representations such as abstract syntax trees and more coarse-grair
representations such as architectural descriptions. A standard exchange format needs to be flexible enough to be
intermediary in these and other situations.

Typing: A standard exchange language shall be typed. Knowing the types of objects being exchanged makes
easier to interpret the exchanged data. Typed exchange languages also permit validation of exchanged data &
allow adaptation to problem-specific data exchange. Defining types for data and their interdependencies helps |
standardizing domain-specific exchange models.

Flexibility: A standard exchange language shall be flexible. It should be easily adaptable to exchanging domait
specific data (cf. typed language) to provide far reaching use. Furthermore, it must allow annotations on all kind:
of data objects, e.g. layout information, source code references, and metrics.

Easeof use: A standard exchange language shall be designed to provide easy tool implementation. These tool
include import and export filters, translators from and to other formats, and helpers to validate and ensure th
integrity of exchanged data.

Scalability: A standard exchange language shall cope with data software systems independently from their leve
of granularity. It has to scale for data of arbitrary magnitude. Software systems in reengineering can be quite
large, sometimes consisting of millions of lines of source code, leading to abstract syntax trees. Thus, the standa
exchange language and the supporting tool sets have to deal with a large amount of data, efficiently.

Modularity: A standard exchange language shall support modular and incremental data exchange, so that data ci
be separated, hidden, or shared as needed. In other words, it should be possible to exchange data sets in parts
subsystems, or in multiple documents.

Extensibility: A standard exchange format shall provide support for extending the modeling concepts used by
specialized versions of the exchange language. Extensibility allows the exchange format to be used in addition:
domains, through the addition of new elements or through the use of the format as a sublanguage.

These requirements for a standard exchange format for reengineering provided the starting point for our desig
decisions in creating GXL. In the next section, the requirements are mapped to specific features in the format.

2.4. Graph exchange formats in reengineering

The examples of collaborating tool sets3action 2.2demonstrate the need for a general and applicable exchange
format for reengineering data. These tools typically use object-relational or graph-based file formats. The underlyin
data model in the standard exchange format needs to be robust and flexible enough to act as a bridge betwe
myriad existing formats. Thus, a widely applicalifgua francain reengineering needs to be adaptable, graph-
based formatThe high-level requirements on exchange formats presentgedtion 2.3notivate decisions on more
technical requirements for the suggested reengineering exchange format. In this section, we relate those requireme
to specific design decisions regarding featureSi .

We decided to create a new format rather than use an existing one because

e we needed a format that is simultaneously compatible with as many of these as possible,
e it has only and all the necessary graph features,

o it is flexible enough to work with disparate data and different levels of abstraction, and

e itis simple.

To ensure on ease on use, specifically ease of implementation, we decided to use XML. This standard for sem
structured data allows us to define our own format, while at the same time taking advantage of XML infrastructure for
constructing tools. One repercussion of this decision is the size of the files being exchanged (cf. scalability). Thes
files will be larger due to XML syntax and the length of tag and attribute names. However, this is a problem faced by
all XML users and standard compression techniques are effective remedies due to the amount of repetition in the file

In addition to gathering requirements for a standard exchange format, we analyzed a number of existinc
formats. This investigation identified both the kinds of features we should support and different approaches tc
satisfying our requirements. The formats that we studied included the internal representations of tools in softwar
engineering and reengineering (e.g. ATer®§,[DiaGen [77], GraX [26], RPA [81], RSF [104, TA [55]), in graph
databases (e.g. PROGREH)), and in graph drawing (e.g. daVinc3§], dot [46], GML/Graphlet §1], GRL [79],
XGMML [29], GraphXML [53]). From this review, we identified nine features that we includedsXL . These
features are described below:

R.C. Holt et al. / Science of Computer Programming 60 (2006) 149-170 153

Format Feature
@ ga|g8|lo|2 ol § 2z
<5 o) S 5 =} = o c £ 2, 2
== o 0 pugy 2 o] @ S © S 2 S
€| S8 |85 | 5|2 |2 | 85|85 |E
0o |T8 |Lfo | < |0 |Z |68 |48 | &
Software Engineering and Reengineering
Aterms [98] ol o .
DiaGen [77] ° ° ° ° 1 Aterms and daVinci are
GraX [26] R . . R o o based on terms.
Py .
RPA [81] o2 o3 . R RPA is based on sets and
relations.
RSF [104] ° ° ° * ° ° 3 Only nodes are viewed
TA[55] . o3 . . . as first class elements.
40nly nodes can be at-
Graph Transformation tribli/ted.
3 4
PROGRES [85] H ° ‘ ‘ ° ° ‘ ‘ ‘ ° ‘ ‘ 5 Nodes and edges may have
- types, but an explicitly de-
Graph Drawing fined schema is not sup-
daVinci [36] ol . . o ported.
dot [46]
GML [41] . o o . .
GraphML [5] . . ° ° 3 .
GraphXML [53]]
GRL [79] . o o o>
XGMML [29] . . o o .
Fig. 1. Supported features in graph formats.

Graph elements. Basic graph elements like nodes, directed and undirected edges and attributes must be supportec
For maximal flexibility, we permit both directed and undirected edges in the same graph.

Hyperedges: N-ary relationshipghyperedges) must be supported natively. Tools or formats that use hyperedges
need to be able to use the exchange format as well. Mappeny relationships onto special nodes and binary
edges is an unsatisfactory work-around that does not provide equivalent structural characteristics.

First classelements. Nodes, edges, and hyperedges must be identiffabteclass elementr objects, such that
they can have unique identifiers. Viewing edges as first class elements treats them as equal to nodes and enabl
multiple edges between nodes.

Attributes: All graph elements may have attributes added to them. This also includes the attributes themselves, e.qg. tc
express layout features of attributes.

Ordering: Ordering of incidences, i.e. the order of edges incident on a node, must be available such that ordered lists
of parameters or declarations can be conveniently expressed.

Hierarchy: Hierarchical graphs must be supported to provide simple sub-structuring of graphs. Subgraphs may be
exchanged as separate documents.

Graph schemas: The format must be able to define graph classes, or schemas. These are needed to constrain the fort
of graphs used in different domains of application. These graph schemas permit the specification and use of types

Extension points. The exchange language syntax has to be extensible, so that the format can be easily adapted tc
other areas. Furthermore, extension points must be available to permit enhancement of the language.

Simplicity: The exchange format has to be simple, so it can be read and understood by humans. This feature is
achieved through a document type definition with a modest number of elements and corresponding exchange doc
uments that are also small.

Fig. 1lists graph-based representations that we studied and their support for nine features. It shows that a grap
exchange format which supports all required features in one common language does nebgxistegrates these

154 R.C. Holt et al. / Science of Computer Programming 60 (2006) 149-170

GXL Requirements for Exchange Formats
Features Universality | Typing | Flexibility | Ease of Use | Scalability | Modularity | Extensibility
Graph .
elements
Hyperedges .
First class .
Elements
Attributes . .
Ordering .
Hierarchy . . .
Graph . .
schemas
Extension . .
points
Simplicity . .

Fig. 2. Requirements for graph-based exchange languages.

features in a general graph model (Bkction 3.4 Additionally, GXL is adaptable because it supports metamodel-
based definition of graph classes @éction 4 and extensions to the language @éction 3.4

Fig. 2 illustrates how the features selected faxL fulfil the requirements identifie@ection 2.3 Every feature
satisfies at least one requirement and every requirement is met by a feature. The universality requirement was achiey
by including graph elements, hyperedges, attributes, and ordering. This collection of featureSxt tiraph model
ensured compatibility with a large number of graph formats. These features were also considered primitive becau:s
they could not be achieved through the combination of other features. The typing requirement was implemente:
through graph schemas. While graph schemas appeared in only a few formats, their expressive power and flexibilii
made them an attractive mechanism for supporting typing. Flexibility was further achie@d. iwith user-defined
attributes and extension points. The Ease of Use requirement was satisfied through simplicity and the decision to u:
XML. Scalability was enabled using the Hierarchy and Simplicity features. Modularity was implemented through the
Hierarchy feature and some XML features. Finally, Extensibility was realized using Extension Points.

In addition toGXL, there are other XML-based formats for exchanging graphs or software artefacts in software
engineering and reengineering. GraphMi] [s a graph exchange format oriented towards graph layout which
succeeds GraphXML. GraphML offers a core graph model similagxa. Whereas adaptability o6XL is based
on metamodeling technology for defining convenient graph schem&s@ion 4, adaptability of GraphML is given
by extending the GraphML document definition. Thus, GraphML documents use different, domain-specific documen
definitions with a common core. In contraSiXL uses one common, application-independent document definition.

Another relatively minor difference is that GraphML has the concept of ports. Ports are properties of nodes anc
are convenient for controlling the incidence of edges. Since ports can be mapped onto existing cor@ptsia
elected to not add another feature to support them. For example, one possible way to represenGaris iny
usingedge attributeso indicate the port's name arderingto indicate numbered ports.

The graph drawing community has compared the two approaches and found that they are conpatibledrt
of this exercise, a set of filters for converting between GraphML@xidwere developed.

Exchange of graph-based data can (also) be accomplished using MOF (Meta-Object F&é]liag fnodeling
language and XMI (XML Metadata Interchangd)l[] as exchange language. While MOF does not have native
concepts for modeling graphs, etgary relationships, graph properties, and link attributes, it may be used to define
a graph modeling and exchange language. Once this graph model has been defined, XMl can be used to generate
XML document specification. MOF/XMI angXL are similar in that both are generic exchange languages based on
metamodeling technology. However, there are three important differences.

One, the document type specifications created by MOF/XMI are complex and contain a large number of XML
elements that are not directly relevant to encoding the data, e.g. elements for CORBA compatibilityXThe
document specification was implemented by creating a UML class diagram that defines the underlying graph mods
and then manually deriving the elements and attributes. Consequently, the deSixjnisimuch cleaner and requires
only a small number of elements (cf. seection 3.4or more details).

R.C. Holt et al. / Science of Computer Programming 60 (2006) 149-170 155

WCRE 1999
GROOM 2000 TA TGraphs/GraX PROGRES
WOoSEF 2000 RSF
Graphlet ATerms Graph Transformation
GRL System Exchange
Language

APPLIGRAPH meeting on Graph S e e e e GTXL
exchange formats for Graph Trans-
Transformation 2000 formation

: Systems
Graph Drawing 2000 GraphXML

workshop on data
exchange formats

CASCON 2000
WCRE 2000

Dagstuhl 2001 "Interoperability of

Reengineering Tools" GXL 1.0

Ha i

~ = _ s<uses>>

APPLIGRAPH meeting on : - v
exchange formats for Graph --o
Transformation 2001 GTXL 0.2

using E GXL Tools

GXL H
Dagstuhl 2001 "Software Vizualization" ' GXL Standard Schemas
Graph Drawing 2001 :
WCRE 2001

i A J
Fig. 3. Genealogy oG XL .

GraBaTs 2002

Two, each distinct MOF metamodel generates a new document type specification. The advantage is the XML
format that is created is specially tailored for specialized exchange scenarios. The disadvantage is that tools then mu
also be tailored for each XML format generated. He®&/ provides one common XML notation for exchanging
variants of graph-based data.

Finally, in MOF/XMI two different syntaxes are used for representing instance data and for exchanging the
metamodels of that data. The metamodels are stored as document type specifications, that is, DTDs or XML Schema
Instance data are represented as XML documents in a variety of notations. In cabkiasises a single common
document type specification (Section 4 independent from its use for exchanging graph instances or graph schemas,
which simplifies the task of developing tools to work with the format.

Other XML-based approaches (c7.1j11€]) to storing, analyzing, and exchanging program data make use of the
tree structure inherent in XML documents, thatis, DOM trees. XML tags are added to source code so that the structure
of the XML document mirrors the abstract syntax tree. Consequently, when the XML document is parsed, the parse
tree for the program is re-created. These approaches differ @gimbecause they require different document type
specifications for different languages and they are restricted to tree like structures. Despite these differences, both th
XMI and the DOM approaches are both based on XML, so data can be interchangeswilly using appropriate
XSLT scripts.

In summaryGXL seeks to be general, compact and simple graph-based exchange format

2.5. Genealogy o6XxL

The genealogy ofGXL presented in this section shows haxL matured and how other graph formats in
reengineering and graph technology influenced the developme&xXiafThe genealogy o XL is depicted irFig. 3.

Development ofGXL began with a merger dBRAph eXchange format (GraX36], Tuple Attribute Language
(TA)[55], and the file format from theROGRE$raph rewriting systenBp] introducing the general graph features.
This collection was presented iBXL 0.4.2 for comment by the general community. Criticisms and suggestions
directed us to consider including features from a broader collection of formats.

The development o6XL was advanced during various conferences and workshops since 1998. Initial discussions
on defining a general exchange format for reengineering tools were held at WESRE[L05 and at CASCON

156 R.C. Holt et al. / Science of Computer Programming 60 (2006) 149-170

3 DICIES - name = "main" i
File Edit Search Preferences e1: isCaller - e2 : isCaller
Shell Macro Windows Help line =8 - line = 12
1int main() &
24
3 int a; w2 : FunctionCall
4 int b;
g {1)\ {2he6.islnput ()
7 i Il e7 . islnput
8 a = max{(a,b);
9
:2 v4 : Function v5 : Function
12 b = mib,a); name = “max" name = "min’
14 ats
:g 2 | €9 : isOutput €10 : isOutput
£
= = v6 : Variable v7 : Variable

name = "a" name = "b"

Fig. 4. Typed, attributed, directed, ordered graph.

1998 [17]. Approaches for graph-based exchange formats were discussed during meetings at1@49REDq,
and GROOM 2000 J07. These interactions and investigations resulted in an initial prototyp&xif that
was presented at the ICSE 2000 Workshop on Standard Exchange Formats (WB8ERhis proposal was
subsequently discussed, compared, and critiqued at meetings on exchange formats at APPLIGHAdd [
Graph Drawing §4]. Refinements of the prototype were presented at conferences and workshops throughout 2000
including CASCON 200048,87] and WCRE2000 [66]. GXL was ratified as a standard exchange format in software
reengineering at the Dagstuhl Seminar “Interoperability of Reengineering Tools” in January23p01 [

Soon afterwardsGxL was presented at meetings in other research areas. The graph transformation community
is usingGXL as a starting point for th&raph Transformation Exchange Langua@&TXL) [45,93. In this context
GXL is being used to represent graphs and work is under way to add features for representing transformation rule
This decision was made after the APPLIGRAPH meetings for exchange forB%tar[d the GraBaTs Workshop
on Graph-Based Tool§fl]. Discussions have been held with the graph drawing community to @akea standard
exchange format for graph layouts as well. Presentations were made at GBZP&A] a panel held at GD20043).

SinceGXL specifies only graphs, it remains to standardize schemas to further describe what these graphs represe
In other words, standard schemas, or reference schemas, are needed for being fully interoperable to data interchan
While this approach can be said to merely shift the debate from syntax to semantics, it is a desirable change becau
it raises negotiations about interoperability to a more conceptual level. This level of abstraction is one that is properly
in the realm of discourse for research as it is more likely to lead to breakthroughs in understanding.

The current version oflGXL, news about ongoing development efforts, and up-to-date information including
tutorials and documentation are availabld&#p://www.gupro.de/GXL

3. Exchanging graphswith GXL

In the previous section, we argued that a graph-based standard exchange format is appropriate for reengineering
this section, we discuss the specific graph features includéairand how these can be used to represent software.

GXL supports graphs which can have directed or undirected edges, typed nodes and edges, attributes attact
to nodes and edges, and ordered ed@&% [Section 3.1illustrates the use of theseXL features. To this set of
features,GXL addsn-ary edges (hyperedges) as well as hierarchical graphs (subgraphs within g&suitigns 3.2
and3.3illustrate the use of these features. Finally, 8. language definition is given iSection 3.4ising an XML
document type definition (DTD).

3.1. Exchanging typed, attributed, directed, ordered graphs

Fig. 4 shows a fragment of source code along with its abstract syntax graph, which we depict using UML object
diagram notation§3]. The diagram is at the level of an abstract syntax graph. In the program, fumetiorcalls
functionmaxin line 8 and functiorminin line 12,

http://www.gupro.de/GXL
http://www.gupro.de/GXL
http://www.gupro.de/GXL
http://www.gupro.de/GXL
http://www.gupro.de/GXL

R.C. Holt et al. / Science of Computer Programming 60 (2006) 149-170

<?xml version ="1.0" ?>
<!DOCTYPE gxl
SYSTEM "gxI-1.0.dtd">

<gxl xmIns:xlink="www.w3.0rg/1999/xlink" >

<graph id = "simpleGraph"
edgeids = "true">
<type xlink:href =
"schema.gxl#Schema"/>
<nodeid ="v1" >
<type xlink:href =
"schema.gxl#Function"/>
<attr name = "name" >
<string>main</string>
<[attr>
</node>
<nodeid = "v2" >
<type xlink:href =

"schema.gxl#FunctionCall'/>

</node>
<node id ="v3" >
<type xlink:href =

"schema.gxl#FunctionCall'/>

</node>
<node id = "v4" >
<type xlink:href =
"schema.gxl#Function"/>
<attr name = "name" >
<string>max</string>
</attr>
</node>
<node id ="v5" >
<type xlink:href =
"schema.gxl#Function"/>
<attr name = "name" >
<string>min</string>
</attr>
</node>

<node id ="v6" >
<type xlink:href =
"schema.gxI#Variable"/>
<attr name = "name" >
<string>a</string>
<lattr>
</node>
<nodeid ="v7" >
<type xlink:href =
"schema.gxl#Variable"/>
<attr name = "name" >
<string>b</string>
</attr>
</node>
<edgeid ="el"
from = "v1" to = "v2">
<type xlink:href =
"schema.gxl#isCaller"/>
<attr name = "line" >
<int>8</int>
</attr>
</edge>
<edgeid ="e2"
from = "v1" to = "v3">
<type xlink:href =
"schema.gxl#isCaller"/>
<attr name = "line" >
<int>12</int>
</attr>
</edge>
<edgeid ="e3"
from = "v4" to = "v2">
<type xlink:href =
"schema.gxl#isCallee"/>
</edge>
<edgeid = "e4"
from = "v5" to = "v3"
<type xlink:href =
"schema.gxl#isCallee">
</edge>

Fig. 5. GXL representation of graph frofig. 4.

<edgeid ="e5"
from = "v6" to = "v2"
toorder = "1">
<type xlink:href =
"schema.gxl#isinput"/>
</edge>
<edge id = "e6"
from = "v7" to = "v2"
toorder = "2">
<type xlink:href =
"schema.gxl#isInput"/>
</edge>
<edgeid ="e7"
from ="v6" to = "v3"
toorder = "2">
<type xlink:href =
"schema .gxl#isInput"/>
</edge>
<edge id = "e8"
from ="v7" to = "v3"
toorder = "1">
<type xlink:href =
"schema.gxl#isInput"/>
</edge>
<edgeid ="e9"
from ="v6" to = "v2"
<type xlink:href =
"schema.gxl#isOutput">
</edge>
<edge id = "el0"
from ="v7" to = "v3"
<type xlink:href =
"schema.gxI#isOutput">
</edge>
</graph>
</gxI>

157

In the diagram, functionsain max andmin are represented by nodes of tyfpenction while variablesa andb
are represented by nodes of tyyiable These nodes are attributed with the names of the functions and variables.

The calls to functionsnaxandmin are represented HyunctionCallnodes. These nodes are associated with the
caller byisCaller edges and with the callee ligCalleeedges. ThésCaller edges are attributed withlime attribute
giving the line number that contains the call. Parameters (representatibplenodes) are associated with function
calls byisinputedges. The ordering of parameter lists is given by the ordering incideniglspiit edges pointing
to FunctionCallnodes! The first edge of typésinputincident to function cali/2, for the callmax(a,b) comes from
nodev6 representing variable. The second edge of typglnputcomes from the second parametgnodev?). The
ordering of the parameters of the other caB)(are represented analogously.

GXL provides constructs for exchanging graphs such as the dfig.id. These constructs represent nodes, edges,
and edge ordering, as well as type information and attribute values.

Fig. 5depicts the graph frorRig. 4as an XML document following th&XL structure. The second and third lines
of Fig. 5give the DTD version foGXL asgxl-1.0.dtd. The body of theGXL document is enclosed igxI> tags. The
fifth line gives the name of the graph sispleGraph and specifies that edges are to have identifiers, sueb. &ext,
the graph refers to its associated graph schema n&otetha (cf. Section 4 stored in fileschema.gxl.

Nodes and edges are representedc<hgde> and <edge> elements. These can be located by theiattribute.
Incidence information of edges including edge orientation is stordobim andto attributes within<edge> tags.

1in contrast to UML, which orders adjacenciesxL uses ordering of incidences.

158 R.C. Holt et al. / Science of Computer Programming 60 (2006) 149-170

Ordering of incidences is also represented here. Attritfrde®rder andtoorder represent the order of an edge in the
incidence list of its start and target node. Node and edge types are represented by links pointing to the appropria
schema information. These links are enclosedtype> elements.

The <node> and <edge> elements may contain further attribute information. Tatr> elements describe
attribute names and values. For compatibility with tools using typed attrib@désalso offers typing of attributes.
Usually, this information is defined within the schema of a given graph clasSéction 4. But, sinceGXL is not
constrained to use graph schemas, attribute types are specified within the instance documents by appropriate ta
Using schemas, additional constraints ensure that these attribute tags match the schema specification. Bi$je OCL [
GXL provides<bool>, <int>, <float>, and <string> attributes. Furthermore, enumeration valuesrum=) and
URI references<locator>) to externally stored objects are supporteXL offers composite attributes including
sequences<seq>), sets kset>), multi sets kbag>), and tuples £tup>). <Attr> elements only contain one data
element, e.g<int> or <set>. But, they may contain otherattr> elements to exchange attributes of attributes.

3.2. Exchanging hypergraphs

GXL supportshypergraphg2] (graphs withn-ary edges) as well as graphs with binary edges. Themy edges
can be typed, attributed, directed or undirected and ordered.

Fig. 6 shows a hypergraph in UML notation, modeling the function aatt maxa, b) by a 5-ary hyperedge of
typeFunctionCall2 The diamond, representing the hyperedge, is connected by lines (tentacles) to itdnatetioh
andVariablenodes. These tentacles are marked with roles, identiiyétigr, callee input, andoutput Numbers on
the tentacles give the ordering of parameters. The hyperedgdihaséribute giving its line number &

The GXL representation of this hyperedge is givenFig. 7. Hyperedges are represented byel> (relation)
elements. Like<node> and <edge> elements<rel> elements can contain typetlype>) and attribute €attr>)
information. Tentacles, which point to the related graph objeatgd{), are represented byrelend> (relation end)

v1 : Function

name = "main”

r1 : FunctionCall2

line=8

v4 : Function |caller
name = "max"
output input input
v6 : Variable v7 : Variable
name = "a" name = "b"

Fig. 6. Hypergraph.

<relid ="r1" >
<type xlink:href = "schema2.gxl#FunctionCall2"/>
<attr name = "line" >
<int>8</int>
</attr>
<relend target = "v1" role = "callee" />
<relend target = "v4" role = "caller" />
<relend target = "v6" role = "output” />
<relend target = "v6" role = "input”
startorder = "1"/>
<relend target = "v7" role = "input”
startorder = "2"/>
<Irel>

Fig. 7. GXL representation.

R.C. Holt et al. / Science of Computer Programming 60 (2006) 149-170 159

subelements. Roles of tentacles are storelmattributes. The ordering of tentacles at the hyperedge is given by
startorder attributes. The ordering of tentacles at target objects is givamtgrder attributes. Directed or undirected
hyperedges and tentacles are distinguished by attriixuliescted anddirection.

Edges, which are inherently binary, can be represented as 2-ary hyperedges. This meaxisdbat not need to
support edges explicitly. However, since binary edges are so comaxinprovides a special notationedge> for
them.

3.3. Exchanging hierarchical graphs

Although graphs are intuitive and convenient, when large, they become complex to manage and to visualize.
This complexity can be reduced by introducing subgraphs, in which parts of graphs representing related objects
are grouped into subgraphs. The resultiiigrarchical graphs[7] support structuring of graphs by grouping and
encapsulation.

Fig. 8gives an example of a hierarchical graph. N@dewhich represents thmaxfunction fromFig. 4, contains a
subgraph representingaxs function body. TheGXL representation ifrig. 9 shows this subgraph as<ayraph>
element inside node4. Subgraphs inside edges or hyperedges are written analogously (c&EXhedDTD in
Section 3.4

v4 : Function

name = "max"

= %
e4.5 : isTrueStmt ~._ e4.6: isFalseStmt
e4.7 : isPredicate
v4.4 : ReturnStmt 3 r
Iy
erand

e4.8 : isOperand

£4.10 : isOperator

v4.6 ; Variable v4.8 ; Operator v4.7 : Variable
name = "x" name = ">" name = "y"
|e4.3: isFormalOutput e4.4; isForma\Outgut‘
| v4.1:Interface |
T
e4.1: isFormallnput {1} {2} e4.2 : isFormallnput

Fig. 8. Hierarchical graph.

<node id = "v4" >
<type xlink:href = "schema.gxl#Function" />
<attr name = "name" >
<string>max</string>
<lattr>
<graph id ="g4" >
<type xlink:href = "asg.gxI" >
<nodeid ="v4.1" >
<type xlink:href = "asg.gxl#Interface" >
</node>

<edgeid ="e4.12"
from = "v4.7" to = "v4.5"/>
<type xlink:href =
"asg.gxl#isReturnValue"/>
</edge>
</graph>
</node>

Fig. 9. GXL representation.

160 R.C. Holt et al. / Science of Computer Programming 60 (2006) 149-170

AttributedElement 0N hasattribute » %" Attribute
1~
id Q name
kind
g.n refersType b 1
Type TypedElement
0.1 4 hasType 0.n
A4
o refersDocument p drelatesTo
=) 0N contains %] 1 dio
GXL OM Graph GraphElement dirom
0.1 0.n mells 1 contains g p 1
edgeids
hypergraph relatesTo
edgemode SEEr
LocalConnection - to
isdirected =
I ‘ 0..n
Node Relation Edge
0..n
I).,n
Relend
role
direction Q.
startorder
endorder

Fig. 10.GXL graph model.

The GXL form of hierarchical graphs is convenient when there is a strong sense of ownership that can be modele
by the nesting of graphs. B XL also permits edges and hyperedges crossing the boundaries of graph hierarchies
up, down, diagonally, and sideways. Consequently, edges can be used to connect subgraphs and graph elements f
any level in the hierarchy. No restrictions have been placed in these hierarchical edges and hyperedges to permit t
greatest flexibility when using hierarchical graphs.

GXL provides one explicit form for graph hierarchies. There are alternate approaches to modeling them. For exan
ple, references to subgraphs and their elements may be representediasatigr> attributes pointing to their appro-
priate GXL representations. This approach does not support connectivity between sub- and supergraphs. Since loca
attributes usually refer to external documents, the subgraph is only visible from the supergraph, and not vice versa.

3.4. GXLDTD

This section introduces the structure@XL as XML notation. It begins this by giving a UML class diagram that
defines the kind of graphs provided BXL. This serves as a starting point for specifyiBgL 's DTD [30] and XML
Schema definition][11].

The class diagram irfrig. 10 specifies all graph features supported &%L (cf. Fig. 2. The diagram omits
the classes for the portion abXL for representing attributes and associated data types. As the figure shows,
a Graph containsGraphElementswhich areNodes Relations and Edges To support hierarchical graphs, each
GraphElementmay contain otheGraphs Edgesrecord binary connections amElationsrecordn-ary connections
betweenGraphElementsNote thatGXL allows edges and hyperedges to make connections between other edges and

R.C. Holt et al. / Science of Computer Programming 60 (2006) 149-170 161

<!l-extensions —>
<IENTITY % gxl-extension
<IENTITY % graph-extension
<!ENTITY % node-extension
<!IENTITY % edge-extension
<IENTITY % rel-extension
<IENTITY % value-extension
<!ENTITY % relend-extension
<IENTITY % gxl-attr-extension
<IENTITY % graph-attr-extension
<IENTITY % node-attr-extension "
<!ENTITY % edge-attr-extension
<IENTITY % rel-attr-extension
<IENTITY % relend-attr-extension

<!|-attribute values —>

VVVVVVVVVVVVYV

<IENTITY % val " locator | bool | int | float | string |

enum | seq | set | bag | tup
% value-extension;" >

<l—gxl —>
<!ELEMENT gxI (graph* %gxl-extension;) >
<IATTLIST gxl

xmins:xlink CDATA #FIXED

"www.w3.0rg/1999/xlink"

%gxl-attr-extension; >

<l-type —>
<IELEMENT type EMPTY>
<IATTLIST type
xlink:type (simple)
xlink:href ~ CDATA
<l-graph —>
<!ELEMENT graph (type? , attr* ,
(node | edge | rel)*
%graph-extension;) >
<IATTLIST graph
id 1D #REQUIRED
role NMTOKEN #IMPLIED
edgeids (true | false) "false"
hypergraph (true | false) "false"
edgemode (directed | undirected |
defaultdirected | defaultundirected)
"directed"
%graph-attr-extension; >
<l-node —>
<!ELEMENT node (type? , attr*, graph*
%node-extension;) >
<IATTLIST node
id ID
%node-attr-extension; >

#FIXED "simple”
#REQUIRED >

#REQUIRED

<l-edge —>

<!ELEMENT edge (type?, attr*, graph*
%edge-extension;) >

<IATTLIST edge

id ID #IMPLIED
from IDREF #REQUIRED
to IDREF #REQUIRED
fromorder CDATA #IMPLIED
toorder CDATA #IMPLIED

isdirected (true |false) #IMPLIED
%edge-attr-extension; >

<l-rel —>
<!ELEMENT rel (type? , attr*, graph*, relend*
%rel-extension;) >
<IATTLIST rel
id ID #IMPLIED
isdirected (true |false) #IMPLIED
%rel-attr-extension; >

<!-relend —>

<!ELEMENT relend (attr* %relend-extension;) >

<IATTLIST relend
target IDREF #REQUIRED
role NMTOKEN #IMPLIED
direction (iin | out | none) #IMPLIED
startorder CDATA #IMPLIED
endorder CDATA #IMPLIED
%relend-attr-extension; >

<l-attr —>

<IELEMENT attr (attr*, (%val;)) >

<IATTLIST attr

id IDREF #IMPLIED
name NMTOKEN #REQUIRED
kind NMTOKEN #IMPLIED >

<!-locator —>
<!ELEMENT locator EMPTY >
<IATTLIST locator

xlink:type (simple)

xlink:href CDATA
<Il-attribute values —>
<IELEMENT bool (#PCDATA) >
<!ELEMENT int (#PCDATA) >
<IELEMENT float (#PCDATA) >
<!ELEMENT string (#PCDATA) >
<IELEMENT enum (#PCDATA) >
<IELEMENT seq (%val;)* >
<IELEMENT set (%val;)* >
<IELEMENT bag (%oval;)* >
<!ELEMENT tup (%val;)* >

#FIXED "simple"
#IMPLIED >

Fig. 11. GXL document type definition (DTD).

hyperedges as well as between nodes. Ordering of incidences is stanetkirattributes ofrelatesToassociations.
Graphsandgraph elementsan be typed and attributed. Graph types are defined by graph schemas represekted as
documents (cfSection 4. This set of entities with their interrelationships means thst definestyped, attributed,
directed, ordered, hierarchical graphs and hypergraphs

The user write&S XL graphs as XML documents. Therefore, itis convenientto specify the syn@x.lods an XML
document type definition or as an XML schema definition. To keep this definition simple and understandable, it was
created manually, basically by translatifigy. 10into DTD and XML schema notatiorkig. 11shows the resulting
document type definition in its entirety. A commented version of this DTD and a corresponding XML schema are
available atttp://www.gupro.de/GXLThe handcraftedsXL DTD has only 18 XML elements. In contrast, a DTD
for GXL generated using IBM’s XMI (XML Metadata Interchange) ToolKitl[requires 66 elements for thexL
core and an additional 63 elements for XMl and CORBA compatibility.

The GXL DTD (seeFig. 11) begins by specifying predefined points (&2]) for extendingGXL. These lines can
be used to add sub-elements or attributes to their corresponding graph elements. The rest of the DTD gives the synte
for graph components<{graph>, <node>, <edge>, <rel>, <relend>), attributes kattr>), and references
(<type>) to schema information.

http://www.gupro.de/GXL
http://www.gupro.de/GXL
http://www.gupro.de/GXL
http://www.gupro.de/GXL
http://www.gupro.de/GXL

162 R.C. Holt et al. / Science of Computer Programming 60 (2006) 149-170

To keep the language design @KL simple, GXL did not use the XML schema mechanism for data tyddi[
provided for attributes. Instea@XL used special tags for simple typeshool>, <int>, <float>, <string>,
<enum>) and nesting of tags for composite typessgq>, <set>, <bag>, <tup>). The composite types of
sequences, sets and multisets (bags) are expected to be homogeneous. However, tuples can hold data of diffel
types.

XML DTDs impose syntactic constraints on documents, but the semantic constraints that it can impose are limited
Some semantic constraints GXL, such as “edges> and <rel> elements only connect elements of the given
graph”, can be enforced within XML, using the referencing mechanism for identifiersj.eDREF). The more
restrictiveGXL constraint, that these references are only allowed to refer to graph elements (and not attributes), cannc
be expressed or enforced using only XML. Additional constraints such as the ones listed below must be define
outside the DTD:

e Edges and hyperedges only connect graph elements.|IBREIF pointing to incident graph elements refer only to
<node>, <edge>, and<rel> elements.

e Edges and hypergraphs only connect graph elements within the same graphDRE&Ehpointing to incident
graph elements has to refer to a graph element, which is defined within the<sgraph> element (including
subgraphs) or within acgraph > element representing the convenient supergraph.

o Attribute identifiers have to be unique for each graph element. Eaolde>, <edge>, and<rel> element does
not contain multiple<attr> elements with the same name.

e Ordered incidences have to be linear. AHomorder/toorder attributes of <edge> elements and all
startorder/endorder attributes of<relend> elements, respectively have to define a proper ordering according to
their incident graph elements. No fixed lower bound or initial index is prescribed.

A detailed list of constraints has been published separately @ avalidator suite has been made available for
checking that documents conform to these constra@i#lis [

4. Exchanging graph schemas

Graphs are used for describing objects (nodes) and their interrelationships (edges, hyperedges). In a particular &
plication domain, it is commonly appropriate to constrain the form of the graph, for example by limiting the types of
the nodes. A schema provides a means for describing and constraining the graph. In particular, a schema determin

which node, edge, and hyperedge classes (types) can be used;

which relations can exist between nodes, edges, and hyperedges of given classes;

which attributes can be associated with nodes, edges, and hyperedges;

which graph hierarchies are supported; and

which additional constraints (such as ordering of incidences, degree restrictions) have to be imposed.

These constraints specialize the graph structure to represent the domain of interest.
4.1. GXL schemas as UML class diagrams

This section explains how@XL schemas are written and used. We start by giving three example schemas, i) the
schema inFig. 12for use with the simple graph iRig. 4, ii) the schema irFig. 13for use with the hypergraph in
Fig. 6, and iii) the schema ifrig. 14for use with the hierarchical graph ifg. 8 We also show hovGXL schemas are
exchanged using a particular form of a graph. The next section after this one shows how this format is itself describe
by another schema (by a metaschema).

isCallee » : 0. 4 isOuiput
o FunctionCall {ordered
. 0.7 4 islnput
1 O Puliy - 1
Function isCaller Variable
— 1 isCaller » x— —
name : string line : int name : string

Fig. 12. Simple schema graph.

R.C. Holt et al. / Science of Computer Programming 60 (2006) 149-170 163

Function

name : string
caller \1

FunctionCall2 |
line : int
input /0..n
Variable
name : string

Fig. 13. Hypergraph schema.

Function
name : string

<< GraphClass >> asg

0.1 4 isFalseStmt 0.n Stmt

0.1 < isTrueStmt 0..n ZP

I 0. n4 isFormalQutput
IfStmt Interface | 4 isFormal ReturnStmt
P 0.n Input
{ordered} |0 ..n o.n
dis 1 Variable

Predicate OpExpr name : string

0.n
A isr‘ A
wn
Operalo 4 {ordered)

Operator | is|4__o0.n Exoreasion 1 isReturnValue »
name : string Operand P

0.n

Fig. 14. Hierarchical graph schema.

As illustrated inFigs. 12-14, we can represerGXL schemas as UML class diagran&g]. Each node, edge, or
hyperedge of a particular type in the instance graph has a corresponding class or association in the schema diagral
The schema ifrig. 12has classes representing node cladsasdtionCall Function andVariable) used inFig. 4, and
it has associationgsCaller, isCalleg isinput, andisOutpu) representing edge classes. The edge ¢é&aller has an
integer attribute namdihe, which reflects the fact that iRig. 4, isCaller edges are attributed with line numbers. The
orientation of edges is depicted by a filled triang8,[p. 155]. Multiplicities denote degree restrictions. Ordering of
incidencess indicated by the keyworfbrdered}.

The schema for the hypergraphrig. 6is given byFig. 13 The hyperedge’s class is showrHig. 13as a diamond
with attached tentacles. These tentacles can be annotated by multiplicity information to specify cardinalities, and by
names indicating the roles of participating classes. The keyfeoddred} can be used to require ordering of incident
tentacles in instance graphs. Attributes of hyperedge classes are defined within an associated class attached to t
diamond representing the hyperedge class.

The schema for the hierarchical graph kig. 8 is given by Fig. 14 This schema uses a UML stereotype
<<GraphClass>> to distinguish classes containing types of subgraphs from (ordinary) node classes. Composition
(depicted by nesting or filled diamonds) is used, to define ownership of graph classes and containment of grapt
objects within a graph class. By convention, nesting is used to describe graph class definition and filled diamonds
express ownership. The specification of graph céeggs nested within the: <GraphClass>> node. Nodes of class
Function own graphs of graph classg(abstract syntax graph). The definition of graph cksgalso shows the use
of higher modeling constructs like generalization and aggregation.

164 R.C. Holt et al. / Science of Computer Programming 60 (2006) 149-170

schema: GraphClass

name = "Schema"

contains -

FunctionCall : |4
» NodeClass
*... | name = "FunctionCall" | o
isAbstract = false
Y
el:to e3:to e5: o ellito
limits = (0,-1) limits = (0,-1) - limits = (0-1) |~ limits = (0,-1)
isOrdered = false isOrdered = false " isOrdered = true isOrdered = false
isCallee : isCaller : isinput : isOutput :
EdgeClass EdgeClass EdgeClass EdgeClass
name = “isCallee" name = "isCaller" name = “isinput” name = "isOutput”
isAbstract = false isAbstract = false isAbstract = false isAbstract = false
isDirected = true isDirected = true . isDirected = true isDirected = true
e7 : hasAtiribute
e2 : from " e6 : from el2 : from
== v7: AttributeClass —— L —
limits = (1,1) f T limits = (0,-1) limits = (1,1)
isOrdered = false 1 Ll isOrdered = false isOrdered = false
i e8:hasDomain
Y 14 ! y " v
Function : . v9 : Int Variable :
NodeClass ed . from NodeClass
name = "Function® limits = (1,1) v name = "Variable" | %
isAbstract = false isOrdered = false v10 : String isAbstract = false
4 211 : hasDomain
e9 : hasAttribute v8: AttributeClass €10 : hasAttribute

-
d

name = "name"

Fig. 15. Graph for schema ifig. 12

4.2. GXL schemas represented as graphs

GXL provides a great deal of flexibility in the handling of various kinds of data, by allowing the user to transmit
a graph’s schema along with the graph itself. This is done by translating the schema so it becomes an ordinary graj
and encoding this graph iBXL the same manner as any other graph.

Fig. 15shows the result of translating the schemé&ig. 12into a graph. Each node class is translated to a corre-
spondingNodeClasshode, for example, thEunctionnode is translated to IdodeClassiamedFunction Each edge
class is translated to a corresponditigeClassode, for example, thisCaller edge is translated to the nod€aller
of typeEdgeClassThe connections aéCaller node and edge classes are translated into edges dfrtypandto.

Similarly, attributes or attribute types are translatedtwibuteClassnodes and appropriate attribute type nodes
like Int or Set Attribute information are connected to node and edge class representatimasAiributeandhasDo-
mainedges. Multiplicities of associations are storedtirtits attributes (infinity is represented byl). The boolean at-
tributeisOrdered indicates ordered incidences. Attribute types and extended concepts such as graph hierarchy, class
of hyperedges, aggregation and composition, generalization and default attribute values are modeled analogously.

Each schema has a node of ty@eaphClasswhich is attached bgontainsedges to all nodes which represent
elements of the schema (sBgy. 15. This node is referred to by data graphs which use this schema. Elements in
a data graph refer to corresponding nodes in their schema graplrGXh¥alidator [62] checks that data graphs
conform to their schemas.

4.3. GXL metaschema

EveryGXL schema is translated into a graph with the same form. In other words, there is aGigieetaschema
that gives the format of alsXL schemas. The class diagramFig. 16 shows thisGXL metaschema (except for the
part defining attributes).

Attributes are added tGraphElementClasses by deriving them fromAttrioutedElementClass. The definition
of attribute structures supports the structured attributes usegXinincluding the definition of default values.

R.C. Holt et al. / Science of Computer Programming 60 (2006) 149-170

0-N hasAttribute » 9"

AttributeClass

AttributedElementClass ‘ﬂ
4
isA
‘1 contains » 0" S
GraphClass GraphElementClass 1 4relatesTo
4 1 4 fo
name: string P name: string
Bl 0-1" isAbstract: bool 4 fro
- AN
hasAsComponentGraph
role: string
relatesTo
. D'n -
limits: int x int RelationClass | | NodeClass | | EdgeClass -
SOREELES S isDirected: bool [0..n
1 AN
hasRelationEnd
0..n
RelationEndClass AggregationClass
directedTo: (relation, target, undirected) aggregate: (from, to)
role: string
0.n ‘
’ CompositionClass ‘

Fig. 16. GXL metaschema.

name: string

upper bounds
defining infinity (***
in UML, "n" in
Rose) are encoded
by "-1" (cf. XMI)

L

relatesTo

""" limits: int x int
isQOrdered: bool

<<GraphClass>>
GXL

GraphClass GXL
composes all
concepts

165

Generalization is provided for atfraphElementClasses by isA edgesGraphElementClasses containing subgraphs
are associated with the representation of the lower levabhClass by contains edges. ThesraphClass contains
those node, edge, and hyperedge classes representing its structure. AggregateyaonClass) and composition
(CompositionClass) are modeled by specializationsEdgeClasses. Incidences oEdgeClasses andRelationClasses
are modeled byrom, to, relatesTo-edges. These incidences refer toG@hphElementClasses.

As with instance graphszXL schema graphs have to comply to some constraints that cannot be expressed with
class diagrams]. In addition to the constraints discussedSaction 3.4the following conditions are imposed:

e Schema graphs define graph classes. A schema graph contains at léastphi@ass node.
e Generalization hierarchies are acyclic. A schema graph does not contain a dgeledfes.
e Generalization is only permitted between classes of the same kind. In each schemiaAgyegiges only connect

NodeClass nodes with otheNodeClass hodesEdgeClass nodes with others of its kind, and so on.

The GXL metaschema is itself a schema. Like@KL schemas it is an instance of tXL metaschema. It follows
that theGXL metaschema is its own schema.

5. Using GXL

In the years since ratification @&XL, groups in reengineering, graph transformation, graph visualization, and
other areas of software engineering have added suppogXerin their tools. Various tools have been created to

166 R.C. Holt et al. / Science of Computer Programming 60 (2006) 149-170

support working withGXL. A framework forGXL converters38] and a XMI2GXL translator109 was developed at
University BW Minchen. In addition, a validator for checki@yL documents on instance, schema, and metaschema
level has been develope@. A list of tools known to usesXL can be found on our web sité]].

There are many filters for convertir@xL documents into local file formats and vice versa. These formats include
Bauhaus Resource Graphi3,[DOT (GraphViz) B7], GraLab graphs16], PROGRES graphsif], RSF [104], and
TA [55]. GXL is also supported by various fact extractors, such as Columbus/GANGPPX [18], TkSee/SN 95,
and XOgastan114. Some reengineering workbenches that @4 are Bauhausl], GUPRO M9, Rigi [82,
SoftAnal 0], and SwagKit P2]. There are both general purpose graph drawing tools that sugpdtt as well
as visualizers for reengineering. These are Graph¥#, [Graph Visualization Framework5()], Shrimp [86],
JGraph 61], touchgraph 96], and yFiles L15. FurthermoreGXL is supported by the GRASIH] graph database,
graph transformation systems (DiaGe&t0]] Fujaba B7], GenSet B9, and PROGRES/UPGRADE44,97]), and
metacase tools (DiaGef()], MetaEdit [75]).

These tools and converters have been used as the basis of data interchange on a number of occasions.

SoftAnal and GUPRO: SoftAnal [9(] stores information about a stock trading system within relational databases.
Using aGXL filter, this data was transferred to GUPREZ3] for further analysis, which in turn enabled comparison
of the capabilities of both systems.

GReQL and grok: GReQL [63] and grok p7] offer powerful, query based analysis for graph based data. A survey,
comparing the analysis capability of GReQL and grok, was done using a co@xiofactbase 108§.

Bauhausand GUPRO: During the Dagstuhl seminar on “Software Architecture: Recovery and Modeling”, there
was an exercise in collaborative architecture reconstruction and mod&#hgdroups had to work together to
analyze the Apache web server. During this exeradé, was used to transfer facts about Apache from Bauhus [
to GUPRO for further analysis.

Columbus/CAN and GUPRO: Columbus B3] is an extractor for C++ that emits ASTs iBXL . For refactoring
purposes, this extractor was used within GUPRO for analysis of C++ sources.

In addition, there have been interesting applicationS®t in software engineering pedagogy, business process
modeling, and biochemistry. At the University of Toron@xL was used in an undergraduate software engineering
course. Students were required to create graph editor/layouter components that communicate”ustay. GXL
was also applied to exchange business process magglsschemas for exchanging business processes depicted
as Workflow Nets or Event-Driven Process Chains are gived®2][The same authors also usedL’s extension
points to integrate with MathML7Z] to exchange elaborated Workflow Nets containing expressions on the relational
calculus B9]. Outside computer sciencéXL has been used to represent regulatory networks of biological processes
and biochemical behaviou®]]

6. Conclusion

In this paper, we gave an introduction &L 1.0 and its applications. We conclude with a summary of the key
features ofGXL and an assessment of its merits as a standard exchange format.
GXL is an XML language for representing graphs. The main features of the mo@&Liare as follows.

e Nodes, edges, and hyperedges are first class entitiexin Consequently, each of these have unique identifiers,
can be typed and attributed, and can be included in a generalization hierarchy.

e Graphs, nodes, edges, hyperedges, and attributes have attriitnisSeature is used to add further information.
For example, user annotations and coordinates for graph layout, are attached to the graph and passed as
attributes.

e Graphs, nodes, edges, hyperedges and attributes are typleelse element types are associated with a
corresponding class in the schema. These relationships provide further information and constraints on the data.

e Hierarchical graphs are supported-his feature is implemented by permitting nodes, edges, and hyperedges to
contain graphs. Edges and hyperedges are allowed to join nodes from different levels of the hierarchy.

e Edges can be directed or undirectelhis flexibility supports in a general format for graphs. Both directed and
undirected edges are permitted in the same graph.

e Edges and hyperedges are orderbttidence to and from the nodes at the endpoints of edges and hyperedges can
be stored.

R.C. Holt et al. / Science of Computer Programming 60 (2006) 149-170 167

In GXL, both the data representing the graph and the data representing the schema are passed using the same gr:
model as an XML stream. The format and metaschema are sufficiently simple that it is possible to build schemas by
hand. However, most users will likely create a schema by first modeling it as a UML class diagram and then using
a tool to convert it toGXL (cf. [109). This uniform application of syntax across the different levels of abstraction
ensures that tools that implemesxL are capable of working with a variety of data.

The graph model ofGXL ensuresuniversality because it includes the structural features needed to achieve
compatibility with a wide variety of graph modelSXL is typedto facilitate interpretation and validation of exchanged
data by making use of graph schemBkexibility, that is, the ability to adapt to domain specific data, is achieved
throughGXL -schemas, user-definable attributes, and extension points. They are used to specify domain-specific grap!
structuresGXL is easy to useFurthermoreGXL is readable by humans, which facilitates learning, understanding,
and debugging. Instance graphs and schemas are exchanged using the same document type, thus only one langu
has to be learne&calabilityhas been achieved, &xL can be used with graphs of varying sizes and representations
of software at different levels of abstraction. However, it does face the same issues as other XML formats regarding
the increased size of data due to the addition of tags. Fortunately, standard compression techniques and other XM
technologies can help solve the probléviadularity is provided by supporting hierarchical graphs and by providing
links to external documents. Incremental data exchange can be realized bpased applications, as graphs can be
exchanged in parts. FinallgXL supportextensibilityby offering predefined extension-points for enhancement.

Developing and deployingsXL has been an exciting and challenging experience. Through many intense
discussions, we were able to build bridges between research groups and even between research areas and cultul
Arriving at a standard required us to understand the differences in data formats, research approaches, and proble
domains. The result has been fruitful collaborations between researchers and improved data interoperability betwee
tools.

GXL is currently being applied and evaluated by the research community. There is work still to be done in
developing standard schemas and broadening the acceptageé. ofCurrent projects include the implementation
of tools to filter and validateGXL, and for drawing graph schemas. In additi@®L reference schemas have
been proposed. Some proposed reference schemas for reengineering include abstract syntax trees for specific sou
languages34], an external declaration or “middle model7(], a high-level architectural schema, and one for data
reverse engineering. These schemas span different levels of abstraction for reengineering tools and they involve a wid
range of participants from the community. We look forward to matudig along with the research discipline and
tools for reengineering.

Acknowledgments

We thank our collaborators for many fruitful discussions on the developmetofin particular, we thank Jurgen
Ebert, Bernt Kullbach, and Volker Riediger for insights into TGraphs @axd. We also like to thank our students,
who did much important work on presentigXL in the Web and implementingXL tools and filters. We owe a
great debt to Kostas Kontogiannis and Rainer Koschke who were nurturing an interest in a standard exchange forme
for reverse engineering, long before we started our work. Thanks also to Tim Lethbridge, Hausi Muller, and other
members of CSER. Thanks to Ulrik Brandes, Scott Marshall, Mark Minas, and Gabriele Taentzer who helped us build
bridges to other research communities. These relationships helped to improve GXL and to increase its use. Thanks t
all users ofGXL, who are currently applying and testi®xL 1.0 in their tools. Their experience and change requests
are important contributions for improvir@gxL.

References

[1] Bauhaus: Software Architecture, Software Reengineering, and Program Understamgingwww.informatik.uni-stuttgart.de/ifi/ps/
bauhaus/

[2] C. Berge, Graphs and Hypergraphs, 2nd edition, North-Holland, Amsterdam, 1976.

[3] W.R. Bischofberger, Sniff: A pragmatic approach to a C++ programming environment, in: USENIX C++ Conference, Portland, Oregon,
August 1992, pp. 67-82.

[4] I. Bowman, M. Godfrey, R. Holt, Connecting architecture reconstruction frameworks, in: First International Symposium on Constructing
Software Engineering Tools, CoOSET1999, 1999.

http://www.informatik.uni-stuttgart.de/ifi/ps/bauhaus/
http://www.informatik.uni-stuttgart.de/ifi/ps/bauhaus/
http://www.informatik.uni-stuttgart.de/ifi/ps/bauhaus/
http://www.informatik.uni-stuttgart.de/ifi/ps/bauhaus/
http://www.informatik.uni-stuttgart.de/ifi/ps/bauhaus/
http://www.informatik.uni-stuttgart.de/ifi/ps/bauhaus/
http://www.informatik.uni-stuttgart.de/ifi/ps/bauhaus/
http://www.informatik.uni-stuttgart.de/ifi/ps/bauhaus/

168 R.C. Holt et al. / Science of Computer Programming 60 (2006) 149-170

[5] U. Brandes, M. Eiglsperger, I. Herman, M. Himsolt, M.S. Marschall, GraphML progress report, structural layer proposal, in: P. Mutzel,
M. Junger, S. Leipert (Eds.), Graph Drawing, 9th International Symposium, GD 2001, Vienna, in: LNCS, vol. 2265, Springer, Berlin, 2001,
pp. 501-512.
[6] U.Brandes, J. Lerner, C. Pich, GXL to GraphML and vice versa with XSLT, in: ENTCS, vol. 127, issue 1, Proceedings of the International
Workshop on Graph-Based Tools (GraBaTs 2004), March 2005, pp. 113-125.
[7] G. Busatto, An Abstract Model of Hierarchical Graphs and Hierarchical Graph Transformhbttpr/www.informatik.uni-bremen.de/
~giorgio/papers/phd-thesis.ps,001.
[8] R. Castello, R. Milli, I.G. Tollis, A framework for the static and interactive visualization for statecharts, Journal of Graph Algorithms and
Applications 6 (3) (2002) 313-351.
[9] C. Chaouiya, A.G. Gonzalez, D. Thieffry, GINML: Towards a GXL based format for logical regulatory networks and dynamic lgttaphs.
www.esil.univ-mrs.fri-chaouiya/Recherche/GINMI2003.
[10] Y.-F. Chen, E.R. Gansner, E. Koutsofios, A C++ data model supporting reachability analysis and dead code detection, IEEE Transactions ¢
Software Engineering 24 (9) (1998) 682—694.
[11] Y.-F. Chen, M.Y. Nishimoto, C.V. Ramamoorthy, The C information abstraction system, IEEE Transactions on Software Engineering 16 (3)
(1990) 325-334.
[12] K. Chen, V. Rajlich, RIPPLES: Tool for change in legacy software, in: 5th European Conference on Software Maintenance and
Reengineering, IEEE Computer Society, Los Alamitos, 2001, pp. 230-239.
[13] Y.-F. Chen, G.S. Fowler, E. Koutsofios, R.S. Wallach, Ciao: A graphical navigator for software and document repositories, in: International
Conference on Software Maintenance, IEEE Computer Society Press, 1995, pp. 66—75.
[14] Collaborative architecture reconstruction and modeling task, in: Workshop at the Dagstuhl-Seminar 03061 Software Architecture: Recovery
and Modelling http://www.bauhaus-stuttgart. de/dagstuhl/#tools
[15] R.F. Crew, ASTLOG: A language for examining abstract syntax trees, in: Conference on Domain-specific Languages, Santa Barbara, Octob
15-17, 1997, USENIX Association, Berkley, 1997.
[16] P. Dahm, F. Widmann, Das Graphenlabor, Version 4.2, Fachbericht Informatik 11/98, Universitat Koblenz-Landau, Institut fir Informatik,
Koblenz, 1998.
[17] Data Exchange Group, in: Conclusions from Meeting at CASCON 1898;//plg.uwaterloo.carholt/sw.eng/exch.format/minutes98_11
30.htm| Monday, 30 Nov 1998.
[18] T. Dean, A. Malton, R. Holt, Union schemas as a basis for a C++ extractor, in: 8th Working Conference on Reverse Engineering, IEEE
Computer Society, Los Alamitos, 2001, pp. 59-67.
[19] P.T. Devanbu, GENOA — A customizable, language and front-end independent code analyzer, in: 14th International Conference on Softwar
Engineering, Melbourne, 1992, pp. 307-317.
[20] DiaGen:The Diagram Editor Generator, Universitat Erlangen-Nurnibtg//www?2.informatik.uni-erlangen.de/DiaGe@002.
[21] ECMA European Computer Manufactures Association, Reference Model for Frameworks of Software Engineering Environments, Technical
Report, TR/55http://www.ecma-international. org/publications/filesslECMA-TR/TR-055. t883.
[22] S. Easterbrook, CSC444F: Software Engineering | (Fall term 2001), University of Totatpo/www.cs.toronto.edto’lsme/CSC444E/
2001.
[23] J. Ebert, K. Kontogiannis, J. Mylopoulos, Interoperability of Reverse Engineering Tatbs//www.dagstuhl.de/DATA/Reports/01041/
2001.
[24] J. Ebert, B. Kullbach, A. Panse, The Extract-Transform-Rewrite Cycle — A Step towards MetaCARE, in: P. Nesi, F. Lehner (Eds.), 2nd
Euromicro Conference on Software Maintenance & Reengineering, IEEE Computer Society, Los Alamitos, 1998, pp. 165-170.
[25] J. Ebert, B. Kullbach, V. Riediger, A. Winter, GUPRO — Generic understanding of programs, an overview, ENTCSHhI®:(2uww.
elsevier.nl/locate/entcs/volume72.html
[26] J. Ebert, B. Kullbach, A. Winter, GraX — An interchange format for reengineering toolsl,06},[1999, pp. 89-98.
[27] J. Ebert, A. Winter, P. Dahm, A. Franzke, R. Siittenbach, Graph based modeling and implementation with EER/GRAL, in: B. Thalheim
(Ed.), Conceptual Modeling — ER’96, in: LNCS, vol. 1157, Springer, Berlin, 1996, pp. 163-178.
[28] H. Eichelberger, J. von Gudenberg, On the visualization of java programs, in: S. Diehl (Ed.), Software Visualization, International Seminar,
Dagstuhl Castle, Germany, May 20-25, 2001, in: LNCS, vol. 2269, Springer, Berlin, 2002, pp. 295-306.
[29] Extensible Graph Markup and Modeling Langualgep://www.cs.rpi.edu’puninj/ XGMML/, 2001.
[30] Extensible Markup Language (XML) 1.0, 3rd edition, W3C Recommendation, W3C XML Working Group.
http://www.w3.0rg/TR/2004/REC-xml|-2004020Bebruary 2004.
[31] H.M. Fahmy, R.C. Holt, Software architecture transformations, in: International Conference on Software Maintenance, IEEE Computer
Society Press, Los Alamitos, 2000, pp. 88-96.
[32] R. Ferenc, A. Beszédes, Data exchange with the Columbus schema for C++, in: 6th European Conference on Software Maintenance a
Reengineering, IEEE Computer Society, Los Alamitos, 2002, pp. 59-66.
[33] R. Ferenc, F. Magyar, A. Beszédes, A. Kiss, M. Tarkiainen, Columbus — tool for reverse engineering large object oriented software systems
in: SPLST 2001, Szeged, Hungary, 2001, pp. 16k&p://www.inf.u-szeged.hoferenc/research/ferencr_columbus.pdf
[34] R. Ferenc, S.E. Sim, R.C. Holt, R. Koschke, T. Gyimothy, Towards a standard schema for C/C++, in: 8th Working Conference on Reverse
Engineering, IEEE Computer Society, Los Alamitos, 2001, pp. 49-58.
[35] First EU Working Group on “Application of Graph Transformation” meeting on GXL (graph exchange language) and GTXL (graph
transformation exchange language) in Paderborn, September 5-6 h&pONfs.cs.tu-berlin.de/projekte/gxl-gtxl/paderborn.html
[36] M. Fréhlich, M. Werner, daVinci V2.0.x Online Documentatidmitp://www.tzi.defdavinci/docs/June 1996.
[37] Fujaba: From UML to Java and back agaittp://www.uni-paderborn.de/cs/fujaba/

http://www.informatik.uni-bremen.de/~giorgio/papers/phd-thesis.ps.gz
http://www.informatik.uni-bremen.de/~giorgio/papers/phd-thesis.ps.gz
http://www.informatik.uni-bremen.de/~giorgio/papers/phd-thesis.ps.gz
http://www.informatik.uni-bremen.de/~giorgio/papers/phd-thesis.ps.gz
http://www.informatik.uni-bremen.de/~giorgio/papers/phd-thesis.ps.gz
http://www.informatik.uni-bremen.de/~giorgio/papers/phd-thesis.ps.gz
http://www.informatik.uni-bremen.de/~giorgio/papers/phd-thesis.ps.gz
http://www.informatik.uni-bremen.de/~giorgio/papers/phd-thesis.ps.gz
http://www.informatik.uni-bremen.de/~giorgio/papers/phd-thesis.ps.gz
http://www.informatik.uni-bremen.de/~giorgio/papers/phd-thesis.ps.gz
http://www.esil.univ-mrs.fr/~chaouiya/Recherche/GINML
http://www.esil.univ-mrs.fr/~chaouiya/Recherche/GINML
http://www.esil.univ-mrs.fr/~chaouiya/Recherche/GINML
http://www.esil.univ-mrs.fr/~chaouiya/Recherche/GINML
http://www.esil.univ-mrs.fr/~chaouiya/Recherche/GINML
http://www.esil.univ-mrs.fr/~chaouiya/Recherche/GINML
http://www.esil.univ-mrs.fr/~chaouiya/Recherche/GINML
http://www.esil.univ-mrs.fr/~chaouiya/Recherche/GINML
http://www.bauhaus-stuttgart.de/dagstuhl/#tools
http://www.bauhaus-stuttgart.de/dagstuhl/#tools
http://www.bauhaus-stuttgart.de/dagstuhl/#tools
http://www.bauhaus-stuttgart.de/dagstuhl/#tools
http://www.bauhaus-stuttgart.de/dagstuhl/#tools
http://www.bauhaus-stuttgart.de/dagstuhl/#tools
http://plg.uwaterloo.ca/~holt/sw.eng/exch.format/minutes98_11_30.html
http://plg.uwaterloo.ca/~holt/sw.eng/exch.format/minutes98_11_30.html
http://plg.uwaterloo.ca/~holt/sw.eng/exch.format/minutes98_11_30.html
http://plg.uwaterloo.ca/~holt/sw.eng/exch.format/minutes98_11_30.html
http://plg.uwaterloo.ca/~holt/sw.eng/exch.format/minutes98_11_30.html
http://plg.uwaterloo.ca/~holt/sw.eng/exch.format/minutes98_11_30.html
http://plg.uwaterloo.ca/~holt/sw.eng/exch.format/minutes98_11_30.html
http://plg.uwaterloo.ca/~holt/sw.eng/exch.format/minutes98_11_30.html
http://plg.uwaterloo.ca/~holt/sw.eng/exch.format/minutes98_11_30.html
http://plg.uwaterloo.ca/~holt/sw.eng/exch.format/minutes98_11_30.html
http://plg.uwaterloo.ca/~holt/sw.eng/exch.format/minutes98_11_30.html
http://plg.uwaterloo.ca/~holt/sw.eng/exch.format/minutes98_11_30.html
http://plg.uwaterloo.ca/~holt/sw.eng/exch.format/minutes98_11_30.html
http://www2.informatik.uni-erlangen.de/DiaGen/
http://www2.informatik.uni-erlangen.de/DiaGen/
http://www2.informatik.uni-erlangen.de/DiaGen/
http://www2.informatik.uni-erlangen.de/DiaGen/
http://www2.informatik.uni-erlangen.de/DiaGen/
http://www2.informatik.uni-erlangen.de/DiaGen/
http://www.ecma-international.org/publications/files/ECMA-TR/TR-055.pdf
http://www.ecma-international.org/publications/files/ECMA-TR/TR-055.pdf
http://www.ecma-international.org/publications/files/ECMA-TR/TR-055.pdf
http://www.ecma-international.org/publications/files/ECMA-TR/TR-055.pdf
http://www.ecma-international.org/publications/files/ECMA-TR/TR-055.pdf
http://www.ecma-international.org/publications/files/ECMA-TR/TR-055.pdf
http://www.ecma-international.org/publications/files/ECMA-TR/TR-055.pdf
http://www.ecma-international.org/publications/files/ECMA-TR/TR-055.pdf
http://www.ecma-international.org/publications/files/ECMA-TR/TR-055.pdf
http://www.cs.toronto.edu/~sme/CSC444F/
http://www.cs.toronto.edu/~sme/CSC444F/
http://www.cs.toronto.edu/~sme/CSC444F/
http://www.cs.toronto.edu/~sme/CSC444F/
http://www.cs.toronto.edu/~sme/CSC444F/
http://www.cs.toronto.edu/~sme/CSC444F/
http://www.cs.toronto.edu/~sme/CSC444F/
http://www.dagstuhl.de/DATA/Reports/01041/
http://www.dagstuhl.de/DATA/Reports/01041/
http://www.dagstuhl.de/DATA/Reports/01041/
http://www.dagstuhl.de/DATA/Reports/01041/
http://www.dagstuhl.de/DATA/Reports/01041/
http://www.dagstuhl.de/DATA/Reports/01041/
http://www.dagstuhl.de/DATA/Reports/01041/
http://www.elsevier.nl/locate/entcs/volume72.html
http://www.elsevier.nl/locate/entcs/volume72.html
http://www.elsevier.nl/locate/entcs/volume72.html
http://www.elsevier.nl/locate/entcs/volume72.html
http://www.elsevier.nl/locate/entcs/volume72.html
http://www.elsevier.nl/locate/entcs/volume72.html
http://www.elsevier.nl/locate/entcs/volume72.html
http://www.elsevier.nl/locate/entcs/volume72.html
http://www.cs.rpi.edu/~puninj/XGMML/
http://www.cs.rpi.edu/~puninj/XGMML/
http://www.cs.rpi.edu/~puninj/XGMML/
http://www.cs.rpi.edu/~puninj/XGMML/
http://www.cs.rpi.edu/~puninj/XGMML/
http://www.cs.rpi.edu/~puninj/XGMML/
http://www.cs.rpi.edu/~puninj/XGMML/
http://www.w3.org/TR/2004/REC-xml-20040204
http://www.w3.org/TR/2004/REC-xml-20040204
http://www.w3.org/TR/2004/REC-xml-20040204
http://www.w3.org/TR/2004/REC-xml-20040204
http://www.w3.org/TR/2004/REC-xml-20040204
http://www.w3.org/TR/2004/REC-xml-20040204
http://www.w3.org/TR/2004/REC-xml-20040204
http://www.inf.u-szeged.hu/~ferenc/research/ferencr_columbus.pdf
http://www.inf.u-szeged.hu/~ferenc/research/ferencr_columbus.pdf
http://www.inf.u-szeged.hu/~ferenc/research/ferencr_columbus.pdf
http://www.inf.u-szeged.hu/~ferenc/research/ferencr_columbus.pdf
http://www.inf.u-szeged.hu/~ferenc/research/ferencr_columbus.pdf
http://www.inf.u-szeged.hu/~ferenc/research/ferencr_columbus.pdf
http://www.inf.u-szeged.hu/~ferenc/research/ferencr_columbus.pdf
http://www.inf.u-szeged.hu/~ferenc/research/ferencr_columbus.pdf
http://www.inf.u-szeged.hu/~ferenc/research/ferencr_columbus.pdf
http://www.inf.u-szeged.hu/~ferenc/research/ferencr_columbus.pdf
http://tfs.cs.tu-berlin.de/projekte/gxl-gtxl/paderborn.html
http://tfs.cs.tu-berlin.de/projekte/gxl-gtxl/paderborn.html
http://tfs.cs.tu-berlin.de/projekte/gxl-gtxl/paderborn.html
http://tfs.cs.tu-berlin.de/projekte/gxl-gtxl/paderborn.html
http://tfs.cs.tu-berlin.de/projekte/gxl-gtxl/paderborn.html
http://tfs.cs.tu-berlin.de/projekte/gxl-gtxl/paderborn.html
http://tfs.cs.tu-berlin.de/projekte/gxl-gtxl/paderborn.html
http://tfs.cs.tu-berlin.de/projekte/gxl-gtxl/paderborn.html
http://tfs.cs.tu-berlin.de/projekte/gxl-gtxl/paderborn.html
http://www.tzi.de/~davinci/docs/
http://www.tzi.de/~davinci/docs/
http://www.tzi.de/~davinci/docs/
http://www.tzi.de/~davinci/docs/
http://www.tzi.de/~davinci/docs/
http://www.tzi.de/~davinci/docs/
http://www.uni-paderborn.de/cs/fujaba/
http://www.uni-paderborn.de/cs/fujaba/
http://www.uni-paderborn.de/cs/fujaba/
http://www.uni-paderborn.de/cs/fujaba/
http://www.uni-paderborn.de/cs/fujaba/
http://www.uni-paderborn.de/cs/fujaba/

R.C. Holt et al. / Science of Computer Programming 60 (2006) 149-170 169

[38] GCF — a GXL Converter Frameworhkttp://www2.informatik.unibw-muenchen.de/GXL/triebsees/index.htm

[39] GenSet: Design Information Fusiamttp://www.cs.uoregon.edu/research/perpetual/dasada/Software/GenSet

[40] J.-F. Girard, R. Koschke, Finding components in a hierarchy of modules — a step towards architectural understanding, in: International
Conference on Software Maintenance, IEEE Computer Society Press, 1997.

[41] The GML File Formathttp://www.infosun.fmi.uni-passau.de/Graphlet/GML/index.html

[42] M.W. Godfrey, E.H.S. Lee, Secrets from the Monster: Extracting mozilla's software architecture, in: 2nd International Symposium on
Constructing Software Engineering Tools, Limerick, Ireland, 2000.

[43] Graph Drawing, GD 2001, Vienndttp://www.ads.tuwien.ac.at/gd2002001.

[44] A Graph Grammar Programming Environment — PROGREH://www-i3.informatik.rwth-aachen.de/research/projects/progres/main.
html.

[45] Graph Transformation System Exchange Langubtp://tfs.cs.tu-berlin.de/projekte/gxI-gtxl. htnd001.

[46] GraphViz — open source graph drawing softwdnip://www.research.att.com/swi/tools/graphy2002.

[47] GraphViz — open source graph drawing software, GXL2DOT, DOT2Q&Xtp://custom.lab.unb.br/pub/graph/graphviz/tools/<@02.

[48] GRAS — A graph oriented database system for (software) engineering environmgotéwww-i3.informatik.rwth-aachen.de/research/

projects/gras/index.htm1999.

GUPRO: Generic Understanding of Prograimtsp://www.gupro.de/

GVF — The Graph Visualization Framewothttp://sourceforge.net/projects/gv2003.

GXL: Graph Exchange Languadettp://www.gupro.de/GXL/tools/tools.html

I. Herman, M.S. Marshall, Graph XML — An XML based graph interchange format, Report INS-0009, Centrum voor Wiskunde en

Informatica, Amsterdam, April 2000.

[53] I. Herman, S. Marshall, GraphXML — An XML-based graph description format, in: J. Marks (Ed.), Graph Drawing, 8th International
Symposium, GD 2000 Colonial Williamsburg, in: LNCS, vol. 1984, Springer, Berlin, 2000, pp. 52—-61.

[54] M. Himsolt, GML: Graph Modeling Languagéttp://www.infosun.fmi.uni-passau.de/Graphl@ecember 1996.

[55] R.C. Holt, An introduction to TA: The tuple-attribute languabép://plg.uwaterloo.catholt/papers/ta.htmll997.

[56] R.C. Holt, PBS: Portable Bookshelf Toolgtp://www.turing.toronto.edu/pb4997.

[57] R.C. Holt, Introduction to the Grok Programming Languduép://plg.uwaterloo.ca/holt/papers/grok-intro.do@002.

[58] R.C. Holt, A. Winter, Software Data Interchange with GXL: Introduction and Tutorial, CASCON 2000, Mississauga, Qritarvww.
cas.ibm.com/archives/2000/workshops/descriptions. shtmEaoD.

[59] R.C. Holt, A. Winter, A. Schurr, GXL: Toward a standard exchange format, in: 7th Working Conference on Reverse Engineering, IEEE
Computer Society, Los Alamitos, 2000, pp. 162—-171.

[60] Information technology — Programming languages — Ada Semantic Interface Specification (AtgiSwww.acm.org/sigs/sigada/wg/
asiswg/ 1999.

[61] JGraph: The Home Page of JGrapttp://jgraph.sourceforge.net/index. htr2003.

[62] A.Kaczmarek, GXL Validator, Validierung von GXL-Dokumenten auf Instanz-, Schema, und Metaschema-Ebene, Studienarbeit, Universitat
Koblenz-Landau, Fachbereich Informatik, Koblenz, 2003.

[63] M. Kamp, B. Kullbach, GReQL — Eine Anfragesprache fur das GUPRO-Repository, Sprachbeschreibung, Projektbericht 8/2001,
Universitat Koblenz-Landau, Institut fur Softwaretechnik, Koblenz, 2001.

[64] R. Kazman, J. Carriere, View extraction and view fusion in architectural understanding, in: International Conference on Software Reuse,
IEEE Computer Society Press, Los Alamitos, 1998, pp. 290-299.

[65] R. Kazman, J. Carriére, Playing detective: Reconstructing software architecture from available evidence, Automated Software Engineering
6 (2) (1999) 107-138.

[66] K.Kontogiannis, Exchange Formats Workshop, in: 7th Working Conference on Reverse Engineering, IEEE Computer Society, Los Alamitos,
2000, pp. 277-301.

[67] R. Koschke, J.-F. Girard, M. Wirthner, An intermediate representation for integrating reverse engineering analyses|, 998,
pp. 241-250.

[68] C.Lange, H. Sneed, A. Winter, Comparing graph-based program comprehension tools to relational database-based tools, in: 9th Internatione
Workshop on Program Comprehension, IEEE, Los Alamitos, 2001, pp. 209-218.

[69] T. Lethbridge, N. Anquetil, Architecture of a source code exploration tool: A software engineering case study, Computer Science Technical
Report,http://www.site.uottawa. catcl/papers/Cascon/TR-97-07.pdifniversity of Ottawa, 1997.

[70] T.C. Lethbridge, S. Tichelaar, E. Ploedereder, The dagstuhl middle metamodel, a schema for reverse engineering, in: J.-M. Favre,
M. Godfrey, A. Winter (Eds.), International Workshop on Meta-Models and Schemas for Reverse Engineering, ateM 2003, in: Electronic
Notes in Theoretical Computer Science, vol. 94, 2004, pp. 7kt //www.sciencedirect.com/science/journal/15710661

[71] E. Mamas, K. Kontogiannis, Towards portable source code representation using XML, in: 7th Working Conference on Reverse Engineering,
IEEE Computer Society, Los Alamitos, 2000, pp. 172-182.

[72] Mathematical Markup Language, MathML Version 2.0, 2nd editfdtp://www.w3.0rg/TR/2003/REC-MathML2-20031021/

[73] T. Mens, M. Lanza, A graph-based metamodel for object-oriented software metrics, ENTCS 72 (2) (p02nww.elsevier.nl/locate/
entcs/volume72.html

[74] T. Mens, A. Schirr, G. Taentzer (Eds.), Graph-Based Tools, in: ENTCS mBs2/www.elsevier.com/locate/entcs/volume72.htQl02.

[75] MetaEdit+ metaCASE toohttp://www.metacase.com/

[76] Meta Object Facility (MOF) Specificatiofttp://www.omg.org/technology/documents/formal/mof.hiviarch 2000.

[77] M. Minas, Visual specification of visual editors with DiaGen, in: International Workshop on Applications of Graph Transformations with
Industrial Relevance, AGTIVE'03, Charlottesville, 2003.

[49
(50
51
(52

http://www2.informatik.unibw-muenchen.de/GXL/triebsees/index.htm
http://www2.informatik.unibw-muenchen.de/GXL/triebsees/index.htm
http://www2.informatik.unibw-muenchen.de/GXL/triebsees/index.htm
http://www2.informatik.unibw-muenchen.de/GXL/triebsees/index.htm
http://www2.informatik.unibw-muenchen.de/GXL/triebsees/index.htm
http://www2.informatik.unibw-muenchen.de/GXL/triebsees/index.htm
http://www2.informatik.unibw-muenchen.de/GXL/triebsees/index.htm
http://www2.informatik.unibw-muenchen.de/GXL/triebsees/index.htm
http://www2.informatik.unibw-muenchen.de/GXL/triebsees/index.htm
http://www.cs.uoregon.edu/research/perpetual/dasada/Software/GenSet
http://www.cs.uoregon.edu/research/perpetual/dasada/Software/GenSet
http://www.cs.uoregon.edu/research/perpetual/dasada/Software/GenSet
http://www.cs.uoregon.edu/research/perpetual/dasada/Software/GenSet
http://www.cs.uoregon.edu/research/perpetual/dasada/Software/GenSet
http://www.cs.uoregon.edu/research/perpetual/dasada/Software/GenSet
http://www.cs.uoregon.edu/research/perpetual/dasada/Software/GenSet
http://www.cs.uoregon.edu/research/perpetual/dasada/Software/GenSet
http://www.cs.uoregon.edu/research/perpetual/dasada/Software/GenSet
http://www.cs.uoregon.edu/research/perpetual/dasada/Software/GenSet
http://www.infosun.fmi.uni-passau.de/Graphlet/GML/index.html
http://www.infosun.fmi.uni-passau.de/Graphlet/GML/index.html
http://www.infosun.fmi.uni-passau.de/Graphlet/GML/index.html
http://www.infosun.fmi.uni-passau.de/Graphlet/GML/index.html
http://www.infosun.fmi.uni-passau.de/Graphlet/GML/index.html
http://www.infosun.fmi.uni-passau.de/Graphlet/GML/index.html
http://www.infosun.fmi.uni-passau.de/Graphlet/GML/index.html
http://www.infosun.fmi.uni-passau.de/Graphlet/GML/index.html
http://www.infosun.fmi.uni-passau.de/Graphlet/GML/index.html
http://www.infosun.fmi.uni-passau.de/Graphlet/GML/index.html
http://www.ads.tuwien.ac.at/gd2001/
http://www.ads.tuwien.ac.at/gd2001/
http://www.ads.tuwien.ac.at/gd2001/
http://www.ads.tuwien.ac.at/gd2001/
http://www.ads.tuwien.ac.at/gd2001/
http://www.ads.tuwien.ac.at/gd2001/
http://www.ads.tuwien.ac.at/gd2001/
http://www-i3.informatik.rwth-aachen.de/research/projects/progres/main.html
http://www-i3.informatik.rwth-aachen.de/research/projects/progres/main.html
http://www-i3.informatik.rwth-aachen.de/research/projects/progres/main.html
http://www-i3.informatik.rwth-aachen.de/research/projects/progres/main.html
http://www-i3.informatik.rwth-aachen.de/research/projects/progres/main.html
http://www-i3.informatik.rwth-aachen.de/research/projects/progres/main.html
http://www-i3.informatik.rwth-aachen.de/research/projects/progres/main.html
http://www-i3.informatik.rwth-aachen.de/research/projects/progres/main.html
http://www-i3.informatik.rwth-aachen.de/research/projects/progres/main.html
http://www-i3.informatik.rwth-aachen.de/research/projects/progres/main.html
http://tfs.cs.tu-berlin.de/projekte/gxl-gtxl.html
http://tfs.cs.tu-berlin.de/projekte/gxl-gtxl.html
http://tfs.cs.tu-berlin.de/projekte/gxl-gtxl.html
http://tfs.cs.tu-berlin.de/projekte/gxl-gtxl.html
http://tfs.cs.tu-berlin.de/projekte/gxl-gtxl.html
http://tfs.cs.tu-berlin.de/projekte/gxl-gtxl.html
http://tfs.cs.tu-berlin.de/projekte/gxl-gtxl.html
http://tfs.cs.tu-berlin.de/projekte/gxl-gtxl.html
http://www.research.att.com/sw/tools/graphviz/
http://www.research.att.com/sw/tools/graphviz/
http://www.research.att.com/sw/tools/graphviz/
http://www.research.att.com/sw/tools/graphviz/
http://www.research.att.com/sw/tools/graphviz/
http://www.research.att.com/sw/tools/graphviz/
http://www.research.att.com/sw/tools/graphviz/
http://www.research.att.com/sw/tools/graphviz/
http://custom.lab.unb.br/pub/graph/graphviz/tools/src/
http://custom.lab.unb.br/pub/graph/graphviz/tools/src/
http://custom.lab.unb.br/pub/graph/graphviz/tools/src/
http://custom.lab.unb.br/pub/graph/graphviz/tools/src/
http://custom.lab.unb.br/pub/graph/graphviz/tools/src/
http://custom.lab.unb.br/pub/graph/graphviz/tools/src/
http://custom.lab.unb.br/pub/graph/graphviz/tools/src/
http://custom.lab.unb.br/pub/graph/graphviz/tools/src/
http://custom.lab.unb.br/pub/graph/graphviz/tools/src/
http://custom.lab.unb.br/pub/graph/graphviz/tools/src/
http://www-i3.informatik.rwth-aachen.de/research/projects/gras/index.html
http://www-i3.informatik.rwth-aachen.de/research/projects/gras/index.html
http://www-i3.informatik.rwth-aachen.de/research/projects/gras/index.html
http://www-i3.informatik.rwth-aachen.de/research/projects/gras/index.html
http://www-i3.informatik.rwth-aachen.de/research/projects/gras/index.html
http://www-i3.informatik.rwth-aachen.de/research/projects/gras/index.html
http://www-i3.informatik.rwth-aachen.de/research/projects/gras/index.html
http://www-i3.informatik.rwth-aachen.de/research/projects/gras/index.html
http://www-i3.informatik.rwth-aachen.de/research/projects/gras/index.html
http://www-i3.informatik.rwth-aachen.de/research/projects/gras/index.html
http://www.gupro.de/
http://www.gupro.de/
http://www.gupro.de/
http://www.gupro.de/
http://sourceforge.net/projects/gvf/
http://sourceforge.net/projects/gvf/
http://sourceforge.net/projects/gvf/
http://sourceforge.net/projects/gvf/
http://sourceforge.net/projects/gvf/
http://www.gupro.de/GXL/tools/tools.html
http://www.gupro.de/GXL/tools/tools.html
http://www.gupro.de/GXL/tools/tools.html
http://www.gupro.de/GXL/tools/tools.html
http://www.gupro.de/GXL/tools/tools.html
http://www.gupro.de/GXL/tools/tools.html
http://www.gupro.de/GXL/tools/tools.html
http://www.gupro.de/GXL/tools/tools.html
http://www.infosun.fmi.uni-passau.de/Graphlet/
http://www.infosun.fmi.uni-passau.de/Graphlet/
http://www.infosun.fmi.uni-passau.de/Graphlet/
http://www.infosun.fmi.uni-passau.de/Graphlet/
http://www.infosun.fmi.uni-passau.de/Graphlet/
http://www.infosun.fmi.uni-passau.de/Graphlet/
http://www.infosun.fmi.uni-passau.de/Graphlet/
http://plg.uwaterloo.ca/~holt/papers/ta.html
http://plg.uwaterloo.ca/~holt/papers/ta.html
http://plg.uwaterloo.ca/~holt/papers/ta.html
http://plg.uwaterloo.ca/~holt/papers/ta.html
http://plg.uwaterloo.ca/~holt/papers/ta.html
http://plg.uwaterloo.ca/~holt/papers/ta.html
http://plg.uwaterloo.ca/~holt/papers/ta.html
http://plg.uwaterloo.ca/~holt/papers/ta.html
http://www.turing.toronto.edu/pbs
http://www.turing.toronto.edu/pbs
http://www.turing.toronto.edu/pbs
http://www.turing.toronto.edu/pbs
http://www.turing.toronto.edu/pbs
http://www.turing.toronto.edu/pbs
http://plg.uwaterloo.ca/~holt/papers/grok-intro.doc
http://plg.uwaterloo.ca/~holt/papers/grok-intro.doc
http://plg.uwaterloo.ca/~holt/papers/grok-intro.doc
http://plg.uwaterloo.ca/~holt/papers/grok-intro.doc
http://plg.uwaterloo.ca/~holt/papers/grok-intro.doc
http://plg.uwaterloo.ca/~holt/papers/grok-intro.doc
http://plg.uwaterloo.ca/~holt/papers/grok-intro.doc
http://plg.uwaterloo.ca/~holt/papers/grok-intro.doc
http://www.cas.ibm.com/archives/2000/workshops/descriptions.shtml#16
http://www.cas.ibm.com/archives/2000/workshops/descriptions.shtml#16
http://www.cas.ibm.com/archives/2000/workshops/descriptions.shtml#16
http://www.cas.ibm.com/archives/2000/workshops/descriptions.shtml#16
http://www.cas.ibm.com/archives/2000/workshops/descriptions.shtml#16
http://www.cas.ibm.com/archives/2000/workshops/descriptions.shtml#16
http://www.cas.ibm.com/archives/2000/workshops/descriptions.shtml#16
http://www.cas.ibm.com/archives/2000/workshops/descriptions.shtml#16
http://www.cas.ibm.com/archives/2000/workshops/descriptions.shtml#16
http://www.cas.ibm.com/archives/2000/workshops/descriptions.shtml#16
http://www.cas.ibm.com/archives/2000/workshops/descriptions.shtml#16
http://www.acm.org/sigs/sigada/wg/asiswg/
http://www.acm.org/sigs/sigada/wg/asiswg/
http://www.acm.org/sigs/sigada/wg/asiswg/
http://www.acm.org/sigs/sigada/wg/asiswg/
http://www.acm.org/sigs/sigada/wg/asiswg/
http://www.acm.org/sigs/sigada/wg/asiswg/
http://www.acm.org/sigs/sigada/wg/asiswg/
http://www.acm.org/sigs/sigada/wg/asiswg/
http://jgraph.sourceforge.net/index.html
http://jgraph.sourceforge.net/index.html
http://jgraph.sourceforge.net/index.html
http://jgraph.sourceforge.net/index.html
http://jgraph.sourceforge.net/index.html
http://jgraph.sourceforge.net/index.html
http://www.site.uottawa.ca/~tcl/papers/Cascon/TR-97-07.pdf
http://www.site.uottawa.ca/~tcl/papers/Cascon/TR-97-07.pdf
http://www.site.uottawa.ca/~tcl/papers/Cascon/TR-97-07.pdf
http://www.site.uottawa.ca/~tcl/papers/Cascon/TR-97-07.pdf
http://www.site.uottawa.ca/~tcl/papers/Cascon/TR-97-07.pdf
http://www.site.uottawa.ca/~tcl/papers/Cascon/TR-97-07.pdf
http://www.site.uottawa.ca/~tcl/papers/Cascon/TR-97-07.pdf
http://www.site.uottawa.ca/~tcl/papers/Cascon/TR-97-07.pdf
http://www.site.uottawa.ca/~tcl/papers/Cascon/TR-97-07.pdf
http://www.site.uottawa.ca/~tcl/papers/Cascon/TR-97-07.pdf
http://www.sciencedirect.com/science/journal/15710661
http://www.sciencedirect.com/science/journal/15710661
http://www.sciencedirect.com/science/journal/15710661
http://www.sciencedirect.com/science/journal/15710661
http://www.sciencedirect.com/science/journal/15710661
http://www.sciencedirect.com/science/journal/15710661
http://www.sciencedirect.com/science/journal/15710661
http://www.w3.org/TR/2003/REC-MathML2-20031021/
http://www.w3.org/TR/2003/REC-MathML2-20031021/
http://www.w3.org/TR/2003/REC-MathML2-20031021/
http://www.w3.org/TR/2003/REC-MathML2-20031021/
http://www.w3.org/TR/2003/REC-MathML2-20031021/
http://www.w3.org/TR/2003/REC-MathML2-20031021/
http://www.w3.org/TR/2003/REC-MathML2-20031021/
http://www.elsevier.nl/locate/entcs/volume72.html
http://www.elsevier.nl/locate/entcs/volume72.html
http://www.elsevier.nl/locate/entcs/volume72.html
http://www.elsevier.nl/locate/entcs/volume72.html
http://www.elsevier.nl/locate/entcs/volume72.html
http://www.elsevier.nl/locate/entcs/volume72.html
http://www.elsevier.nl/locate/entcs/volume72.html
http://www.elsevier.nl/locate/entcs/volume72.html
http://www.elsevier.com/locate/entcs/volume72.html
http://www.elsevier.com/locate/entcs/volume72.html
http://www.elsevier.com/locate/entcs/volume72.html
http://www.elsevier.com/locate/entcs/volume72.html
http://www.elsevier.com/locate/entcs/volume72.html
http://www.elsevier.com/locate/entcs/volume72.html
http://www.elsevier.com/locate/entcs/volume72.html
http://www.elsevier.com/locate/entcs/volume72.html
http://www.metacase.com/
http://www.metacase.com/
http://www.metacase.com/
http://www.metacase.com/
http://www.omg.org/technology/documents/formal/mof.htm
http://www.omg.org/technology/documents/formal/mof.htm
http://www.omg.org/technology/documents/formal/mof.htm
http://www.omg.org/technology/documents/formal/mof.htm
http://www.omg.org/technology/documents/formal/mof.htm
http://www.omg.org/technology/documents/formal/mof.htm
http://www.omg.org/technology/documents/formal/mof.htm
http://www.omg.org/technology/documents/formal/mof.htm
http://www.omg.org/technology/documents/formal/mof.htm

170 R.C. Holt et al. / Science of Computer Programming 60 (2006) 149-170

[78] H. Mdller, Criteria for Success in Exchange Formats for Information Extracted from Computer Probtgm&plg2.math.uwaterloo.ca/
~holt/sw.eng/exch.format1998.
[79] F. Newbery Paulish, The Design of an Extendible Graph Editor, in: LNCS, vol. 704, Springer, Berlin, 1991.
[80] K. Oechsle, T. Schmitt, AVAVIS: Automatic program visualization with object and sequence diagrams using the Java debwagénterf
in: S. Diehl (Ed.), Software Visualization, International Seminar, Dagstuhl Castle, Germany, May 20-25, 2001, in: LNCS, vol. 2269,
Springer, Berlin, 2002, pp. 176—-190.
[81] R. Ommering, L. van Feijs, R. Krikhaar, A relational approach to support software architecture analysis, Software Practice and Experience
28 (4) (1998) 371-400.
[82] RIGI: a visual tool for understanding legacy systehtp://www.rigi.csc.uvic.ca/
[83] J. Rumbaugh, I. Jacobson, G. Booch, The Unified Modeling Language Reference Manual, Addison Wesley, Reading, 1999.
[84] Satellite Workshop on Data Exchange Formats, in: 8th Int. Symposium on Graph Drawing, GIh2p@@vww.cs.virginia.edu/gd2000/
gd-satellite. htmI2001.
[85] A. Schirr, A.J. Winter, A. Zundorf, PROGRES: Language and environment, in: H. Ehrig, G. Engels, H.-J. Kreowski, G. Rozenberg (Eds.),
in: Handbook on Graph Grammars: Applications, Languages, and Tools, vol. 2, World Scientific, Singapore, 1999, pp. 487-550.
[86] ShriMP Views: Simple Hierarchical Multi-Perspectivatp://www.shrimpviews.com/
[87] S.E. Sim, Software Data Interchange with GXL: Implementation Issues, CASCON 2000, Mississauga, Ottpatheww.cas.ibm.com/
archives/2000/workshops/descriptions.shtm|#d@vember 2000.
[88] S.E. Sim, R.C. Holt, R. Koschke, ICSE 2000 Workshop on Standard Exchange Format, WoSEF, Limerick, 2000.
[89] C. Simon, A. Winter, Exchanging process specifications for identifying cooperative information systems, in: 11th Workshop on Algorithms
and Tools for Petri Nets, September 30—October 1, 2004, Paderborn Germany, 2004, pp. 31-36.
[90] H.M. Sneed, T. Dombovari, Comprehending a complex, distributed, object-oriented software system, a report from the field, in: 7th
international Workshop on Program Comprehension, IEEE, Los Alamitos, 1999, pp. 218-225.
[91] M.-A. Storey, C. Best, J. Michand, SHriMP views: An interactive environment for exploring Java programs, in: 9th International Workshop
on Program Comprehension, IEEE, Los Alamitos, 2001, pp. 111-112.
[92] SWAG Software Toolkithttp://www.swag.uwaterloo.caswagkit/
[93] G. Taentzer, Towards common exchange formats for graphs and graph transformation systems, in: UNIGRA Satellite Workshop of
ETAPS’'01, 2001.
94] S.R. Tilley, Domain-retargetable reverse engineering, Ph.D. Thesis, Department of Computer Science, University of Victoria, January 1995
95] TkSee http://www.site.uottawa.catcl/kbre/options/
96] TouchGraphhttp://www.touchgraph.com/index.html
97] UPGADE: A framework for graph-based applications, RWTH Aachhttp://www-i3.informatik.rwth-aachen.de/research/projects/
upgrade/
[98] M. van den Brand, H.A. de Jong, P. Klint, P.A. Olivier, Efficient annotated terms, Software: Practice and Experience 30 (3) (2000) 259—-291.
[99] J.B. Warmer, A.G. Kleppe, The Object Constraint Language : Precise Modeling With UML, Addison-Wesley, 1998.
[100] A.l. Wasserman, Tool integration in software engineering environments, in: International Workshop on Software Engineering Environments,
SEE, Chinon, France, 1989, pp. 137-149.
[101] M. Weiser, Program slicing, IEEE Transactions on Software Engineering SE-10 (4) (1984) 352—-357.
[102] A. Winter, C. Simon, Using GXL for exchanging business process models, Information Systems and E-Business Management, onlue sinc
1 November 200Sttp://dx.doi.org/10.1007/s10257-005-0027-0
[103] K.Wong, RIGI User’s Manual, Version 5.4 8ttp://www.rigi.csc.uvic.ca/rigi/rigiframel.shtml?Downlqab96.
[104] K. Wong, RIGI User’s Manual, Version 5.4 Http://www.rigi.csc.uvic.ca/rigi/rigiframel.shtm|?Downlgad98.
[105] 5th Working Conference on Reverse Engineering, IEEE Computer Society, Los Alamitos, 1998.
[106] 6th Working Conference on Reverse Engineering, IEEE Computer Society, Los Alamitos, 1999.
[107] 7-ter Workshop des Gl-Arbeitskreises GROOM, UML — Erweiterungen (Profile) und Konzepte der Metamodellierung, 4.-5. April,
Universitat Koblenz-Landau, 2006ttp://wwwz2.informatik.unibw-muenchen.de/GROOM/META/index.htm
[108] J. Wu, R.C. Holt, A. Winter, Towards a common query language for reverse engineering, Fachberichte Infotipztidovw.uni-koblenz.
de/fb4/publikationen/gelbereihe/RR-8-2002.82002, Universitat Koblenz-Landau, Institut fiir Informatik, Koblenz, 2002.
[109] XIG — An XSLT-based XMI2GXL-Translatohttp://ist.unibw-muenchen.de/GXL/volk/index.htm
[110] XML Meta Data Interchange (XMIl) Specificatiohttp://www.omg.org/technology/documents/formal/xmi.hiovember 2000.
[111] XML Schema Part 0: Primer, W3C Recommendation, 2 May 288f://www.w3.0rg/TR/2001/REC-xmlschema-0-200105@001.
[112] XML Schema Part 2: Datatypesttp://www.w3.org/TR/xmIschema-202 May 2001.
[113] XMI Toolkit 1.15, Updated on: 25.04.2006ttp://alphaworks.ibm.com/tech/xmitoolkR000.
[114] XOgastan: Xml-Oriented Gnu AST Analyzer, University of Sannio, Benevdrttp://web.ing.unisannio.it/villano/students/maso2602.
[115] yFiles —- Interactive Visualization of Graph Structurk&p://www-pr.informatik.uni-tuebingen.de/yfiles/
[116] Y. Zou, K. Kontogiannis, Towards a portable XML-based source code representation, in: Workshop of XML Technologies and Software
Engineering (XSE), ICSE 2001, Toronto.

http://plg2.math.uwaterloo.ca/~holt/sw.eng/exch.format/
http://plg2.math.uwaterloo.ca/~holt/sw.eng/exch.format/
http://plg2.math.uwaterloo.ca/~holt/sw.eng/exch.format/
http://plg2.math.uwaterloo.ca/~holt/sw.eng/exch.format/
http://plg2.math.uwaterloo.ca/~holt/sw.eng/exch.format/
http://plg2.math.uwaterloo.ca/~holt/sw.eng/exch.format/
http://plg2.math.uwaterloo.ca/~holt/sw.eng/exch.format/
http://plg2.math.uwaterloo.ca/~holt/sw.eng/exch.format/
http://plg2.math.uwaterloo.ca/~holt/sw.eng/exch.format/
http://plg2.math.uwaterloo.ca/~holt/sw.eng/exch.format/
http://www.rigi.csc.uvic.ca/
http://www.rigi.csc.uvic.ca/
http://www.rigi.csc.uvic.ca/
http://www.rigi.csc.uvic.ca/
http://www.rigi.csc.uvic.ca/
http://www.rigi.csc.uvic.ca/
http://www.cs.virginia.edu/~gd2000/gd-satellite.html
http://www.cs.virginia.edu/~gd2000/gd-satellite.html
http://www.cs.virginia.edu/~gd2000/gd-satellite.html
http://www.cs.virginia.edu/~gd2000/gd-satellite.html
http://www.cs.virginia.edu/~gd2000/gd-satellite.html
http://www.cs.virginia.edu/~gd2000/gd-satellite.html
http://www.cs.virginia.edu/~gd2000/gd-satellite.html
http://www.cs.virginia.edu/~gd2000/gd-satellite.html
http://www.shrimpviews.com/
http://www.shrimpviews.com/
http://www.shrimpviews.com/
http://www.shrimpviews.com/
http://www.cas.ibm.com/archives/2000/workshops/descriptions.shtml#17
http://www.cas.ibm.com/archives/2000/workshops/descriptions.shtml#17
http://www.cas.ibm.com/archives/2000/workshops/descriptions.shtml#17
http://www.cas.ibm.com/archives/2000/workshops/descriptions.shtml#17
http://www.cas.ibm.com/archives/2000/workshops/descriptions.shtml#17
http://www.cas.ibm.com/archives/2000/workshops/descriptions.shtml#17
http://www.cas.ibm.com/archives/2000/workshops/descriptions.shtml#17
http://www.cas.ibm.com/archives/2000/workshops/descriptions.shtml#17
http://www.cas.ibm.com/archives/2000/workshops/descriptions.shtml#17
http://www.cas.ibm.com/archives/2000/workshops/descriptions.shtml#17
http://www.cas.ibm.com/archives/2000/workshops/descriptions.shtml#17
http://www.swag.uwaterloo.ca/~swagkit/
http://www.swag.uwaterloo.ca/~swagkit/
http://www.swag.uwaterloo.ca/~swagkit/
http://www.swag.uwaterloo.ca/~swagkit/
http://www.swag.uwaterloo.ca/~swagkit/
http://www.swag.uwaterloo.ca/~swagkit/
http://www.site.uottawa.ca/~tcl/kbre/options/
http://www.site.uottawa.ca/~tcl/kbre/options/
http://www.site.uottawa.ca/~tcl/kbre/options/
http://www.site.uottawa.ca/~tcl/kbre/options/
http://www.site.uottawa.ca/~tcl/kbre/options/
http://www.site.uottawa.ca/~tcl/kbre/options/
http://www.site.uottawa.ca/~tcl/kbre/options/
http://www.site.uottawa.ca/~tcl/kbre/options/
http://www.touchgraph.com/index.html
http://www.touchgraph.com/index.html
http://www.touchgraph.com/index.html
http://www.touchgraph.com/index.html
http://www.touchgraph.com/index.html
http://www.touchgraph.com/index.html
http://www-i3.informatik.rwth-aachen.de/research/projects/upgrade/
http://www-i3.informatik.rwth-aachen.de/research/projects/upgrade/
http://www-i3.informatik.rwth-aachen.de/research/projects/upgrade/
http://www-i3.informatik.rwth-aachen.de/research/projects/upgrade/
http://www-i3.informatik.rwth-aachen.de/research/projects/upgrade/
http://www-i3.informatik.rwth-aachen.de/research/projects/upgrade/
http://www-i3.informatik.rwth-aachen.de/research/projects/upgrade/
http://www-i3.informatik.rwth-aachen.de/research/projects/upgrade/
http://dx.doi.org/10.1007/s10257-005-0027-0
http://dx.doi.org/10.1007/s10257-005-0027-0
http://dx.doi.org/10.1007/s10257-005-0027-0
http://dx.doi.org/10.1007/s10257-005-0027-0
http://dx.doi.org/10.1007/s10257-005-0027-0
http://dx.doi.org/10.1007/s10257-005-0027-0
http://dx.doi.org/10.1007/s10257-005-0027-0
http://www.rigi.csc.uvic.ca/rigi/rigiframe1.shtml?Download
http://www.rigi.csc.uvic.ca/rigi/rigiframe1.shtml?Download
http://www.rigi.csc.uvic.ca/rigi/rigiframe1.shtml?Download
http://www.rigi.csc.uvic.ca/rigi/rigiframe1.shtml?Download
http://www.rigi.csc.uvic.ca/rigi/rigiframe1.shtml?Download
http://www.rigi.csc.uvic.ca/rigi/rigiframe1.shtml?Download
http://www.rigi.csc.uvic.ca/rigi/rigiframe1.shtml?Download
http://www.rigi.csc.uvic.ca/rigi/rigiframe1.shtml?Download
http://www.rigi.csc.uvic.ca/rigi/rigiframe1.shtml?Download
http://www.rigi.csc.uvic.ca/rigi/rigiframe1.shtml?Download
http://www.rigi.csc.uvic.ca/rigi/rigiframe1.shtml?Download
http://www.rigi.csc.uvic.ca/rigi/rigiframe1.shtml?Download
http://www.rigi.csc.uvic.ca/rigi/rigiframe1.shtml?Download
http://www.rigi.csc.uvic.ca/rigi/rigiframe1.shtml?Download
http://www.rigi.csc.uvic.ca/rigi/rigiframe1.shtml?Download
http://www.rigi.csc.uvic.ca/rigi/rigiframe1.shtml?Download
http://www.rigi.csc.uvic.ca/rigi/rigiframe1.shtml?Download
http://www.rigi.csc.uvic.ca/rigi/rigiframe1.shtml?Download
http://www.rigi.csc.uvic.ca/rigi/rigiframe1.shtml?Download
http://www.rigi.csc.uvic.ca/rigi/rigiframe1.shtml?Download
http://www2.informatik.unibw-muenchen.de/GROOM/META/index.htm
http://www2.informatik.unibw-muenchen.de/GROOM/META/index.htm
http://www2.informatik.unibw-muenchen.de/GROOM/META/index.htm
http://www2.informatik.unibw-muenchen.de/GROOM/META/index.htm
http://www2.informatik.unibw-muenchen.de/GROOM/META/index.htm
http://www2.informatik.unibw-muenchen.de/GROOM/META/index.htm
http://www2.informatik.unibw-muenchen.de/GROOM/META/index.htm
http://www2.informatik.unibw-muenchen.de/GROOM/META/index.htm
http://www2.informatik.unibw-muenchen.de/GROOM/META/index.htm
http://www.uni-koblenz.de/fb4/publikationen/gelbereihe/RR-8-2002.pdf
http://www.uni-koblenz.de/fb4/publikationen/gelbereihe/RR-8-2002.pdf
http://www.uni-koblenz.de/fb4/publikationen/gelbereihe/RR-8-2002.pdf
http://www.uni-koblenz.de/fb4/publikationen/gelbereihe/RR-8-2002.pdf
http://www.uni-koblenz.de/fb4/publikationen/gelbereihe/RR-8-2002.pdf
http://www.uni-koblenz.de/fb4/publikationen/gelbereihe/RR-8-2002.pdf
http://www.uni-koblenz.de/fb4/publikationen/gelbereihe/RR-8-2002.pdf
http://www.uni-koblenz.de/fb4/publikationen/gelbereihe/RR-8-2002.pdf
http://www.uni-koblenz.de/fb4/publikationen/gelbereihe/RR-8-2002.pdf
http://ist.unibw-muenchen.de/GXL/volk/index.htm
http://ist.unibw-muenchen.de/GXL/volk/index.htm
http://ist.unibw-muenchen.de/GXL/volk/index.htm
http://ist.unibw-muenchen.de/GXL/volk/index.htm
http://ist.unibw-muenchen.de/GXL/volk/index.htm
http://ist.unibw-muenchen.de/GXL/volk/index.htm
http://ist.unibw-muenchen.de/GXL/volk/index.htm
http://ist.unibw-muenchen.de/GXL/volk/index.htm
http://www.omg.org/technology/documents/formal/xmi.htm
http://www.omg.org/technology/documents/formal/xmi.htm
http://www.omg.org/technology/documents/formal/xmi.htm
http://www.omg.org/technology/documents/formal/xmi.htm
http://www.omg.org/technology/documents/formal/xmi.htm
http://www.omg.org/technology/documents/formal/xmi.htm
http://www.omg.org/technology/documents/formal/xmi.htm
http://www.omg.org/technology/documents/formal/xmi.htm
http://www.omg.org/technology/documents/formal/xmi.htm
http://www.w3.org/TR/2001/REC-xmlschema-0-20010502/
http://www.w3.org/TR/2001/REC-xmlschema-0-20010502/
http://www.w3.org/TR/2001/REC-xmlschema-0-20010502/
http://www.w3.org/TR/2001/REC-xmlschema-0-20010502/
http://www.w3.org/TR/2001/REC-xmlschema-0-20010502/
http://www.w3.org/TR/2001/REC-xmlschema-0-20010502/
http://www.w3.org/TR/2001/REC-xmlschema-0-20010502/
http://www.w3.org/TR/xmlschema-2/
http://www.w3.org/TR/xmlschema-2/
http://www.w3.org/TR/xmlschema-2/
http://www.w3.org/TR/xmlschema-2/
http://www.w3.org/TR/xmlschema-2/
http://www.w3.org/TR/xmlschema-2/
http://alphaworks.ibm.com/tech/xmitoolkit
http://alphaworks.ibm.com/tech/xmitoolkit
http://alphaworks.ibm.com/tech/xmitoolkit
http://alphaworks.ibm.com/tech/xmitoolkit
http://alphaworks.ibm.com/tech/xmitoolkit
http://alphaworks.ibm.com/tech/xmitoolkit
http://web.ing.unisannio.it/villano/students/masone/
http://web.ing.unisannio.it/villano/students/masone/
http://web.ing.unisannio.it/villano/students/masone/
http://web.ing.unisannio.it/villano/students/masone/
http://web.ing.unisannio.it/villano/students/masone/
http://web.ing.unisannio.it/villano/students/masone/
http://web.ing.unisannio.it/villano/students/masone/
http://web.ing.unisannio.it/villano/students/masone/
http://www-pr.informatik.uni-tuebingen.de/yfiles/
http://www-pr.informatik.uni-tuebingen.de/yfiles/
http://www-pr.informatik.uni-tuebingen.de/yfiles/
http://www-pr.informatik.uni-tuebingen.de/yfiles/
http://www-pr.informatik.uni-tuebingen.de/yfiles/
http://www-pr.informatik.uni-tuebingen.de/yfiles/

	GXL: A graph-based standard exchange format for reengineering
	Introduction
	Data interoperability of reengineering tools
	Interoperability of graph-based tools
	Collaborating tool sets
	Requirements for a standard exchange format
	Graph exchange formats in reengineering
	Genealogy of GXL

	Exchanging graphs with GXL
	Exchanging typed, attributed, directed, ordered graphs
	Exchanging hypergraphs
	Exchanging hierarchical graphs
	GXL DTD

	Exchanging graph schemas
	GXL schemas as UML class diagrams
	GXL schemas represented as graphs
	GXL metaschema

	Using GXL
	Conclusion
	Acknowledgments
	References

