ACM SIGSOFT Software Engineering Notes, Volume 26, January, 2001, pages 44-49.

WoSEF: Workshop on Standard Exchange Format

Susan Elliott Sim

University of Toronto
simsuz@cs.utoronto.ca

Abstract

A workshop was held at ICSE 2000in Limerick, Ireland to further
efforts in the development of a standard exchange format (SEF)
for data extraded from and about source @mde. WoSEF (Workshop
on Standard Exchange Format) brought together people with
expertise in a variety of formats, such as RSF, TA, GraX, FAMIX,
XML, and XMI, from aaossthe software engineeing discipline.
We had five sessons consisting of a presentation and discusson
period and a working session with three subgroups. The five
sessons were: 1) Survey and Overview, 2) Language-level
schemas and APIs, 3) Highlevel schemas, 4) MOF/XMI/UML
and CDIF, and 5 Meta schemas and Typed Graphs. During that
time we reviewed previous work and debated a number of
important issuues. This report includes descriptions of the
presentations made during these sessions. The main result of the
workshop is the agreement of the mgjority of participants to work
on refining GXL (Graph eXchange Language) to be the SEF. GXL
is an XML-based notation that uses attributed, typed graphs as a
conceptual data model. It is currently a work in progress with
contributors from reverse engineaing and graph transformation
communities in multiple muntries. Thereisagrea ded of work to
be done to finali se the syntax and to establi sh reference models for
schemas. Anyone interested is welcome to join the dfort and
instructions on how to get involved are found at the end of the
workshop report. Three papers from the workshop have been
reprinted here to promote refledion and encourage participation in
the work to develop an SEF.

Introduction

Reseachers in computer-aided software engineaing tools and
computer-aided reverse engineaing tods have remgnized a
standard exchange format (SEF) as a means for improving the
state of the at of tod interoperability. As part of an on-going
effort, the Workshop an Standard Exchange Format (WoSEF) was
held at ICSE2000 an Tuesday, 6 June, 2000 The workshop was
co-chaired by Susan Elliott Sim, Rainer Koschke, and Richard C.
Holt. This meding was primarily concerned with moving towards
consensus on a common format for sharing data aout source
code. These data could be etraded from source @de using
parsers, inferred using analysis todls, or taken from other sources
such as configuration management systems. There is a multi pli city
of reasons to have an SEF. It would allow usto use abest of breed
approach when seleding tools and it would avoid unnecessary
duplicaion when writing tools. This motivation was refleded in
the reasons that the participants gave for attending the workshop:
1) They wanted to be &le to make complementary todls work
together more smoocthly; and 2) They were tired of writing
parsersanalyzers and wanted to avoid writing another one, in
particular a C++ parser. A small number of participants were
attending because they were developing a format for use within
their tod sets and wished to see succesSul examples. Aside from

Rainer Koschke

University of Stuttgart
koschke@informatik.uni-stuttgart.de

the benefits for tools, an SEF would enable the aedion of
benchmark problems, or “guineapigs,” for a particular area Such
guineapigs would serve to codify knowledge éout todls, a dass
of problems, and problem solving techniques.

There have been many prior efforts to crege aa SEF. Some of
these ae general-purpose exchange formats that can be adapted to
data @out software, while others are spedfically for software.
Some examples are XML (eXtensible Mark-up Language)[3], with
a spedaized form, XMl (XML Metadata Interchange format)
[18], RDF (Resource Descriptor Format)[9], RSF (Rigi Standard
Form)[10], TA (Tuple Attribute Language)[14], GraX[2], and
CDIF (CASE Data Interchange Format)®. These formats vary in
the amount of suppat and use they recave. This proliferation of
exchange formats underlines both the need for a standard format
and the lack of consensus on one.

For the first time, this workshop krought together members from
disparate communities to share experiences and work together.
The workshop summarized previous work in this field and re-
visited XML, XMI, UML, and CDIF. We discused concrete
schemas for high-level information, such as class diagrams or
architedural information, and for low-level information, such as
abstrad syntax trees. We dso debated the ooncepts and the
mechanisms to spedfy meta schemas. The interadion between the
participants were lively and the discussion sessons often ran
overtime (to the grea chagrin of one of the @-chairs). On
occasion, someone would jump up to illustrate apoint on the flip
chart. During the bregks, small groups would form in front of the
bladboard to pursue or clarify arguments.

We acceted 13 position papers and these fell into five groups,
which we used to organize the workshop. We scheduled five
sessons, each with a presentation followed by discussion, on the
following topics:

1. Survey and Overview

2. Language-level schemas and APIs

3. High-level schemas

4. MOF/XMI/UML and CDIF

5. Meta schemas and Typed Graphs
To maximise time for discusson, we gpanted a chair for eadh
sesson to co-ordinate a @mbined presentation for ead group of
papers. We found this format was very effedive for identifying
commonadlities and relative strengths of the various approades.
We recommend this organizaion to other workshop aganisers.
These sessons will be described in Sedion 2.

During the last two hours of the workshop, we departed from the
planned presentations and discusdons. For one and a half hours,
we broke into threesmall groups, eat focussing on a single topic.
These topics were suggested by discusgons ealier in the day, and

1 Work on CDIF has been transferred to the XM| effort.

Susan Sim
ACM SIGSOFT Software Engineering Notes, Volume 26, January, 2001, pages 44-49.

they were i) high-level schemas, ii) C++ schema and API, and iii)
notation for exchanging schemas. The groups identified
requirements, made prescriptions for progress and wrote will-do
lists. Afterwards, eadh goup presented its results to the whole
workshop. Their work is described in Section 3.

By the end dof the of the day, this workshop produced two major

results..

e Virtualy al participants committed to refining GXL (Graph
eXchange Language) aformat in-progress GXL uses XML
syntax and is used to encode dtributed graphs. The groups
who committed to working together further were University
of Stuttgart, Bell Canada, IBM Canada Ltd., Mahindra-British
Teleaom, University of Waterloo, University of Koblenz,
University of the German Federal Armed Forces (Munich),
Phili ps Reseach Eindhoven, University of Victoria, and
Nokia.

* Weidentified threemajor areas for continued work,
coinciding with working goups. Web pages and mailing lists
have since been creaed for these topics.

These results, spedficdly GXL, will be discussed in Sedion 4.

Finally, we give instructions on how to become involved in the

effort to establish an SEF in Sedion 5.

Sessions

As mentioned above, we had five sessions of presentations and
discussions. Each of the sessons was organized acwrding to
common themes in the paosition paper. We began with a kick-off
presentation by Ric Holt to establish a @mmon vocabulary. The
first session, “Survey and Overview,” reviewed previous work on
SEFs. Subsequent sessons addressed successvely higher level
issues. They covered “Language-level schemas and APIs,” “High-
level schemas,” “MOF/XMI/UML and CDIF,” and “Meta schemas
and Typed Graphs” Summaries of these presentations are
presented in this section of the workshop report.

1.1 Survey and Overview

Holger Kienle gave the joint presentation for this topic covering
papers by Kienle, Czeranski, and Eisenbarth; Martin and Muller;
and Riva [13][16]. The presentation covered badground material
and previous work on exchange formats.

There ae many different published exchange formats. Some of
them were explicitly designed to be generally usable, others
originated in related areas and could easily be adapted. Among the
formats explicitly designed as general exchange formats, one @an
identify two major subclasses. those invented in a software
engineaing context (e.g., RSF, TA, CDIF, and GraX) and those
provided by other communities and nevertheless useful to
exchange software atifads (e.g., ASN.1, XDR, Abstrad Syntax
Description Language, Resource Description Framework, XML).
Some examples of the latter have evolved in the graph drawing
community and the compiler community. Because of the rich
expressveness of graphs, some reseachers have found the graph
data model relevant to software engineaing. The mpiler
community has also evolved several persistent intermediate
representations that can be used to transfer low-level program
information.

There ae two dfferent groups of different stakeholders for
exchange formats. users of the format and tod builders. Not
surprisingly, the requirements of these two groups differ. For
example, from the user's point of view, the exchange format
shoud be human readable, compad, context-neutral, and
extensible, while atoad builder wants an interchange format that
can ealy and efficiently be parsed, stored, and generated.

The group at Nokia Reseach represents baoth view points when
they describe their needs for an exchange format to be used as part
of their reverse achitedure process The processconsists of three
conseautive major steps. extradion, abstradion, and analysis of
software achitectures. For ead step, different tods need to be
used because there is currently no tod avail able that supparts the
whole process Hence, the aility to easily exchange information
among these todlsis crucial.

1.2 Language-level schemas and APIs

Any tod that parses urce ®de, such as analyzers and compil ers,
uses ©me interna or intermediate representation of the source
with an underlying schema. The schema of the interna
representation might not necessarily be explicitly documented (in
any other form than the de), neither may the internal
representation be designed for more than temporary data storage,
but both schema and the raw data eist nonetheless Language-
level schemas are used to define the structure of programming
representations for either spedfic languages or a family of related
languages, e.g., procedural languages. The representations are
often accompanied by an APl (applicaion program interface to
access the data. The programming language Ada even has a
standardized API, cdled Ada Semantic Interface Spedficaion
(ASIS) that several compiler vendors suppart[6]. In some other
sub-communities, a particular front end defines a defado
standard. For example, the Datrix group at Bell Canada provides
members of CSER (Consortium for Software Engineaing
Reseach), a group o Canadian reseachers and companies
involved in reverse engineaing reseach, with a C++ front end that
emits annotated abstrad syntax trees. The presentation for this
topic was given by Sébastien Lapierre and covered two papers,
one by Lapierre, Lagué, and Leduc and a seaond one by Kienle,
Czeranski, and Eisenbarth[13][16].

Lapierre, a member of the Datrix group, reported that use of the
Datrix front end ranges from metric computation, clone and design
pattern detedion to program dlicing and refadoring. For these
analyses, it is aso neessry to alow read as well as write
operations to the AST. Moreover, a user of the intermediate
representation should also be @le to add higher-level elements, as
for example, architedural concepts, and additional abstrad links.
These anotations are, for instance, needed to record what code
pieces have been identified as clones of ead other. Lapierre
observed that it is currently not easy to benefit from other
reseacher’s tools and noted that there ae basicdly threetechnica
ways to easse a ¢oser collaboration. One is to wnite dl analyzers
into one huge open source projed, another one is to provide
standardized exchange formats, or — finally — one can achieve tod
interoperabili ty by means of APIs.

The challengesin API design are:

« tofind asuitable way for returning or giving access to the
result of aquery (should the same model be enhanced or
should parallel models/copies be aeaed?),

» to find mechanisms to annotate or colour AST nodes,

* to provide meansto modify the AST (without
compromising AST integrity), and

* to dfer state management mechanismsto permit undo,
roll-badk, and reset operations.

Further points to pander are whether accessto the AST should be
embedded into a high-level programming language or rather be by
means of a domain-spedfic query language, and the question of
how different tools (visualization, graph manipulations, etc.) can
be integrated without dupli cating the data.

1.3 High-level schemas

Language andyzes, like ompilers, extrad very detailed
information from source @de. The amount of extraded data can
be far too large to be comprehended or analysed in a reasonable
amount of time. For many reverse engineaing adivities, only a
broad overview of the system is necessary. Typicdly, only global
code aitities, such as functions, global variables, user-defined
types, and classes together with their relationships are redly
relevant for a broad overview. Wheress expressions and
statements in the body of functions can be used to induce cetain
relationships among code entities but can otherwise be ignored.
Such high-level information can then be visualized, analyzed, and
manipulated. In contrast to forward engineaing, highlevel
information is usually the starting point of the design. A class
diagram in UML, for example, does not contain individual
statements, but classes and their relationships.

Similar to low-level extradions, every high-level description of
system, implemented or not, has an urderlying high-level schema.
Michad Godfrey from the University of Waterloo summarized
papers by Neuhold, and Hessand Schulz and a portion of his own
paper [13][16]. He distinguished between two dfferent levels of
abstradion in high-level schemas. programming language entity
level (globally dedared code atities diredly derived from a
system) and architecdural level (components and connedors). For
the programming language entity level, he presented several high-
level schemas for procedural and for objed-oriented programs
independently developed by different organizations and their
corresponding extradors. Interestingy enough, these schemas
were quite similar, which suggests that reating an agreement on a
common high-level schema for a particular language or paradigm
isaredistic goal.

1.4 MOF/XMI/UML and CDIF

The presentation by Louis St-Pierre summarized papers by St-
Pierre, Tichelaa et a., and Dirckze ¢ al. [13][16] on a family of
related standard exchange formats widely used in acalemia and
industry, namely, MOF (Meta Objeda Fadlity) [8], XMI [18],
UML (Unified Modeling Language) [11], XML [3], and CDIF. St-
Pierre began by revisiting the threelevels of the Objed Modeling
Group (OMG) model-driven approach:
e ML1: concrete models that describe goplication models,
e.g., afinance gplicaion model

M2 metamodeling languages provide syntax and
semanticsto describe cncrete models; a spedficaion
using a metamodeling language is cdled a metamodd!;
e.g., UML or FAMIX can be used to describe a oncrete
finance gpli cation model

¢ M3: meta-metamodeling languges provide syntax and
semanticsto describe M2 models, e.g., MOF isused to
spedfy UML; meta-metamodeling languages can also be
used to define rules for metadata interchange format
generation (e.g., XMI format including XML DTDsfor
content verificaion)

St-Pierre noted that the M3 level is needed for abstradion (because
the model abstrads functionality from implementation) and to
enable semantic interoperabili ty. After explaining the relationships
among UML, MOF, XML, and XMI and reporting on Tichelaa et
a.’s experiences with CDIF, he ancluded that MOF and XMI are
our best options at the moment because they are acceted
standards and tod suppat is arealy available, while CDIF has
been virtually abandoned. However, UML does not adequately
represent some feaures of source ®de, in particular of procedural
programs. UML forces certain interpretations (e.g., the distinction
between inheritance used as generadlizaion or as implementation
re-use) while other information is beyond the scope of UML, for
instance, PICTURE clausesin COBOL.

1.5 Meta schemas and Typed Graphs

This ssson built on the previous one by considering the M2-level
schema for an interchange format, or meta schema. This
discussion was primarily concerned with the schema of the format
rather than the schema of the data that it encodes. The papers by
van den Brand et al., Godfrey, and Ebert et al. [13][16]described
formats that have different meta schemas, spedficdly ATerms and
Tgraphs.

Rather than tackling these meta schemas diredly, the presenter,
Andress Winter, identified five components of an SEF and
explained how approaches from the three papers fell into the
taxonomy. The five components were: 1)structure, 2)format,
3)meta schema, 4) data acces and 5) transformation. “Structure”
is the underlying conceptual data model of the SEF, such as ASTs,
graphs, and relational models. “Format” is the form in which the
data is transferred. “Meta schema’ is the notation for representing
the schema of the data for transmission between tods. The fourth
component is a standardised mechanism for accessng the stored
data dficiently, such asan API or set of utilities. “ Transformation”
isthe caabili ty to transform data from one schema to another.

After using this taxonomy to compare the three gproacdes,

Winter made the following conclusions. The SEF would need to
encode both schema and instance data to maximise portability
between toals. The SEF should use direded, attributed, typed
graphs as the underlying structure and be based on a wmmon meta
model. He dso recommended that the SEF should use XML

syntax to leverage existing todls.

Working Groups

Following the afternoon bre&k, the participants separated into
small groupsto discuss pedfic topics. These issues evolved out of
the discussions during the ealier sessons as points of

disagreement or unresolved problems. Each group was instructed
to work on threeitems: 1) requirements for solving the problem; 2)
a prescription for making progress and 3) “will-do” lists. We
asked for “will-do” lists instead of “to-do’ lists, becaise we
wanted concrete adion items. Again, the discusdons were lively
and participants leaned a lot from each other. These working
groups were ahigh point in the day, despite being a last-minute
change to the schedule.

Following one and a half hours of discusson, the workshop
reconvened in asingle group. Each working group seleded one
person to present itsresults. In the remainder of this sction, these
presentations will be summarized.

1.6 High-level Schemas

The participants in this working group were familiar with a large
number of high-level schemas and they quickly redised there was
not enough time to identify spedfic requirements that were
common to al of them. Instead, they added this task to the will-do
list and concentrated on broad requirements. Since there was a lot
of agreement in the group, they were ale to make good pogress
in their discussons.

Requirements

» Design schemas for avariety of “high” levels, including (but
not limited to) one for language-level and one for architecural
level.

e These schemas should suppart the needs of todl developers.

* These schemas must work with C/C++ and Java

Prescription for Progress

e Impose one or more standard schemas and later corred them
based on feedbad.

» Architedure level schemamay be straightforward and should
be monsidered asfirst candidate.

* Somebody (not us!) should also consider “software
architedure” in the theorem proving sense, i.e. spedfyingthe
low-level semantics of interadions between components using
formal logics.

Will-Do List

* Joinan email list to continue the discussion.

» Explore“Guinnessenabled reverse engineeging’ later tonight

Voluntee to participate in the validation of a standard schema.

1.7 C++schemaand API

There was a strong desire among WoSEF participants for a robust

and flexible C++ parser. The group recognised that one way to

adhieve the goal was to placedata parsed from source ®@de into a

repository and use an API to accessthe data. Consequently, this

working group considered the problem of what data should be

placal in the repository and how the crresponding API should

work. The discusgons in this group was particularly complex and

contentious, and the group was the last to re-join the main group.

Requirements

* The APl must be aleto traverse, query, transform graphs or
trees.

* The APl must be mnneded to a high-level programming
language.

Prescription for Progress

Examine existing APIs for C++ representations, in particular,

Datrix, IBM Visua C++ CodeStore, and g++, and crede asingle

unified schema.

1.8 Notation for exchanging schemas

This topic had the smallest working group and it spent most of its

time defining terms from which discussion could proceal. The

group explored a number of issues and options and leaned more

about what didn't work than what did work. When they reported

badk to the workshop, they gave only awill-dolist.

Will-Do List

« Define anotation for representing schemas that can be used
with GXL. This notation will likely be asubset of UML class
diagrams.

¢ Collead anumber of example schemas. This colledion will be
used to guide the design of the notation.

« Implement converters between GXL and the foll owing
formats: RSF, TA, TGraphs, PROGRES, RPA, and FAMIX.

Results

Beyond gathering momentum and stimulating discussions on
diverse issues on exchange formats, the major result of the
workshop was the commitment of the workshop participants to
work on GXL as a mmmon exchange format. Since GXL is a
promising candidate for a standard format for transferring data on
software atefacts, we will now use the oppatunity to briefly
present GXL.

GXL alows to encode typed, attributed, multi-graphs with edges
as first-order entities (edges themselves can have atributes). It
originates from a number of graph-based exchange formats, GraX
(University of Koblenz-Landau) [1], TA (University of Waterloo)
[14], and the graph format of the PROGRES graph rewriting
system (University of the German Federal Armed Forces, Munich)
[12]. Furthermore, GXL includes concepts from the exchange
format of Relation Partition Algebra, RPA (Philips Reseach
Eindhoven, The Netherlands) [5] and RSF (University of Victoria,
Canada) [10].

GXL isan XML sublanguage and its exad syntax spedfication is
still subjed to an ongoing discussion. The following is an excerpt
of version 0.6.6, released 31 August, 2000 The latest version of
the XML Document Type Definition (DTD) can be found at
http://www.gupro.de/GXL/.

<IELEMENT gxI (graph)* >
<IELEMENT graph (attr*, (node | edge |
>
<IATTLIST graph
id ID #REQUIRED
schema CDATA #IMPLIED
edgeids (true | false) "false"
undirected (true | false) "false"
hypergraph (true | false) "false"

rel)*)

>
<IELEMENT node (attr*, order*) >
<IATTLIST node
id ID #REQUIRED
type NMTOKEN #IMPLIED
>
<IELEMENT edge (attr)* >
<IATTLIST edge

id ID #IMPLIED

type NMTOKEN #IMPLIED
from IDREF #REQUIRED
to IDREF #REQUIRED
>
<IELEMENT attr ((%type;)?, (%
<IATTLIST attr
name NMTOKEN #REQUIRED
kind NMTOKEN #IMPLIED
>

val;)?, attr*) >

The following interpretation of the DTD deliberately omits ome
detail s for explanatory purposes. In GXL, graphs consist of nodes,
and edges.? All of these entities, graphs, nodes, and edges, must
have unique identifiers and may have dtributes. In the cae of
edges, this unique identifier may be given explicitly or it may be
implied by the end pdnts and type of the elge. One of these two
options must be seleded for the entire graph by setting the graph
attribute “edgeids’ appropriately. A similar choice must be made
for whether the graph has direded or undireded edges. Attributes
defined by giving a name and a value. This value must have a
type, either a primitive type (int, float, bodean, string) or a
compasite type (bag, set, seq, struct).

The syntax for representing schemasiis currently under discussion,
but it will also use agraph-based representation. As aresullt,
schemas can in turn be exchanged as graphs represented within the
GXL document. Consequently, both instance data and schema data
can be transferred.

P Proc

File: main.c

2 Proc

File : testc

Call
Ling: 127

Figure 1: Graph Representation of Source Code

To gve aflavour of how GXL encoded data look like, consider
the following information to be represented with GXL: procedure
P (dedared in main.c) cdls procedure Q (dedared in test.c) in line
127. This information is represented graphicdly in Figure 1. The
GXL document for this example is as foll ows:
<?xml version="1.0"?>
<IDOCTYPE gxl SYSTEM
"http://www.gupro.de/GXL/gxl.0.5.dtd">
<gxl schema =
"http://www.gupro.de/GXL/demo.xml"
edgeid = “false”
undirected = “false”
hypergraph = “false”
>
<node id = "P" type ="
< attr name = "File">
<string> main.c </string>
</attr>
</node>
<node id = "Q" type = "Proc">

Proc">

2 A “rel” isahyperedge, that is, an edge with more than two
endpants, such as those used in some entity-relationship dagrams
and classhierarchies. Hyperedges can only occur in hypergraphs,
and the corresponding attribute of the graphis <t to true.

<attr name = "File">

<string> test.c </string>
</ attr>
</node>
<edge id = "c" type = "Call" begin = "P" end =
Qs
< attr name = "Line">
< int>127 </ int>
</ attr>
</edge>
</ gxI>

Like other XML sublanguages, GXL is quite verbase. In order to

exchange large amount of data, for example, abstrad syntax trees
for larger systems, standard compression methods need to be used
to save space On the other hand, existing XML toals can be used
to traverse the graphs and accessthe data they encode.

Future Work

Since WoSEF was held, other workshops have been organized to
develop a standard exchange format. There will be ameding at
APRLIGRAPH (Applicaions of Graph Transformation subgroup)
[1] to be held 56 September, 2000 in Paderborn University in
Germany to find an XML-based SEF for graph transformation
systems. The graph drawing community will hold a kick-off
meeting for an initiative to find an SEF on 20 September, 2000 as
part of a their annua meding, GD 2000 in Colonia
Williamsburg, USA [7]. There will be a panel on standard
exchange formats aa WCRE 2000 (Working Conference on
Reverse Engineaing) [17] in Brisbane, Audstrdia, 23-25
November, 200Q Finally, a Schloss Dagstuhl seminar is planned
for January, 2001[4].

Asisevident from these medings and this workshop report, work
on a standard exchange format is far from complete. A grea ded
of work remainsto be done and anyone is welcome to join the
effort. There ae anumber of waysto lean more aout current
work and get involved:

e Visit the workshop home page &
http://www.cs.utoronto.cal~simsuz/wosef for detail s of
ongoing work.

¢ Contad any of the authors of this paper for more
information.

e Jointhe Waikiki Bead Club mailinglist for email
updates on the work. Instructions are avail able &:
http://www.informatik.uni-stuttgart.de/ifi/ps/waikiki [15]

. Rea the positi on papers from WoSEF for badground
information.

To help you get started, three position papers from the workshop
have been seleded and included in this issue of Software
Engineeiing Notes that together cover a broad spedrum of issues
in interchange formats. While the first paper gives a bibliographic
badkground for existing interchange formats, the other two papers
concentrate on spedfic program representations for the lower-level
entities and higher-level entities.

The first paper by Kienle, Czeanski, and Eisenbarth of the
University of Stuttgart reviews and classfies existing exchange
formats. Both domain-spedfic (e.g., interchange formats for graph
drawing tods) and general-purpose formats (e.g., XML) are

discussed. Included in the survey are persistent intermediate
representations for compil ers as candidates for low-level program
representations. Finally, advantages and dsadvantages of
persistent data structures as aternatives to exchange formats are
debated.

The Datrix group at Bell Canada has considerable experience in
providing members of CSER with program extradions in the
shape of annotated abstrad syntax trees for C++. The Datrix group
members Lapierre, Lagué, and Leduc report on their experience
with seleding Datrix-TA, a variant of TA, to represent these
annotated abstrad syntax trees, cdled abstrad syntax graphs by
the authors.

Godfrey of the University of Waterloo concentrates on high-level
program schemas siitable to represent necessary information for
architedure recovery. His experiences in using different extradors
that generate high-level program schemas along with a detail ed li st
of requirements for such schemas are described in his paper.
Furthermore, he points out several important pradicd problems
with uniquely identifying and resolving entities when different
extradions are linked together to a global system representation
(espedally if the separate representations gem from different
extradors) and how these entities need to be tradked bad to their
original source

Attendees

Participants. Marat Boshernitsan, Rahul Charmadhikan, Raj
Chittar, Mike Godfrey, Hoh In, Holger Kienle, Kostas
Kontogiannis, Bernt Kullbach, Sébastien Lapierre, Tim
Lethbridge, Johannes Martin, Hausi Mller, Karin Neuhold,
Stephen Perelgut, Derek Rayside, Claudio Riva, Tobias Rétschke,
Louis St-Pierre, Sander Tichelaa, Andreas Winter, Wai-Ming
Wong

References

[1] APPLIGRAPH Subgroup Meding on Exchange Formats for
Graph Transformation. http://www.uni-paderborn.de/csag-
engels/Conferences APRLIGRAPH_XML/, 1 September,
2000

Jurgen Ebert, Bernt Kull bach, and Andreas Winter. “ GraX—
An Interchange Format for Reengineeing Tods’ Proceedings
of the Sixth Working Conference on Reverse Engineeing, pp.
89-98, Atlanta, GA, 6-8 October, 2000, Los Alamitos: IEEE
Computer Society Press

Extensible Markup Language Home Page.
http://www.w3.org/ XML/, 1 September, 200Q

Dagstuhl Seminar 01041, Interoperabili ty of Reengineaing
Tools, http://www.dagstuhl.de/DATA/Reports/01041, 1
September, 2000

L. M. G. Feijsand R. C. van Ommering. “Relation partition
algebra— mathematicad aspeds of uses and part-of relations,”
Science of Computer Programming, 33(2), pp. 163-212,
February 1999

International Standards Organization. ISO/IEC 15291Ada
Semantic InterfaceSpedfication (ASIS), 1999

Graph Drawing 2000home page,

(2]

(3]
[4]

(5]

6]

http://www.cs.virginia.edu/~gd2000, 1 September, 2000.

[8] MOF Revision Task Force home page.
http://www.dstc.edu.au/Reseach/Projeas/M OF/rtf/index.html
1 September, 2000

[9] RDF (Resource Descriptor Format.) http://www.w3.0rg/RDF/,
1 September, 2000

[10] RSF(Rigi Standard Form)
http://www.rigi.csc.uvic.carigi/manual/user.html, 1
September, 2000

[11] James Rumbaugh, Ivar Jacmhbson, and Grady Booch. The
Unified Modeling Language Reference Manual, Addison-
Wesley Publishing Company, 1998

[12] Andy Schiirr. “Developing Graphicd (Software Engineaing)
Tools with PROGRES, Formal Demonstration,” in
Proceedings of the Nineteenth International Conference on
Software Engineaing (ICSE'97), pp. 618-619, Boston,
Massachusetts, 18.-23. May 1997, Los Alamitos: IEEE
Computer Society Press

[13] Susan Elli ott Sim, Richard C. Holt, Rainer Koschke.
“Workshop a Standard Exchange Format Proceedings.” 6
June, 200Q Twenty-Send International Conferenceon
Software Engineeaing, Limerick, Ireland.

[14] Tuple Attribute Language.
http://plg.uwaterloo.ca~holt/papers/ta.html, 1 September,
2000

[15 Waikiki Beach Club Home Page http://www.informatik.uni-
stuttgart.de/ifi/ps/waikiki, 1 September, 200Q

[16] WoSEF (Workshop on Standard Exchange Format) Home
Page. http://www.cs.utoronto.cal~simsuz/wosef, 1 September,
2000

[17] Working Conference on Reverse Engineaing (WCRE), 2000
home page. http://www.reengineea.org/~wcre2k, 1 September,
2000

[18] XMI (XML Metadata | nterchange Format).
http://www.software.ibm.com/ad/fegures/xmi.html, 1
September, 2000

