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Software developers search the web for different kinds of source code for different reasons. In a
previous study, we found that searches varied along two dimensions: the size of the search target
(e.g., block, subsystem, or system) and the motivation for the search (e.g., reference example or
as-is reuse). Would each of these kinds of searches require different technological solutions? To
answer this question, we conducted an experiment with 36 participants to evaluate three different
approaches (general purpose information retrieval, source code search, and component reuse), as
represented by five web sites (Google, Koders, Krugle, Google Code Search, and SourceForge).
The independent variables were search engine, size of search target, and motivation for search. The
dependent variable was the participants judgement of the relevance of the first ten hits. We found
that it was easier to find reference examples than components for as-is reuse and that participants
obtained the best results using a general-purpose information retrieval site. However, we also
found an interaction effect: code-specific search engines worked better in searches for subsystems,
but Google worked better on searches for blocks. These results can be used to guide the creation
new tools for retrieving source code from the web.
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1. INTRODUCTION
As the quantity and quality of open source software increases, an approach to software
development that takes existing components and combines them becomes a viable and
competitive way to do business. “Opportunistic” or “pragmatic” reuse is the unplanned, ad
hoc use of existing source code that was not specially packaged for reuse [Hartmann et al.
2006; Holmes and Walker 2007]. It often involves modification of the code being reused, or
creation of wrappers or glue code. These practices represent a departure from traditional
software reuse, which tends to focus on reusing components without modification. The
success of an opportunistic software development approach on a project depends in part on
finding what is out there [Hartmann et al. 2006].

Software developers search for source code on the web for a variety of reasons. A
special issue of IEEE Software on how open source is affecting software development gave
a number of case studies [Spinellis and Szyperski 2004]. As well, we identified a series of
archetypes in a previous study for the types of searches that software developers carry out
[Umarji et al. 2008]. We found that there were two major search motivations; participants
tended to search for either a piece of code that could be reused as-is in a project, or for
a reference example that could be consulted for information. The size of search targets
varied, ranging from a block (e.g., a few lines of code) to a subsystem (e.g., an algorithm
or data structure) to an entire system (e.g., a text search engine).

These results led us to the insight that “searching for source code on the web” included
a wide range of behavior. Furthermore, the different kinds of searches required different
kinds of tool support. In some cases, the participants were looking for information, which
would suggest that tools from textual information retrieval could be used. In other cases,
participants were looking for a software artifact, which would suggest that code-specific
search tools, such as those found in integrated development environments (IDEs), and
software reuse could be applied.

The question arises: how well do different search technologies meet the needs of soft-
ware developers when retrieving code from the web? While there have been many studies
of user behavior in information retrieval and the practice of open source, the behavior of
users who search for source code is a relatively unexplored area.

To further understand source code retrieval, we designed a laboratory experiment to eval-
uate the effectiveness of different technological approaches to web-based code retrieval.
The purpose of this study was to evaluate fitness for purpose, rather than to campare the
underlying algorithms in the search engines. By fitness for purpose, we mean the how
fit are each of the approaches for the purpose of finding code on the web. We created
scenarios based on the results from our previous study [Umarji et al. 2008], and chose to
vary both the motivation for the search (as-is reuse or reference example) and the size of
the search target (block or subsystem). We used five search engines in our study. One
was designed for information retrieval (Google), three were web sites designed to search
for source code (Koders1, Krugle2, and Google Code Search3), and the last was a project
hosting site (SourceForge4). We selected these sites because they were mentioned by par-
ticipants in the previous study and because they represented different technological ap-

1http://www.koders.com/
2http://www.krugle.com/
3http://www.google.com/codesearch
4http://sourceforge.net/
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proaches from textual information retrieval, source code searching, and software reuse.
Thirty-six participants were each assigned a scenario and asked to conduct the search

on the five search engines. The subjects were asked to judge the relevance of the first ten
matches returned (denoted as P@10). We found two statistically significant main effects
and one interaction effect. Searches for reference examples produced more matches that
were judged relevant (p < 0.05) . Google produced more relevant hits than the other search
sites (p < 0.01) . However, Koders and Krugle were more likely to produce more relevant
hits on searches for subsystems, while Google was better when searching for blocks (p <
0.01) .

To sum up, it is easier to find reference examples than components for as-is reuse.
Google performed better overall than the other search engines, but Koders and Krugle
performed better when searching for subsystems. The motivation behind the search did
not have a statistically significant effect in this study.

Looking at the reasons behind these results, we noticed that searching the web for code
was not a single, universal phenomenon. It is, in fact, a variety of activities that appear
to be superficially similar, but are qualitatively distinct from each other. When designing
tools for code retrieval, one must be clear about what kind of search is being addressed.
Stating one’s goals and the use cases for a tool up front permits alternatives to be compared
more easily.

The remainder of this paper is organized as follows. We summarize the results of our
previous study in Section 2. In Section 3, we review related work on source code searching,
information retrieval, and software reuse. Our experiment and results are described in
Sections 4 and 5. We discuss some implications of our results in Section 6 and present
concluding remarks in Section 7.

2. ARCHETYPES OF WEB-BASED CODE SEARCHES
Previously, we conducted a web-based survey to collect data on a range of source-code
searching behaviors. This study has been described in detail elsewhere [Umarji et al. 2008],
so we give only a summary here.

2.1 Method
We used an online survey with 13 closed-end questions and two open-ended questions.
The survey had questions about: types of information sources used by programmers while
searching; popular search sites; selection criteria for code; and the search process. We
solicited participants from a number of mailing lists, newsgroups, and our own social net-
works. We had 69 participants who provided a total of 58 anecdotes of searches that they
had performed. (Some participants provided more than one anecdote, while others did not
provide any, electing to answer only questions from other parts of the survey.) A major-
ity of the developers that responded to our survey were programmers who used Java (54),
C++ (58) or Perl (32). Most participants were familiar with more than one programming
language. We analyzed the anecdotes for recurring patterns using open coding [Miles and
Huberman 1994] and a grounded theory approach [Strauss and Corbin 1990].

2.2 Archetypes and Strategies
Our analysis revealed that there are two major archetypes: i) searching for components
for use as-is in a system being constructed (34 anecdotes); and ii) searching for reference
examples (17 anecdotes). There were an additional seven anecdotes that did not fall into
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these two archetypes. The major archetypes have sub-types that vary in the size of the
search target (block, subsystem, and system). In the example anecdote given below, the
motivation or goal was to find a reference example and the size of search target was a
subsystem, because the participant was looking for a usage example of the SWT, which is
a subsystem.

Sometimes I did a source code searching when I don’t know how to use a
class or a library. For an example I didn’t know how to create a window using
SWT class. I did a Google search with the description of what I want to do. I
decided on the best match based on whether I understand the example code.

Table I summarizes the frequency of searches categorized along these two dimensions.

Reuse Reference Examples

Block

Subsystem

System

Code snippets, 
wrappers (7)

Data structures, 
algorithms, GUI 

widgets (21)

Application (6)

Lines, block (4)

Implementation 
example, usage 

example (11) 

Approaches, ideas (2)

Row 
Total

11

32

8

Column 
Total

34 17 51

Major Archetypes

S
u
b
ty

p
e
s

Table I. Frequency of Archetypes with Subtypes

Although we categorized the searches into archetypes and subtypes, these dimensions
of variables are continuous. A programmer could be searching for a component to drop
into a project to use without making any changes, or for an example to inform a re-
implementation effort, or some combination of the two. For instance, a programmer may
be willing to make minor, even major, modifications to a component, so it can be reused.
On occasion, the search is initially seeking a re-usable component and when that fails, it
becomes a search for reference information. The size of search targets ranged from whole
systems to a few lines of code.

There were only 7 searches that did not fall into these categories. Four of these were
searches for information about bugs or defects. Programmers were looking for confirma-
tion, a patch, or additional information for a bug that they had found. In one search, a
programming language designer was looking for examples of how Python syntax was used
before modifying a feature. We were not able to categorize the final two searches, because
not enough detail was provided.

The searches for systems were qualitatively different from the others. Often these started
with a pointer obtained from a friend, such as the name of a system, e.g., Eclipse or Lucene.
Consequently, the ways in which the searches were carried out were different. An impor-
tant reason is a system often has its own web page and documentation. Once a software
developer has a name of a system, it is a simple matter to type it into a search engine and
find a home page. As well, system often served as a reference example for developers who
could not use open source in proprietary, closed source projects. These developers used
these systems as a source for ideas on how to design and implement their own systems, or
ACM Journal Name, Vol. 0, No. 0, 00 2009.



Code Retrieval on the Web · 5

new features. Also, when looking for ideas, the search parameters and selection criteria
can be very broad.

The other four archetypes were similar in that they all required some work or know-
how with a search engine to find them. Software developers needed to find appropriate
search terms, filter through matches, expand the set of matches, or all of these iteratively.
Consequently, in our experiment to evaluate search engines we will be focusing on searches
for blocks and subsystems only.

2.3 Tools and Information Sources
We were interested in the kinds of tools and information sources that participants used in
searching for source code. We obtained data from a closed-ended multiple choice ques-
tion and from analyzing the anecdotes. The results are shown in Table 2.3 and Table III,
respectively. In the multiple choice question, participants were asked to select all options
that applied, so the total count exceeds the sample size. In the latter table, only specific
and explicit reference to a web site or search engine were counted.

Table II. Reponses to Multiple Choice Question: Which information sources do you use to search for code?
Count

Google, Yahoo, MSN Search etc 60
Domain knowledge 37
Sourceforge.net, freshmeat.net 34
References from peers 30
Mailing lists 16
Code-specific search engines 11

Table III. Search Engines and Site Mentioned in Open-Ended Questions
Count

Google 28
Specific web site 9
Mailing lists and forums 6
SourceForge 3
Scientific articles 2
Yahoo! 1
Krugle 1
freshmeat.net 1

In the multiple choice question, 60 of the 69 participants said they turned to a general-
purpose search engine. This data is corroborated by the answers given by the participants
in the anecdotes. In the 58 scenarios, Google was mentioned 28 times and Yahoo! was
cited once.

The next most common information source was domain knowledge. The name of a
system plus a little context coaxes good results even from search engines not designed
to search source code. Although general-purpose search engines were not designed to be
used with source code, they work well enough because software developers are looking for
functionality, not elements in the source code. In the anecdotes, participants also refered to
specific forms of domain knowledge. Nine reported going directly to a specific web site,
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such as archives, repositories, and tutorial sites. Two others used scientific articles to help
them locate code.

The next category of interest was project hosting sites, with 34 of the respondents using
them for source code search. In the anecdotes, SourceForge was mentioned three times
and freshmeat.net was mentioned once.

Participants also consulted friends or colleagues for suggestion. A recommendation and
a good text search engine is a powerful combination. The recommendation usually names
a system, which can then be used as a search term.

Mailing lists (16/69 responses) also provided good information. In the anecdotes, par-
ticipants also mentioned mailing lists or forums six times. On these lists, newsgroups,
and online forums, other programmers talked about source code. Consequently, natural
language vocabulary becomes associated with a particular piece of software by proximity.
Once again, it is a work-around the problem of specifying functionality using code ele-
ments. The natural language search keywords match words in posts on mailing lists, and
these posts in turn lead the programmer to the source code.

Only 11 out of 69 respondents reported using a code-specific search engine. Only one
participant named such a site (Krugle) in their anecdotes. In the comments box at the end of
the survey, some were very skeptical of search engines for source code. One programmer
wrote, “In short, I would never rely on a ‘code search engine’. This idea is just plain silly.
Sort of ivory tower. If you want to find something usable you have to look for ‘people
already using it.”’

3. APPROACHES TO CODE RETRIEVAL
By some estimates, there are billions of lines of code in countless programming languages
available on the web [Deshpande and Riehle 2008]. With this embarrassment of riches,
comes a problem: locating the code that one wants. A natural response is to build a search
engine. If code retrieval on the web is a variation on a well-understood problem, then it is
a problem than can be solved using existing tools. At times, it resembles a problem from
conventional source code searching, software reuse, or information retrieval. But a closer
examination reveals that code retrieval is a strange hybrid of all of these, and will require
new approaches and technology.

3.1 Textual Information Retrieval
Textual information retrieval is the discipline of organizing, searching, and presenting
documents from large repositories [Manning et al. 2008]. General-purpose web search
engines, such as Google and Yahoo!, are classic examples of information retrieval sys-
tems. “Document” is the term applied to records because they typically, but not necessar-
ily, contain text. Searches are generally performed using keywords, a specialized dictio-
nary, and/or Boolean operators. Current research in the area deals with increasingly large
collections of documents by creating more robust infrastructure and better algorithms for
summarizing results and answering questions.

This class of technology was represented in our study by Google. With this web site,
searches can be specified using regular expressions and there are no special features for
code search. Filtering can be achieved by using additional keywords in the search. Google
uses the PageRank algorithm [Langville and Meyer 2006] and other proprietary algorithms
to retrieve and order the presentation of documents. Highlighting of matched search terms
is available in the cached version of the document.
ACM Journal Name, Vol. 0, No. 0, 00 2009.
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3.2 Source Code Searching

Code search is a key part of program comprehension in software development. In an empir-
ical study of software engineering work practices, Singer et al. [1997] found that searching
was the most common activity for software engineers. They were typically locating a bug
or a problem, finding ways to fix it and then evaluating the impact on other segments. Pro-
gram comprehension, reuse, and bug fixing were cited as the chief motivations for source
code searching in that study. A related study on source code searching by Sim, Clarke, and
Holt [1998] found that the search goals cited frequently by developers were code reuse, de-
fect repair, program understanding, feature addition, and impact analysis. They found that
programmers were most frequently looking for function definitions, variable definitions,
all uses of a function and all uses of a variable.

The recognition that search is powerful and useful has led to advances in code search
tools. Software developers have needed tools to search through source code since the be-
ginning of interactive programming environments. It started with simple keyword search
and when regular expressions were added, it became possible to specify patterns and con-
text [Thompson 1968]. An important improvement was made when search techniques
started using program structure, such as identifiers of variables and functions, directly in
expressing search patterns [Aiken and Murphy 1991; Paul and Prakash 1994]. Another ap-
proach to syntactic search involves processing the program and storing facts in a database
file of entity-relations [Chen et al. 1990; Linton 1984]. Alternatively, the code can be
parsed and transformed into other representations, such as data flow graphs or control flow
graphs, and searches can be performed on those structures [Murphy and Notkin 1996].
While some of these contributions have yet to be widely adopted, searches using regular
expressions and program structure are standard in today’s integrated development environ-
ments (IDE).

This class of technology was represented in our study by Koders, Krugle, and Google
Code Search. The characteristics of these web sites are summarized in Table IV. The first
three rows have been excerpted from Hummel, Janjic, and Atkinson [Hummel et al. 2008].

3.3 Software Reuse

Software reuse usually means the reuse of code from a library as-is without modification
[Mili et al. 1998; Prieto-Diaz 1991]. In this view, components should be used as black
boxes, that is, to be used without change. Modification is an expensive operation; mak-
ing non-trivial changes quickly increases the effort of understanding a component and any
savings in effort over implementation from scratch quickly diminishes [Ravichandran and
Rothenberger 2003; Holmes and Walker 2008]. The approach of taking existing compo-
nents and using them on a new software project is not a new one. What is new is the
way in which it is carried out; the quality and quantity of open source code that is avail-
able means that software developers shop first and ask design questions later. Others have
made this same observation and applied their own labels to it. Noble and Biddle [2002]
called it “postmodern programming,” Boehm [2006] used the term “systems of systems,”
and Carnegie Mellon’s Software Engineering Insitute refers to the phenomenon as “ultra-
large-scale systems” [Northrop et al. 2006].

Research in software reuse is concerned with topics such as design for reuse and making
reusable components easier to find. For instance, in component-based software engineer-
ing (CBSE), reuse is planned and components are created and packaged for that purpose.

ACM Journal Name, Vol. 0, No. 0, 00 2009.
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No. of 
Indexed Files

Koders Krugle
Google Code 

Search
SourceForge

>1 million > 10 million > 10 million 173,065 projects

No. of Java 
Files

600 000 3.5 million >2.5 million files None

R
e

p
o

s
it

o
ry

Specifying 
Searches

Text keywords and 

regular 

expressions, plus 

drop-down and 

check boxes for 

filtering

Text keywords with 

drop-down menus 

for filtering 

Text keywords 

regex, and special 

qualifiers in 

standard mode. 

Additional fields 

and boxes for 

filtering in 

advanced mode.

Text keywords in 

standard mode. 

Filtering fields and 

selection in 

advanced mode.

Regular 
Expressions

Yes No Yes No

Retrieval 
Algorithm

Keyword and name 

matching of codes 

from large open 

source hosters

Keyword and name 

matching in open 

source code search 

for technical Web 

pages

Keyword matching 

of open source with 

regex support

Keyword matching

Matching
Syntax recognition 

of source code

Syntax recognition 

of source code

Syntax recognition 

of source code

Plain text on 

project names and 

descriptions

Filtering

By file types, class, 

method, and 

interface.

Can limit scope to 

a project.

By comments, 

source code, 

functions, function 

calls, and classes. 

Can limit scope to 

a project.

By patterns in the 

name of files and 

packages.

By project 

categories, project 

registration date, 

and activity rank.

S
e

a
rc

h
 F

e
a

tu
re

s

Table IV. Characteristics of Search Sites

Selection of a component is driven by a set of requirements that have been specified in
advance. Work on software reuse repositories has included packaging code into libraries
for reuse, constructing archives of reusable components, and search on those repositories.

This class of technology was represented in our study by SourceForge (see Table IV.)
The search feature on this web site matches keywords entered by the user to terms on
the home pages of the various projects; the source code on the projects is not searched.
Information on the web pages includes a great deal of metadata, such as the age of the
project, category, license, activity level, popularity, and descriptions of the project.

4. METHOD
In Section 2, we reviewed the results of a prior study that categorized the different kinds
of searches for source code undertaken by software developers. In the previous section,
we examined different approaches to code search based on technologies from information
retrieval, source code searching within a single project, and software reuse. In this section,
we report on a study to evaluate the effectiveness of the different approaches with the goal
of improving our understanding of the nature of code retrieval on the web. In this study,
ACM Journal Name, Vol. 0, No. 0, 00 2009.



Code Retrieval on the Web · 9

we gave participants a search scenario to perform on five search engines and asked them to
rate the relevance of the first ten hits returned.

4.1 Independent and Dependent Variables
In the experiment, each participant was given a scenario and asked to perform the search
using five different code search engines. We used multiple scenarios to represent four
combinations of the two search archetypes (reuse as-is and reference example) and two
sizes of search targets (block and subsystem).

Across subjects, we used three independent variables in this study: search engine, search
motivation, and size of search target.

Search engine was treated as a within-subjects independent variable with five levels:
Google, Koders, Krugle, Google Code Search (GCS), and Sourceforge. These five were
included because they each represented a class of search engines that were mentioned in
the initial survey. A within-subjects factor allows us to use a subject as his or her own
control, thereby allowing us to partition variation in performance more accurately. In other
words, by using search engine as a within-subjects factor, we are able to factor out some
personal idiosyncrasies when making judgments about relevance of matches and the search
engines.

The two remaining independent variables were between-subjects factors. There were
two levels of the search motivation, corresponding to the two archetypes (reuse as-is and
reference example) that we identified in the first study. There were two levels of the vari-
able size of search target. We decided to focus on block and subsystem, because the search
strategies for these relied less on suggestions from peers. A block is a few lines of code,
similar to a basic block in source code, such as a call to API or a form in HTML. A subsys-
tem could be a GUI widget, library, or data structure. This decision allowed us to make the
experiment self-contained, yet consistent with what we found in our previous study. Also,
by excluding other software developers as an information source, subjects were required
to rely more on features in the search engines.

The dependent variable was the performance of the search engines. We operationalized
this as the precision, of the first ten matches returned, or P@10. Participants were asked
to look at the first ten matches and give a binary relevance judgement. The sum of these
judgements were aggregated and divided by ten, giving a proportion between 0 and 1. If
fewer than ten matches are returned, the denominator is the number of matches returned.

Precision and recall are two widely-used measures from information retrieval for evalu-
ating search engines. However, they are very difficult to calculate on a large set of records,
because it requires an oracle (usually a human) to generate a relevance rating for every
record. Consequently, the P@10 metric was developed and it has been found to be an ap-
propriate surrogate because it is predictive of overall search engine effectiveness and users
rarely go beyond the first ten results [Craswell and Hawking 2004].

4.2 Creating Scenarios
We used the archetypes from our previous study to create scenarios for evaluating source
code search tools. Whereas archetypes are abstract, scenarios are more concrete and de-
scribe a specific instance of search.

In our case, scenarios were designed to include the following information: i) goal of
search (component or example); ii) size of search target (block, or subsystem); iii) pro-
gramming language; iv) context of search; and v) a situation linking the first four parts.

ACM Journal Name, Vol. 0, No. 0, 00 2009.
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All of this information is necessary to judge the relevance of an item returned by a search
engine. The first two parts of the scenario are based on the archetypes from our previous
study. Programming language is included because code in some languages is easier to find
than others, e.g., PHP vs. C. As well, the context affects the usefulness of items returned,
i.e., academic vs. industrial settings, Eclipse plug-ins vs. web sites. An example of a usage
scenario is presented below.

You are working in the Python programming language, and need to have multi-
threading functionality in your program. You have never used threads before,
and would like to know how to create threads, to switch between threads, and
so on. Look for examples by which you can learn. Any thread implementations
of Python programs are relevant. Remember you will not be using the code
directly, you will like to learn how to use it.

To ensure that the treatment combinations were not biased by the specific stimuli pre-
sented to the participants, we generated multiple scenarios per treatment combination. Two
scenarios were created for each of the two searches for blocks. Three scenarios were cre-
ated to be used in each of the two searches for subsystems; we created more scenarios for
this level of the independent variable to reflect the wider range of searches for subsystems
that we found in our previous study.

We used a Latin square design to assign 36 subjects to the 20 (5x2x2) conditions. Each
participant used all five search engines. Consequently, each combination of motivation and
size was used with nine participants.

4.3 Procedure
The procedure in our study had three stages: training, experiment, and debriefing.

The training stage allowed the participants to become familiar with the experiment set
and task. There was one warm-up task for participants to become accustomed to the think
aloud procedure. In a training task, participants were given a simple scenario, asked to
search for source code, and rate the relevance of the first three matches returned. We
recorded audio, video, and screen activity as they worked.

In the experiment, participants were randomly assigned to a condition that was a combi-
nation of search motivation and size of search target. Participants were given a scenario and
were asked to perform the search using five search engines. The participants were free to
use the search engines in any order they wished, but they were required to use all five. They
were allowed to change and refine their queries as many times as they liked. Once they
arrived at a set of search results that they were satisfied with, they were asked to rate the
relevance of the first ten matches. They were allowed to make any investigations necessary
to inform their subjective judgments. We asked participants to provide P@10 judgements,
not because we are interested in combining their subjective opinions to evaluate the search
engines using the collective wisdom of the crowds. Instead, we are interested in their ex-
periences in using the search engines. We expect that these lessons will be applicable to
understanding the appropriateness of different technological approaches to different kinds
of code search.

Finally, the debriefing stage consisted of two questionnaires. The first one asked about
their preferences regarding the search engines that they had used. The second questionnaire
was on their background and code search experience.
ACM Journal Name, Vol. 0, No. 0, 00 2009.
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4.4 Participants
Thirty-six participants were recruited for this study based on the criteria that they should
have some prior programming experience (either professional or academic). Most of the
participants were graduate students and all had work experience, either in product devel-
opment or industrial research. The average age of participants was 26.9 and they had on
average 4.2 years of programming experience. All had previously searched for source code
on the web, had used multiple programming languages, and worked with a team. Fifty per-
cent of participants reported that they had searched for source code “Frequently” and 39%
searched for it “Occasionally.” All the participants had experience with HTML and C
programming, 94% with Java, and 83% had worked with C++. Sixty-four percent of the
participants cited their primary job responsibility as ”Programming”. The characteristics
of the participants are summarized in Table V below.

Participant Search the 

Web for Code

Years of 

Professional 

Experience

Primary Job 

Responsibility

Age Participant Search the 

Web for Code

Years of 

Professional 

Experience

Primary Job 

Responsibility

Age

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

Frequently 10 Programming 42 19 Occasionally 1 Programming 23

Frequently 6 Programming 29 20 Occasionally 1 Project Management 28

Frequently 0 Programming 22 21 Occasionally 7 Programming 29

Frequently 5 Programming NR 22 Occasionally 5 Programming 36

Frequently 4 Programming NR 23 Occasionally 5 Software Architecture NR

Frequently 4 Programming NR 24 Occasionally 3 Programming 22

Frequently 5 Programming NR 25 Occasionally 8 Software Architecture 26

Frequently 4 Programming 29 26 Occasionally 10 Programming NR

Frequently 1 Programming 23 27 Occasionally 1 Testing/QA 23

Frequently 4 Programming NR 28 Occasionally 1 Research 23

Frequently 6 Project Management 28 29 Occasionally 6 Research 23

Frequently 5 Programming 30 30 Occasionally 5 Project Management 33

Frequently 3 Research 28 31 Occasionally 3 Programming 27

Frequently 4 Programming 27 32 Occasionally 3 Programming 24

Frequently 5 Programming 26 33 Rarely 1.5 Product Management 23

Frequently 7 Programming 30 34 Rarely 1.5 Testing/QA 23

Frequently 4 Programming 26 35 Rarely 2 Testing/QA 25

Frequently 7 Programming 24 36 Rarely 3 Technical Writing NR

Table V. Characteristics of Participants

4.5 Hypotheses
Our previous study of search behaviors indicated that software developers performed a
variety of searches. We also found that search engines differed widely in their algorithms
and implementations. Given these differences, it was likely that some search engines would
perform better on some search scenarios than other search engines. In other words, we are
predicting an interaction effect between the search engines and the kinds of searches that
are performed. Our hypotheses, and the corresponding null hypotheses, are as follows.

4.5.1 Main Effects. There are three main effects corresponding to the three indepen-
dent variables in the study.
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The first hypothesis pertains to the relationship between the motivation for the search
and the success of the search. We expect searches for reference examples to be more
successful, because the criteria for relevance are more flexible.

HM0 : There is no difference the precision of the first ten matches when searching for
as-is reuse and for reference examples.

HM1 : The precision of the first ten matches is higher when searching for reference
examples than for components to be used as-is.

The second hypothesis pertains to the relationship between the size of the search target
and the success of the search. We expect searches for blocks to be more successful, because
there are more blocks of code than subsystems in repositories and on the web.

HS0 : There is no difference in the precision of the first ten matches when searching for
blocks or subsystems.

HS1 : The precision of the first ten matches is higher when searching for blocks than for
subsystems.

The third hypothesis pertains to the relationship between the search engine, i.e., the
technological approach, and the success of the search. Google was frequently used by
participants in our prior study, so we are using popularity as an indicator of quality in
this instance. If Google did not work well enough, or at least better than the alternative,
software developers would not be mentioning it so often in their anecdotes and they would
have found a better alternative.

HE0 : There is no difference in the precision of the first ten matches across the search
engines.

HE1 : The precision of the first ten matches is higher when using a general-purpose
search engine than the other types of search engines.

4.5.2 Interaction Effects. With the three independent variables, there are four possible
interaction effects. These interaction effects are of interest, because we expect to see the
success of a search to depend on more than one factor.

We draw particular attention to the interaction effect between motivation and the search
engine. In other words, the success of a search with a particular motivation depends on
which search engine is used. We expect that it would be easier to use SourceForge, for ex-
ample, to find subsystems, than the other search engines. Our rationale for this hypothesis
is that searching for subsystems was most similar to the searches performed in software
reuse and that SourceForge, being a representative of software reuse repositories, would be
most compatible.

HME0 : The precision of the first ten matches when searching with a given motivation
will not change when the search engine changes.

HME1 : The precision of the first ten matches will be higher when using a general-
purpose search engine to search for reference examples, than the other types of search
engines.

5. RESULTS
5.1 Main Effect of Motivation
The ANOVA revealed that there was a main effect from the motivation of the search (F(1,
32) = 4.98, p < 0.05). The F statistic is used to test for significance in an Analysis of
ACM Journal Name, Vol. 0, No. 0, 00 2009.



Code Retrieval on the Web · 13

Table VI. ANOVA Results on P@10
Between Subjects df Sum of Squares Mean Sum of Squares F value p
Size 1 0.002 0.002 0.019 0.890
Motivation 1 0.533 0.533 4.988 0.033 *
Size:Motivation 1 0.014 0.014 0.135 0.716
Residuals 32 3.416 0.107
Within Subjects df Sum of Squares Mean Sum of Squares F value p
Engine 4 0.980 0.245 4.109 0.0036 **
Size:Engine 4 0.974 0.243 4.080 0.0038 **
Motivation:Engine 4 0.106 0.026 0.443 0.7771
Size:Motivation:Engine 4 0.260 0.065 1.090 0.3644
Residuals 128 7.635 0.060
Significance: * 0.05 ** 0.01

Variance. The numbers in the brackets (1, 32) show the degrees of freedom in the statistic.
The p-value for a statistic is an indicator of the likelihood that an effect was detected purely
by chance, which is low in this case. Searches for reference examples had P@10avg=0.43,
while searches for components reuse as-is had P@10avg=0.32, as can be seen in Figure 1.
The partial η2 statistic is a measure the size of the effect, that is, percentage of variance
explained in the dependent variable by a predictor controlling for other predictors An effect
size estimate is a scale-free measure of how large is difference between different conditions
[Kampenes et al. 2007]. For this effect η2=0.38, indicating a medium effect size [Cohen
1988], which means that the difference is statistically significant and large enough to be
meaningful. In other words, participants found it easier to locate examples to consult than
code that they could use straight away on a project.

0

0.175

0.350

0.525

0.700

As-is reuse Reference

Fig. 1. P@10 for Searches with Different Motivations

5.2 Main Effect of Search Engine
In addition, there was a main effect from the search engines (F(4, 25) = 4.109, p < 0.01).
The effect size was large with η2=0.7. Looking at the performance of individual search
engines, we can see that Google had P@10avg=0.50, followed by Koders P@10avg=0.37,
and the remainder clustered around 0.29-0.34, as can be seen in Figure 2a. A post hoc com-
parison using Tukey’s Honestly Significant Differences Test found no difference between
the other search engines.

In the debriefing, participants also stated that they preferred Google. We asked them
to rank the search engines from 1 (high) to 5 (low) in order of their overall preferences,
perceived ease of use, and available features. The participants’ answers are summarized in
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a) Overall P@10 for Search Engine b) P@10 for Search Engine x Size

Fig. 2. Effect of Search Engines and Interaction Between Search Engine and Size

Table 5.2. We found statistically significant differences in overall preference and perceived
ease of use, but not for the available features. In terms of general preference, Google
was the clear winner with a median rank of 1.92, and was statistically significant using
Friedman’s test (χ2

4 = 16.8, p < 0.01). Google was also perceived to be easier to use
(χ2

4 = 20.13, p < 0.0001). Interestingly, participants found GCS easier to use than Koders
and Krugle, despite its lower performance on the precision of the searches. SourceForge
also scored lowest on this measure. Participants seemed to like the features in GCS the best,
but the differences between the search engines were small and not statistically significant.

Table VII. Mean Rank of Participants Preferences (1 = high, 5 = low)
Preference Ease of Use Features

Google 1.92 1.92 3.00
Koders 2.83 3.25 2.54
Krugle 3.17 3.25 2.69
GCS 3.17 2.92 3.15
SourceForge 3.92 3.67 3.63

A reason often given for preferring Google is that this site helped them to learn more
both about the problem they were given and the available solutions. A few other sub-
jects preferred Koders or Krugle, because it provided the best match without extraneous
information.

5.3 Interaction Effect Between Size and Engine
The final statistically significant relationship that we found in the ANOVA was an inter-
action effect between the search engine used and the size of the search target (F(4, 25) =
0.003, p < 0.01). Further examination of the mean P@10 values for each of these condi-
tions shows that it is easier to find blocks of code on Google, but that Koders and Krugle
were better for finding subsystems (see Figure 2b). Blocks are a few lines of code, such
as a regular expression to check the format of an email address. A subsystem is larger, for
instance, an XML parser. Here also the effect size was large with η2=0.7.
ACM Journal Name, Vol. 0, No. 0, 00 2009.
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5.4 No Other Significant Effects
We did not find any other statistically significant effects. In particular, we failed to reject
the null hypothesis for size and the interaction effect between motivation and search engine.
We had expected blocks to be easier to find than subsystems, but found no difference. As
well, we had expected there to be an interaction effect between motivation and search
engine, but found no difference.

5.5 No Order Effect
Nearly half of the participants preferred to use Google first in their searches. We had orig-
inally planned to randomize the order of presentation of the search engines to mitigate
learning effects, but later had to abandon these plans. During pilot testing, we were met
with an extremely high level of resistance from the subjects; multiple subjects simply re-
fused to use the search engines in the order that we requested and insisted on using Google
first. Instead, we presented participants with a list of search engines to use and allowed
them to choose the order. Seventeen out of the 36 participants used Google first; of the re-
mainder, 12 used the search sites in the order they were given on the list, and the rest started
with a site that they were familiar with. In cases when the participants were not familiar
with the programming language or with the problem at hand, they preferred to use Google
first to gain a basic understanding of the scenario. But there is no evidence that Google
raised the P@10 of the search engines used subsequently. The average P@10 was slightly
higher for search engines chosen earlier, but an ANOVA revealed that this difference was
not statistically significant. In other words, there did not appear to be a significant learning
effect nor a bias due to order in which the search engines were used.

5.6 Testing Analysis of Variance Assumptions
When performing a statistical analysis of a multi-factorial design, it is necessary to confirm
the homogeneity of variances between conditions, also known as sphericity, to ensure that
the data does not violate one of the underlying assumptions of one the statistical tests.
A sphericity test confirmed the homogeneity of variances between conditions (Mauchly
Criterion = 0.690, p > .25, n.s.), which allowed us to proceed with a three-way ANOVA
on the precision of the first ten matches returned, or P@10. We used two between-subjects
factors (size of search target and motivation of the search) and one within-subjects factor
(search engine). Results are shown in Table VI. There were three statistically significant
effects. Furthermore, post hoc power analysis using G*Power [Faul et al. 2007] indicated
that β=1, so the likelihood of a Type II error, or false negative, is negligible.

5.7 Threats to Validity
Our main threat to the validity is the use of relevance judgements to evaluate search en-
gines. Participants did not always make correct judgements on whether a match was rele-
vant to the scenario that they were given. While observing the experiments, we noticed that
errors were made from time to time. However, the population of users of search engines
out in the world would likely make similar errors. Also, running multiple participants in
each condition allowed us to make inferences about how software developers searched as
a group. The presence of judgment errors also affects the kinds of conclusions that we
can draw about the search engines. Consequently, the P@10 metric is more about the
applicability of the different technological approaches than some absolute measure of the
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algorithmic capabilities of the different search engines.
Another threat to validity is a possible bias in participants in favor of search approaches

that they are familiar with. In our study, we found that a general-purpose search engine had
a higher precision than the others. Participants may have found them easier to use, because
they had greater past experience with them. For example, none of them used the feature in
Koders that allowed them to limit searches to projects. However, the code search engines
that are available on the web are not restricted to trained, expert users, which means our
participants are representative of the general user population in this respect. Furthermore,
participants were very willing to adapt their queries to take advantage of available features.
While we can not rule out familiarity as a confounding factor, our research design does
allow for a head-to-head comparison of the search approaches.

Assigning specific search scenarios was a necessary part of the experiment procedure,
but introduced a serious confound. Being assigned a search scenario is very different from
coming up with a need on one’s own. With an assigned scenario, there is always some level
of unfamiliarity and in turn a need to learn something about the problem, programming lan-
guage, or any other unknowns. In such situations, participants always turned to Google to
fill in background knowledge. Also, we provided some guidance on how to make relevance
judgements to provide consistent direction for participants to complete their task. We made
these criteria broad (including matches that aided learning), so that participants would have
latitude to judge more matches relevant. Consequently, these stimuli may have biased the
results in favor of a general-purpose search engine. However, learning is an essential part
of opportunistic software development, so this bias should not invalidate the results.

6. DISCUSSION
In this section, we discuss and examine the results of the experiment. To sum up, we
had three statistically significant results. We rejected the null hypothesis for a motivation
effect HM0 and found that it was easier to find reference examples. We rejected the null
hypothesis for a search engine effect HE0 and found that a general-purpose search engine
(Google) performed best overall. We failed to reject the null hypothesis for a size of search
target effect. As well, we rejected the null hypothesis for an interaction effect between
search engine and size of search target HES0 , meaning that it was easier to find subsystems
using code-specific search engines. Finally, we failed to reject the null hypothesis for all
other interaction effects.

6.1 The Effect of Motivation
Searching for source code on the web can have different motivations such as learning to
complete a programming task or to advance software development on a project. Much
of the work on software development using open source has been concerned with as-is
reuse of components. While there is no doubt that this occurs frequently, the focus on
as-is reuse has overlooked the use of open source as reference examples and for learning.
Approximately one third of the anecdotes collected in our previous study were searches
for reference examples.

In this experiment, it was easier to find reference examples, likely because the criteria
for judging relevance are more flexible. Code that is close to what the searcher desires is
sufficient. On the other hand, the criteria for judging the relevance of a component to be
used in implementation are more strict. Not only does the functionality need to match, but
also the interfaces, data models, and so forth in order for the component to be compatible.
ACM Journal Name, Vol. 0, No. 0, 00 2009.



Code Retrieval on the Web · 17

While there has been significant work on component reuse [Frakes and Kang 2005],
there has been somewhat less work on finding source code examples. Code retrieval on
the web could also be improved through the application of recommender systems [Holmes
and Murphy 2005; Zimmermann et al. 2005]. These tools identify sections of code that
are related to the software developer’s current task. Tools such as Strathcona [Holmes and
Murphy 2005], XSnippet [Sahavechaphan and Claypool 2006], exemplar [Grechanik et al.
2007], and Assieme [Hoffmann et al. 2007] assist developers who are using complex APIs
or frameworks by providing examples of structurally similar source code and examples
of API usage. Source code search for reference examples is a good application for these
tools, because software developers can easily make use of matches that are “good enough”
as reference examples.

We have identified two possible reasons for the relative lack of attention to reference
examples in software development using open source. One, the impact of open source in
the form of components is more visible and longer-lived than when the code is used for
ideas for software design and implementation. A component and its corresponding files
that have been incorporated into a software system are clear evidence of the open source
reuse. In contrast, an idea for software design is much more ephemeral. As Kamp [2004]
pointed out, when a re-implementation occurs, any link to previous work is lost. Two,
reference materials have traditionally been books and other documents. While text books
and reference manuals do contain source code, they rarely spring to mind when in the
context of reuse. But as these resources move onto the web, the web becomes a giant desk
reference that developers use to look up information.

6.2 The Effect of Search Engine
The search engines used in the experiment were representatives of different technologi-
cal approaches to code retrieval on the web. Informational retrieval was represented by
Google. Source code searching was represented by three search engines, Koders, Krugle,
and GCS. These web sites had functionality similar to what one would find in an IDE.
Finally, software reuse repositories were represented by SourceForge.

Overall, Google performed better than the other sites. The remaining search engines
had lower P@10 values, but were not significantly different from each other. Considering
the simplicity of the search feature, SourceForge did well to keep up with Koders, Krugle,
and Google Code Search, which were purpose-built tools. There are two possible ways to
interpret this result, and we feel that there is a grain of truth in both of them.

One interpretation is that there is a stronger affinity between information retrieval ap-
proaches and the problem of searching for source code on the web than the other ap-
proaches. This possible mismatch between code search on the web and code search in
an IDE raises the question of whether software developers are really searching for source
code, per se. In our study, the participants rarely clicked through to the source code. When
looking for examples, developers use the search results to figure out how to do something,
but they are trying not to get bogged down in details and design rationale. Code quality
was not evaluated and searchers make very quick assessments of appropriateness. We posit
that they are looking for a kind of “executable know-how.” By know-how, we mean the
knowledge that is needed to turn abstract principles into concrete solutions. It is the link
between good ideas and usable innovations. Executable know-how gives mastery over the
computer through software. Our comments on this topic are highly speculative, but point
the way to further research.
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Another possible interpretation is that more advanced technology from source code
searching and software reuse needs to be applied to code retrieval on the web. Compared
to Google, the remaining search engines have had much less research and development
effort into them. As well, there are many state of the art research results that are relevant,
but have not yet moved out of the laboratory.

A fundamental problem in code search is the mismatch between the language that we
use to formulate and specify searches, and the language in the source code. We tend to
describe functionality in natural language, while source code is in a programming language
[Fischer et al. 1991]. For example, software developers are looking for solutions to a
problem such as “passing data from Java to CGI” or functionality that has a property such
as “encapsulated within a class.” In the best cases, the source code contains comments or is
embedded in a web page with other text. In such instances, algorithms that are suitable for
use with text, such as PageRank [Langville and Meyer 2006] and latent semantic indexing
[Marcus et al. 2004] work well. However, this is too often not the case.

Prior work in code reuse has looked at techniques such as specifying the structural prop-
erties of the desired component, using a formal specification [Zaremski and Wing 1997], an
outline [Balmas 1999], a fingerprint [Gil and Maman 2005], or call graph [Thummalapenta
and Xie 2007]. One drawback of these approaches is they have a steep learning curve;
Without an understanding of what these innovative techniques can do for them, developers
rarely put in the time and effort to learn how to use them well. While users are willing to
try out features, they do not always perceive or understand the availability of functionality.
For example, in our study, none of our participants used the project search feature in Krugle
or looked at the project results from Koders. Consequently, search terms need to be able
to span the gap between plain text in natural language and source code in a programming
language.

Work on this problem has proceeded in two directions: more usable precise specifi-
cations and leveraging natural language in search specifications. In CodeGenie, search
specifications are written as test cases and the tool returns slices of code that satisfy the
test cases [Lemos et al. 2007]. Jungloid [Mandelin et al. 2005] accepts code searches that
are specified by the source and destination object type that are needed.

The approach of including natural language in program analysis seeks to make soft-
ware analysis tools smarter about the concepts embedded in abbreviations and comments
to make relevant sections of code easier to find [Hill et al. 2008]. Tools such as Exem-
plar [Grechanik et al. 2007] and CodeBroker [Ye and Fischer 2002] attempt to improve
code search by indexing the text documents and comments around the source code to aid
identification of functionality and behavior. Our earlier study found that mailing lists were
an important source of information and often provided a good starting point for a more
focused search for source code. A code search engine could easily index these documents
along with code and even add links directly into the source. In information retrieval, al-
gorithms have been developed that do more than return matches; they provide answers to
queries by analyzing and inferring information [Voorhees 2003]. This is a possible direc-
tion for code retrieval on the web.

6.3 The Interaction Between Size and Search Engine
This effect is perhaps the most surprising one to us. We had suspected that there might
be an interaction effect, but not this one. We expected there to be an affinity between the
motivation of the search and kind of search engine, i.e. searches for components to reuse
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as-is would be easier using SourceForge, due to its similarity to software reuse retrieval
tools. However, this was not the case.

Instead, we found an interaction effect between the size of the search target and the
search engine. It appears that Google is better for finding blocks, such as a few lines of
code for a widget in JSP, because these searches are particularly hard to specify within
code-specific search engines. Searches tend to be specified largely using natural language,
but the documents are in a programming language, and in the best cases, accompanied by
comments written in a natural language. This mismatch is most acute when searching for
a snippet of a program, when comments are often missing. In these situations, the search
engine must rely on surrounding text to find matches. Since Google indexes web pages
without prejudice, including tutorials, discussion boards, and mailing lists, it has a better
chance of returning relevant matches. For similar reasons, it is easier to find subsystems,
such as a regular expression library or a parsing API, in Koders and Krugle. The comments
that are likely to be found near the code are close to the keywords used in the search. In
other words, the terminology of the problem domain matches with the terminology of the
solution domain.

7. CONCLUSION
Ultra large-scale systems, pragmatic reuse, agile software development, and open source
software are powerful trends shaping the field of software engineering today. Software de-
velopment is now acquiring an opportunistic motivation, where the focus is on finding and
reusing existing artifacts and information. Our study is situated at the juncture of oppor-
tunistic software development and source code searching. Consequently, code retrieval on
the web becomes an important element in software development, where components and
examples from web pages and open source projects are used extensively. This is the first in-
depth study of the phenomenon of code retrieval and its implications for the development
of code search tools. Our study has two main contributions: the methodology employed to
create the scenarios that were given to participants in the study and the empirical results.

The scenarios used as stimuli in the experiment were created using empirical data. In a
previous study [Umarji et al. 2008], we identified common archetypes of searches carried
out by software developers. Few studies that we know of have applied this degree of rigor
in selecting and designing tasks for an empirical study. These scenarios have been tested
and tried. They are also self-contained, which means that other researchers can also use
them in their own empirical studies.

In the study, we obtained three statistically significant results. It was easier to find
reference examples than components for as-is reuse. A general-purpose search engine was
the most effective overall on all tasks. However, code-specific search engines were more
effective when searching for subsystems, such as libraries. More informally, if you were
only allowed to use one search engine, you should choose a general-purpose one, such as
Google. If you could pick and choose depending on task, you should use a code-specific
search engine to find subsystems and a general-purpose search engine for all other searches.

Overall, P@10avg ranged from 0.50 to 0.29, indicating that there is room for improve-
ment for code search engines. Some possible directions for this work were suggested by
our data. Approximately one third of the search anecdotes reported in the survey were for
reference examples. These kinds of searches have been largely overlooked by the work on
reuse, which focuses on reuse of components, rather than information. Another stumbling
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block for code search is the mismatch between the vocabulary used to specify searches
and the documents returned by the search engine. Functionality, and consequently search
terms, are described using natural language, whereas source code is written in a program-
ming language. While both have a grammar that can be leveraged by a search engine,
natural language can only be found in the collateral artifacts around source code, i.e., com-
ments, documents, and discussion forums. This impedance mismatch needs to be over-
come to improve code retrieval on the web.

The contributions of this study can be used to inform the creation of tools to search for
source code on the web. One, we argue that designers of tools should identify what kind of
search they are aiming to support. Being clear about their goals and usage scenarios will
make it easier to evaluate their claims and to compare competing tools. Two, the results
of this study also provide insight into the compatibility of different kinds of technologies
on the problem of code retrieval on the web, in particular, program comprehension, in-
formation retrieval, and software reuse. There are likely many more technologies that are
applicable and we look forward to seeing the research results.
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MANDELIN, D., XU, L., BODÍK, R., AND KIMELMAN, D. 2005. Jungloid mining: helping to navigate the

api jungle. In Proceedings of the 2005 ACM SIGPLAN Conference on Programming language design and
implementation. ACM New York, NY, USA, 48–61.
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